1
|
Deepika NP, Krishnamurthy PT, Varshini MS, Naik MR, Sajini DV, Kiran AVR, Garikapati KK, Duraiswamy B, Sharma R. Ethnopharmacological validation of Karkataka Taila-An edible crab Rasayana in rotenone-induced in vitro and in vivo models of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118691. [PMID: 39134229 DOI: 10.1016/j.jep.2024.118691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Karkataka Taila (KT), an ancient Ayurvedic Rasayana comprising the edible freshwater crab Scylla serrata Forskal flesh, is still used by local traditional practitioners in Kerala state to treat tremors and palsy. In the scientific community, it becomes less exposed due to the lack of adequate scientific validations and brief reports. There has been no published research on the effectiveness of KT in treating Parkinson's disease (PD). PURPOSE The purpose of the current research work was to investigate the anti-Parkison's potential of KT against rotenone-induced neurotoxicity in SH-SY5Y cell lines and rat model of PD and investigate underlying molecular mechanisms. MATERIALS AND METHODS The components of KT have been identified by gas chromatography-mass spectroscopy (GC-MS). The neuroprotective activity of KT was assessed using SH-SY5Y cell lines and rats against rotenone-induced PD. The parameters used for asses the neuroprotection are antioxidant markers (ROS and SOD), anti-inflammatory markers (IL-6, IL-1β, TNF-α, and nitrite), and dopamine levels. Behavioral evaluation and rat brain histopathology were carried out to further support the neuroprotection. RESULT Analysis using GC-MS revealed 36 constituents in KT. In vitro, the KT displayed considerable neuroprotective effects in terms of decreasing oxidative stress (ROS and SOD), neuroinflammation (IL-6, IL-1β, TNF-α, and nitrite), and elevating dopamine concentration. In vivo data showing improvements in histopathological and biochemical parameters confirmed the in vitro study findings, and in terms of behavioral assays, KT displayed significant activity. CONCLUSION GC-MS profiling was used to identify the bioactive compounds of KT with antioxidant, anti-inflammatory, and neuroprotective properties. As a result, they may be responsible for the therapeutic effects of KT on PD.
Collapse
Affiliation(s)
- N P Deepika
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Mudavath Ravi Naik
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Ammu Vvv Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Basavan Duraiswamy
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, 643001, The Nilgiris, Tamilnadu, India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Lin Y, Zhang W, Jiang X, Wu C, Yang J, Tao J, Chen Z, He J, Zhu R, Zhong H, Zhang J, Xu J, Zhang Z, Zhang M. Sodium octanoate mediates GPR84-dependent and independent protection against sepsis-induced myocardial dysfunction. Biomed Pharmacother 2024; 180:117455. [PMID: 39341076 DOI: 10.1016/j.biopha.2024.117455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION This study aims to evaluate the therapeutic effects of sodium octanoate (SO), a medium-chain fatty acid salt, on SIMD in a murine model and to explore its underlying mechanisms. METHODS Male mice were subjected to sepsis models through two methods: intraperitoneal injection of lipopolysaccharide (LPS) and cecal ligation and punction (CLP). Mice received interval doses of SO every 2 hours or 4 hours for a total of six times or three times after LPS treatment. The relationship between SO and G protein-coupled receptor 84 (GPR84) was evaluated through GEO data analysis and molecular docking studies. DBA/2 mice were used to study the role of the GPR84 protein in the SO-mediated protection. Energy metabolomics was utilized to comprehensively assess the impact of SO on the levels of cardiac energy metabolic products in septic mice. histone modification identification techniques were used to further identify the specific sites of histone modification in the hearts of SO-treated septic mice. RESULTS SO treatment significantly improved myocardial contractile function, restored the oxidative stress imbalance and enhanced the myocardium's resistance to oxidative injury. SO significantly promotes the expression of GPR84. The loss of GPR84 function markedly attenuates the protective effects of SO. SO enhanced myocardial energy metabolism by promoting the synthesis of acetyl-CoA and upregulating genes involved in fatty acid β-oxidation which were abolished by medium-chain acyl-CoA dehydrogenase (MCAD) knockdown. SO induced histone acetylation, particularly at H3K123 and H3K80. CONCLUSION Our study demonstrates that SO exerts protective effects against SIMD through both GPR84-mediated anti-inflammatory and antioxidant actions and GPR84-independent enhancement of myocardial energy metabolism, possibly mediated by MCAD.
Collapse
Affiliation(s)
- Yao Lin
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Wenbin Zhang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Chenghao Wu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Jingyuan Yang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China.
