1
|
Ahmad J, Ahamad J, Algahtani MS, Garg A, Shahzad N, Ahmad MZ, Imam SS. Nanotechnology-mediated delivery of resveratrol as promising strategy to improve therapeutic efficacy in triple negative breast cancer (TNBC): progress and promises. Expert Opin Drug Deliv 2024; 21:229-244. [PMID: 38344809 DOI: 10.1080/17425247.2024.2317194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) presents unique challenges in diagnosis and treatment. Resveratrol exhibits potential as a therapeutic intervention against TNBC by regulating various pathways such as the PI3K/AKT, RAS/RAF/ERK, PKCδ, and AMPK, leading to apoptosis through ROS-mediated CHOP activationand the expression of DR4 and DR5. However, the clinical efficacy of resveratrol is limited due to its poor biopharmaceutical characteristics and low bioavailability at the tumor site. Nanotechnology offers a promising approach to improving the biopharmaceutical characteristics of resveratrol to achieve clinical efficacy in different cancers. The small dimension (<200 nm) of nanotechnology-mediated drug delivery system is helpful to improve the bioavailability, internalization into the TNBC cell, ligand-specific targeted delivery of loaded resveratrol to tumor site including reversal of MDR (multi-drug resistance) condition. AREAS COVERED This manuscript provides a comprehensive discussion on the structure-activity relationship (SAR), underlying anticancer mechanism, evidence of anticancer activity in in-vitro/in-vivo investigations, and the significance of nanotechnology-mediated delivery of resveratrol in TNBC. EXPERT OPINION Advanced nano-formulations of resveratrol such as oxidized mesoporous carbon nanoparticles, macrophage-derived vesicular system, functionalized gold nanoparticles, etc. have increased the accumulation of loaded therapeutics at the tumor-site, and avoid off-target drug release. In conclusion, nano-resveratrol as a strategy may provide improved tumor-specific image-guided treatment options for TNBC utilizing theranostic approach.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Tishk International University, Erbil, Iraq
| | - Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Anuj Garg
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ocak M, Usta DD, Arik Erol GN, Kaplanoglu GT, Konac E, Yar Saglam AS. Determination of In Vitro and In Vivo Effects of Taxifolin and Epirubicin on Epithelial-Mesenchymal Transition in Mouse Breast Cancer Cells. Technol Cancer Res Treat 2024; 23:15330338241241245. [PMID: 38515396 PMCID: PMC10958820 DOI: 10.1177/15330338241241245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Background: One of the most significant characteristics of cancer is epithelial-mesenchymal transition and research on the relationship between phenolic compounds and anticancer medications and epithelial-mesenchymal transition is widespread. Methods: In order to investigate the potential effects of Taxifolin on enhancing the effectiveness of Epirubicin in treating breast cancer, specifically in 4T1 cells and an allograft BALB/c model, the effects of Taxifolin and Epirubicin, both individually and in combination, were examined. Cell viability assays and cytotoxicity assays in 4T1 cells were performed. In addition, 4T1 cells were implanted into female BALB/c mice to conduct in vivo studies and evaluate the therapeutic efficacy of Taxifolin and Epirubicin alone or in combination. Tumor volumes and histological analysis were also assessed in mice. To further understand the mechanisms involved, we examined the messenger RNA and protein levels of epithelial-mesenchymal transition-related genes, as well as active Caspase-3/7 levels, using quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assays, respectively. Results: In vitro results demonstrated that the coadministration of Taxifolin and Epirubicin reduced cell viability and cytotoxicity in 4T1 cell lines. In vivo, coadministration of Taxifolin and Epirubicin suppressed tumor growth in BALB/c mice with 4T1 breast cancer cells. Additionally, this combination treatment significantly increased the levels of active caspase-3/7 and downregulated the messenger RNA and protein levels of N-cadherin, β-catenin, vimentin, snail, and slug, but upregulated the E-cadherin gene. It significantly decreased the messenger RNA levels of the Zeb1 and Zeb2 genes. Conclusion: The in vitro and in vivo results of our study indicate that the concurrent use of Epirubicin with Taxifolin has supportive effects on breast cancer treatment.