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Ziwei Chen
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Jiantao He
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Ruojie Zhu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Huiming Zhong
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Jinbo Zhang
- Department of Emergency Medicine, The First People's Hospital of Wenling, Wenling 317500, China.
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| |
Collapse
|
3
|
Anwar MM, Boseila AA, Mabrouk AA, Abdelkhalek AA, Amin A. Impact of Lyophilized Milk Kefir-Based Self-Nanoemulsifying System on Cognitive Enhancement via the Microbiota-Gut-Brain Axis. Antioxidants (Basel) 2024; 13:1205. [PMID: 39456459 PMCID: PMC11504727 DOI: 10.3390/antiox13101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic inflammatory bowel disorders (IBDs) are characterized by altered intestinal permeability, prompting inflammatory, oxidative stress, and immunological factors. Gut microbiota disorders impact brain function via the bidirectional gut-brain axis, influencing behavior through inflammatory cascades, oxidative stress, and neurotransmitter levels. This study highlights the potential effect of integrating lyophilized milk kefir alone and lyophilized milk kefir as solid carriers loaded with a self-nanoemulsifying self-nanosuspension (SNESNS) of licorice extract on an induced chronic IBD-like model in rats. Licorice-SNESNS was prepared by the homogenization of 30 mg of licorice extract in 1 g of the selected SNEDDS (30% Caraway oil, 60% Tween 20, and 10% propylene glycol (w/w)). Licorice-SNESNS was mixed with milk kefir and then freeze-dried. Dynamic TEM images and the bimodal particle size curve confirmed the formation of the biphasic nanosystems after dilution (nanoemulsion and nanosuspension). Daily oral administration of lyophilized milk kefir (100 mg/kg) loaded with SNESNS (10 mg/kg Caraway oil and 1 mg/kg licorice) restored normal body weight and intestinal mucosa while significantly reducing submucosal inflammatory cell infiltration in induced rats. Importantly, this treatment demonstrated superior efficacy compared to lyophilized milk kefir alone by leading to a more significant alleviation of neurotransmitter levels and improved memory functions, thereby addressing gut-brain axis disorders. Additionally, it normalized fecal microbiome constituents, inflammatory cytokine levels, and oxidative stress in examined tissues and serum. Moreover, daily administration of kefir-loaded SNESNS normalized the disease activity index, alleviated histopathological changes induced by IBD induction, and partially restored the normal gut microbiota. These alterations are associated with improved cognitive functions, attributed to the maintenance of normal neurotransmitter levels and the alleviation of triggered inflammatory factors and oxidative stress levels.
Collapse
Affiliation(s)
- Mai M. Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | - Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia 41636, Egypt
| | - Abeer A. Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Giza 12654, Egypt; (M.M.A.)
| | | | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Tang J, Li X, Li W, Cao C. The Protective Effect of Octanoic Acid on Sepsis: A Review. Nutr Rev 2024:nuae106. [PMID: 39101596 DOI: 10.1093/nutrit/nuae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Sepsis, a systemic inflammation that occurs in response to a bacterial infection, is a significant medical challenge. Research conducted over the past decade has indicated strong associations among a patient's nutritional status, the composition of their gut microbiome, and the risk, severity, and prognosis of sepsis. Octanoic acid (OA) plays a vital role in combating sepsis and has a protective effect on both animal models and human patients. In this discussion, the potential protective mechanisms of OA in sepsis, focusing on its regulation of the inflammatory response, immune system, oxidative stress, gastrointestinal microbiome and barrier function, metabolic disorders and malnutrition, as well as organ dysfunction are explored. A comprehensive understanding of the mechanisms by which OA act may pave the way for new preventive and therapeutic approaches to sepsis.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohua Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou 215004, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
5
|
Xiang Y, Wang Q, Li M, Li Y, Yan W, Li Y, Dong J, Liu Y. Protective effects of dietary additive quercetin: Nephrotoxicity and ferroptosis induced by avermectin pesticide. Toxicon 2024; 246:107789. [PMID: 38843999 DOI: 10.1016/j.toxicon.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
In recent years, contamination of aquatic systems with Avermectin (AVM) has emerged as a significant concern. This contamination poses substantial challenges to freshwater aquaculture. Plant-derived Quercetin (QUE), known for its anti-inflammatory, antioxidant, and ferroptosis-inhibiting properties, is commonly employed as a supplement in animal feed. However, its protective role against chronic renal injury in freshwater carp induced by AVM remains unclear. This study assesses the influence of dietary supplementation with QUE on the consequences of chronic AVM exposure on carp renal function. The carp were subjected to a 30-day exposure to AVM and were provided with a diet containing 400 mg/kg of QUE. Pathological observations indicated that QUE alleviated renal tissue structural damage caused by AVM. RT-QPCR study revealed that QUE effectively reduced the increased expression levels of pro-inflammatory factors mRNA produced by AVM exposure, by concurrently raising the mRNA expression level of the anti-inflammatory factor. Quantitative analysis using DHE tests and biochemical analysis demonstrated that QUE effectively reduced the buildup of ROS in the renal tissues of carp, activity of antioxidant enzymes CAT, SOD, and GSH-px, which were inhibited by AVM, and increased the content of GSH, which was induced by prolonged exposure to AVM. QUE also reduced the levels of MDA, a marker of oxidative damage. Furthermore, assays for ferroptosis markers indicated that QUE increased the mRNA expression levels of gpx4 and slc7a11, which were reduced due to AVM induction, and it caused a reduction in the mRNA expression levels of ftl, ncoa4, and cox2, along with a drop in the Fe2+ concentration. In summary, QUE mitigates chronic AVM exposure-induced renal inflammation in carp by inhibiting the transcription of pro-inflammatory cytokines. By blocking ROS accumulation, renal redox homeostasis is restored, thereby inhibiting renal inflammation and ferroptosis. This provides a theoretical basis for the development of freshwater carp feed formula.
Collapse
Affiliation(s)
- Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qiao Wang
- Department of Pathology, The First People's Hospital of Lianyungang, Lianyungang, 222005, Jiangsu, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Weiping Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yi Liu
- Department of Pathology, The First People's Hospital of Lianyungang, Lianyungang, 222005, Jiangsu, China.
| |
Collapse
|
6
|
Cansız D, Ünal İ, Gani Sürmen M, Sürmen S, Sezer Z, Beler M, Güzel E, Alturfan AA, Emekli-Alturfan E. Gentisic acid exerts neuroprotective effects in neurotoxin-induced Parkinson's disease model in zebrafish: Cross-talk between pathways related with neurodegeneration in the gut-brain axis. Brain Res 2024; 1836:148952. [PMID: 38643930 DOI: 10.1016/j.brainres.2024.148952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Given that global prevalence of Parkinson's disease (PD) is expected to rise over the next few decades, understanding the mechanisms and causes of PD is critical. With emphasis on gut-brain axis, we sought to assess the impact of gentisic acid (GA), a diphenolic compound generated from benzoic acid, in rotenone (Rot) induced PD model in zebrafish. For thirty days, adult zebrafish were exposed to GA and rotenone. Tox-Track program was used to analyze locomotor behaviors in the control, GA, Rot, and Rot + GA groups. LC-MS/MS was performed in brain and intestinal tissues. Proteome Discoverer 2.4 was used to analyze raw files, peptide lists were searched against Danio rerio proteins. Protein interactions or annotations were obtained from STRING database. Tyrosine hydroxylase (Th) staining was performed immunohistochemically in the brain. PD-related gene expressions were determined by RT-PCR. Lipid peroxidation, nitric oxide, superoxide dismutase, glutathione S-transferase, and acetylcholinesterase were measured spectrophotometrically. Improved locomotor behaviors were observed by GA treatment in Rot group as evidenced by increased average speed, exploration rate, and total distance. 5214 proteins were identified in intestinal tissues, 4114 proteins were identified in brain by LC-MS/MS. Rotenone exposure altered protein expressions related to oxidative phosphorylation in brain and intestines. Protein expressions involved in ferroptis and actin cytoskeleton changed in brain and intestines. Altered protein expressions were improved by GA. GA ameliorated Th-immunoreactivity in brain, improved park2, park7, pink1, and lrrk2 expressions. Our results show that GA may be a candidate agent to be evaluated for its potential protective effect for PD.