Collapse
Affiliation(s)
- Muhammet Ocak
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Duygu Deniz Usta
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gokce Nur Arik Erol
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gulnur Take Kaplanoglu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Wang W, Ling X, Wang R, Xiong H, Hu L, Yang Z, Wang H, Zhang Y, Wu W, Singh PK, Wang J, Li F, Li Q. Structure-Activity Relationship of FL118 Platform Position 7 Versus Position 9-Derived Compounds and Their Mechanism of Action and Antitumor Activity. J Med Chem 2023; 66:16888-16916. [PMID: 38100041 DOI: 10.1021/acs.jmedchem.3c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Structurally, FL118 is a camptothecin analogue and possesses exceptional antitumor efficacy against human cancer through a novel mechanism of action (MOA). In this report, we have synthesized and characterized 24 FL118 Position 7-substituted and 24 FL118 Position 9-substituted derivatives. The top compounds were further characterized for their MOA in colorectal cancer (CRC) models using CRC patient-derived xenograft (PDX) models and pancreatic cancer PDX models to evaluate their antitumor activities. Four FL118 Position 7-substituted derivatives showed significantly better antitumor efficacy than the FL118 Position 9-substituted derivatives. The four identified compounds also appeared to have better antitumor activity than their parental platform FL118. Interestingly, RNA-Seq analyses indicated that three of the four compounds exerted antitumor effects via an MOA similar to FL118, which provided an intriguing opportunity for follow-up studies. Extended in vivo studies revealed that FL77-6 (7-(4-ethylphenyl)-FL118), FL77-9 (7-(4-methoxylphenyl)-FL118), and FL77-24 (7-(3, 5-dimethoxyphenyl)-FL118) exhibit potential for further development toward clinical trials.
Collapse
Affiliation(s)
- Wenchao Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang Ling
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
- Canget BioTekpharma, LLC, Buffalo, New York 14203, United States
| | - Ruojiong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haonan Xiong
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liuzhi Hu
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhikun Yang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yali Zhang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Wenjie Wu
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
- Canget BioTekpharma, LLC, Buffalo, New York 14203, United States
| | - Prashant K Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Jianmin Wang
- Department of Bioinformatics & Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
- Developmental Therapeutics (DT) Program, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - QingYong Li
- College of Pharmaceutical Sciences & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action. Cell Mol Life Sci 2022; 79:539. [PMID: 36194371 DOI: 10.1007/s00018-022-04551-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
Breast cancer (BC) is one of the most common cancers in females and is responsible for the highest cancer-related deaths following lung cancer. The complex tumor microenvironment and the aggressive behavior, heterogenous nature, high proliferation rate, and ability to resist treatment are the most well-known features of BC. Accordingly, it is critical to find an effective therapeutic agent to overcome these deleterious features of BC. Resveratrol (RES) is a polyphenol and can be found in common foods, such as pistachios, peanuts, bilberries, blueberries, and grapes. It has been used as a therapeutic agent for various diseases, such as diabetes, cardiovascular diseases, inflammation, and cancer. The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis. In addition, the synergistic effects of RES in combination with other chemotherapeutic agents, such as docetaxel, paclitaxel, cisplatin, and/or doxorubicin may contribute to enhancing the anticancer properties of RES on BC cells. Although, it demonstrates promising therapeutic features, the low water solubility of RES limits its use, suggesting the use of delivery systems to improve its bioavailability. Several types of nano drug delivery systems have therefore been introduced as good candidates for RES delivery. Due to RES's promising potential as a chemopreventive and chemotherapeutic agent for BC, this review aims to explore the anticancer mechanisms of RES using the most up to date research and addresses the effects of using nanomaterials as delivery systems to improve the anticancer properties of RES.
Collapse
|
5
|
New Achievements for the Treatment of Triple-Negative Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.