Collapse
Affiliation(s)
- Derya Cansız
- Department Medipol University, Faculty of Medicine, Medical Biochemistry, Istanbul, Turkey
| | - İsmail Ünal
- Marmara University, Institute of Health Sciences, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| | - Mustafa Gani Sürmen
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Medicine, Istanbul, Turkey
| | - Saime Sürmen
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Medicine, Istanbul, Turkey
| | - Zehra Sezer
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul 34098, Turkey
| | - Merih Beler
- Marmara University, Institute of Health Sciences, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| | - Elif Güzel
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul 34098, Turkey
| | - A Ata Alturfan
- Istanbul University-Cerrahpaşa, Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Marmara University, Faculty of Dentistry, Department of Basic Medical Sciences, Istanbul, Turkey.
| |
Collapse
|
7
|
Xiang Y, Li M, Pan E, Li Y, Yan W, Li Y, Ji G, Dong J. Protective effect of feed additive ferulic acid on respiratory depression and oxidation imbalance of carp induced by pesticide difenoconazole via ROS/NF-κB/NLRP3 axis. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109659. [PMID: 38797333 DOI: 10.1016/j.fsi.2024.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Difenoconazole (DFZ), classified as a "low-toxicity pesticide," has seen widespread application in recent years. Nevertheless, the non-target toxicity of the substance, particularly towards aquatic creatures, has generated considerable apprehension. The anti-inflammatory and antioxidant effects of Ferulic Acid (FA) have attracted considerable study in this particular setting. This study established a chronic exposure model to DFZ and investigated the protective effects of FA on chronic respiratory inhibition leading to gill damage in freshwater carp. Histological analyses via HE staining indicated that FA effectively alleviated gill tissue damage induced by chronic DFZ exposure. The qRT-PCR results showed that the addition of FA reduced the expression of IL-1β, IL-6 and TNF-α while boosting the expression of IL-10 and TGF-β1. Biochemical analyses and DHE staining revealed that FA reduced MDA levels and increased CAT and GSH activities, along with T-AOC, decreased ROS accumulation in response to chronic DFZ exposure. The results obtained from Western blotting analysis demonstrated that the addition of FA effectively suppressed the activation of the NF-κB signalling pathway and the NLRP3 inflammasome pathway in the gills subjected to prolonged exposure to DFZ. In summary, FA ameliorated gill tissue inflammation and blocked ROS accumulation in carp exposed to chronic DFZ, mitigating tissue inflammation and restoring redox homeostasis through the NF-κB-NLRP3 signaling pathway. Hence, the application of FA has been found to be efficacious for improving respiratory inhibition and mitigating gill tissue inflammation and oxidative stress resulting from DFZ pollution in aquatic habitats.
Collapse
Affiliation(s)
- Yannan Xiang
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengxin Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Enzhuang Pan
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Weiping Yan
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Li
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guangquan Ji
- Department of Technology, The First People's Hospital of Lianyungang, Lianyungang, 222002, China.
| | - Jingquan Dong
- Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Espinoça IT, Basilio DCLS, de Araujo AJP, Ota RSN, de Souza KFS, Cassemiro NS, Lagatta DC, Paredes-Gamero EJ, Macedo MLR, Silva DB, Sardi JDCO, Wilhelm-Filho D, Jacobowski AC, Parisotto EB. Antithrombotic Effect of Oil from the Pulp of Bocaiúva- Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Arecaceae). Nutrients 2024; 16:2024. [PMID: 38999771 PMCID: PMC11243071 DOI: 10.3390/nu16132024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The study aimed to evaluate the antithrombotic action of Acrocomia aculeata pulp oil (AAPO) in natura, in an in vitro experimental model. AAPO was obtained by solvent extraction, and its chemical characterization was performed by gas chromatography coupled to a mass spectrometer (GC-MS). In vitro toxicity was evaluated with the Trypan Blue exclusion test and in vivo by the Galleria mellonella model. ADP/epinephrine-induced platelet aggregation after treatment with AAPO (50, 100, 200, 400, and 800 μg/mL) was evaluated by turbidimetry, and coagulation was determined by prothrombin activity time (PT) and activated partial thromboplastin time (aPTT). Platelet activation was measured by expression of P-selectin on the platelet surface by flow cytometry and intraplatelet content of reactive oxygen species (ROS) by fluorimetry. The results showed that AAPO has as major components such as oleic acid, palmitic acid, lauric acid, caprylic acid, and squalene. AAPO showed no toxicity in vitro or in vivo. Platelet aggregation decreased against agonists using treatment with different concentrations of AAPO. Oil did not interfere in PT and aPTT. Moreover, it expressively decreased ROS-induced platelet activation and P-selectin expression. Therefore, AAPO showed antiplatelet action since it decreased platelet activation verified by the decrease in P-selectin expression as well as in ROS production.