Collapse
|
6
|
Mohammadhosseinpour S, Ho LC, Fang L, Xu J, Medina-Bolivar F. Arachidin-1, a Prenylated Stilbenoid from Peanut, Induces Apoptosis in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:1139. [PMID: 35163062 PMCID: PMC8835363 DOI: 10.3390/ijms23031139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is unresponsive to typical hormonal treatments, causing it to be one of the deadliest forms of breast cancer. Investigating alternative therapies to increase survival rates for this disease is essential. The goal of this study was to assess cytotoxicity and apoptosis mechanisms of prenylated stilbenoids in TNBC cells. The prenylated stilbenoids arachidin-1 (A-1) and arachidin-3 (A-3) are analogs of resveratrol (RES) produced in peanut upon biotic stress. The anticancer activity of A-1 and A-3 isolated from peanut hairy root cultures was determined in TNBC cell lines MDA-MB-231 and MDA-MB-436. After 24 h of treatment, A-1 exhibited higher cytotoxicity than A-3 and RES with approximately 11-fold and six-fold lower IC50, respectively, in MDA-MB-231 cells, and nine-fold and eight-fold lower IC50, respectively, in MDA-MB-436 cells. A-1 did not show significant cytotoxicity in the non-cancerous cell line MCF-10A. While A-1 blocked cell division in G2-M phases in the TNBC cells, it did not affect cell division in MCF-10A cells. Furthermore, A-1 induced caspase-dependent apoptosis through the intrinsic pathway by activating caspase-9 and PARP cleavage, and inhibiting survivin. In conclusion, A-1 merits further research as a potential lead molecule for the treatment of TNBC.
Collapse
Affiliation(s)
- Sepideh Mohammadhosseinpour
- Molecular Biosciences Graduate Program, College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72467, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
| | - Linh-Chi Ho
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
| | - Lingling Fang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
- College of Agriculture, Arkansas State University, Jonesboro, AR 72467, USA
| | - Fabricio Medina-Bolivar
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467, USA; (L.-C.H.); (L.F.); (J.X.)
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
7
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Epithelial-to-Mesenchymal Transition Is Not a Major Modulating Factor in the Cytotoxic Response to Natural Products in Cancer Cell Lines. Molecules 2021; 26:molecules26195858. [PMID: 34641401 PMCID: PMC8512490 DOI: 10.3390/molecules26195858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products exhibit antiproliferative activity against cancer cells by modulating various biological pathways. In this study, we investigated the potential use of eight natural compounds (apigenin, curcumin, epigallocatechin gallate, fisetin, forskolin, procyanidin B2, resveratrol, urolithin A) and two repurposed agents (fulvestrant and metformin) as chemotherapy enhancers and mesenchymal-to-epithelial (MET) inducers of cancer cells. Screening of these compounds in various colon, breast, and pancreatic cancer cell lines revealed anti-cancer activity for all compounds, with curcumin being the most effective among these in all cell lines. Although some of the natural products were able to induce MET in some cancer cell lines, the MET induction was not related to increased synergy with either 5-FU, irinotecan, gemcitabine, or gefitinib. When synergy was observed, for example with curcumin and irinotecan, this was unrelated to MET induction, as assessed by changes in E-cadherin and vimentin expression. Our results show that MET induction is compound and cell line specific, and that MET is not necessarily related to enhanced chemosensitivity.
Collapse
|
9
|
Guo K, Feng Y, Zheng X, Sun L, Wasan HS, Ruan S, Shen M. Resveratrol and Its Analogs: Potent Agents to Reverse Epithelial-to-Mesenchymal Transition in Tumors. Front Oncol 2021; 11:644134. [PMID: 33937049 PMCID: PMC8085503 DOI: 10.3389/fonc.2021.644134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a complicated program through which polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor microenvironment. EMT is involved in tumor progression, invasion and metastasis via reconstructing the cytoskeleton and degrading the tumor basement membrane. Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can reverse EMT and inhibit invasion and migration of human tumors via diverse mechanisms and signaling pathways. In the present review, we will summarize the detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl resveratrol, 3,5,4'-Trimethoxystilbene) might regulate the EMT process in cancer cells to better understand their potential as novel anti-tumor agents. Resveratrol can also reverse chemoresistance via EMT inhibition and improvement of the antiproliferative effects of conventional treatments. Therefore, resveratrol and its analogs have the potential to become novel adjunctive agents to inhibit cancer metastasis, which might be partly related to their blocking of the EMT process.
Collapse
Affiliation(s)
- Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueer Zheng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Harpreet S. Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Shanming Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minhe Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|