Collapse
Affiliation(s)
- Isabelly Teixeira Espinoça
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Denise Caroline Luiz Soares Basilio
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Anna Júlia Papa de Araujo
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Rafael Seiji Nakano Ota
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | | | - Nadla Soares Cassemiro
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79080-190, MS, Brazil
| | - Davi Campos Lagatta
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Edgar Julian Paredes-Gamero
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
- Department of Biochemistry, Federal University of São Paulo, São Paulo 4044-020, SP, Brazil
| | - Maria Lígia Rodrigues Macedo
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Denise Brentan Silva
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LAPNEM), Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79080-190, MS, Brazil
| | | | - Danilo Wilhelm-Filho
- Department of Ecology and Zoology, Center for Biological Sciences (CCB), Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Ana Cristina Jacobowski
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| | - Eduardo Benedetti Parisotto
- Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
9
|
Dos Santos Nunes RG, de Amorim LC, Bezerra IC, da Silva AJ, Dos Santos CAL, Gubert P, de Menezesa IRA, Duarte AE, Barros LM, da Silveira Andrade-da-Costa BL, Dos Santos MV, Dos Santos Correia MT, da Rosa MM. Syagrus coronata fixed oil prevents rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:497-515. [PMID: 38619158 DOI: 10.1080/15287394.2024.2338431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
One prominent aspect of Parkinson's disease (PD) is the presence of elevated levels of free radicals, including reactive oxygen species (ROS). Syagrus coronata (S. coronata), a palm tree, exhibits antioxidant activity attributed to its phytochemical composition, containing fatty acids, polyphenols, and flavonoids. The aim of this investigation was to examine the potential neuroprotective effects of S. coronata fixed oil against rotenone-induced toxicity using Drosophila melanogaster. Young Drosophila specimens (3-4 d old) were exposed to a diet supplemented with rotenone (50 µM) for 7 d with and without the inclusion of S. coronata fixed oil (0.2 mg/g diet). Data demonstrated that rotenone exposure resulted in significant locomotor impairment and increased mortality rates in flies. Further, rotenone administration reduced total thiol levels but elevated lipid peroxidation, iron (Fe) levels, and nitric oxide (NO) levels while decreasing the reduced capacity of mitochondria. Concomitant administration of S. coronata exhibited a protective effect against rotenone, as evidenced by a return to control levels of Fe, NO, and total thiols, lowered lipid peroxidation levels, reversed locomotor impairment, and enhanced % cell viability. Molecular docking of the oil lipidic components with antioxidant enzymes showed strong binding affinity to superoxide dismutase (SOD) and glutathione peroxidase (GPX1) enzymes. Overall, treatment with S. coronata fixed oil was found to prevent rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster.
Collapse
Affiliation(s)
| | | | | | - Artur José da Silva
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
| | | | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
| | | | - Antonia Eliene Duarte
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Luiz Marivando Barros
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | | | | | | | - Michelle Melgarejo da Rosa
- Department of Biochemistry, Federal University of Pernambuco, Recife, Brazil
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| |
Collapse
|
10
|
Cao C, Zhang H, He Z, Zhang K, Qian Z, Shen J, Zheng L, Xue M, Sun S, Li C, Zhao W, Jing J, Ma R, Ge X, Yao B. Octanoic acid mitigates busulfan-induced blood-testis barrier damage by alleviating oxidative stress and autophagy. Lipids Health Dis 2024; 23:180. [PMID: 38862993 PMCID: PMC11165768 DOI: 10.1186/s12944-024-02157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The management of male infertility continues to encounter an array of challenges and constraints, necessitating an in-depth exploration of novel therapeutic targets to enhance its efficacy. As an eight-carbon medium-chain fatty acid, octanoic acid (OCA) shows promise for improving health, yet its impact on spermatogenesis remains inadequately researched. METHODS Mass spectrometry was performed to determine the fatty acid content and screen for a pivotal lipid component in the serum of patients with severe spermatogenesis disorders. The sperm quality was examined, and histopathological analysis and biotin tracer tests were performed to assess spermatogenesis function and the integrity of the blood-testis barrier (BTB) in vivo. Cell-based in vitro experiments were carried out to investigate the effects of OCA administration on Sertoli cell dysfunction. This research aimed to elucidate the mechanism by which OCA may influence the function of Sertoli cells. RESULTS A pronounced reduction in OCA content was observed in the serum of patients with severe spermatogenesis disorders, indicating that OCA deficiency is related to spermatogenic disorders. The protective effect of OCA on reproduction was tested in a mouse model of spermatogenic disorder induced by busulfan at a dose 30 mg/kg body weight (BW). The mice in the study were separated into distinct groups and administered varying amounts of OCA, specifically at doses of 32, 64, 128, and 256 mg/kg BW. After evaluating sperm parameters, the most effective dose was determined to be 32 mg/kg BW. In vivo experiments showed that treatment with OCA significantly improved sperm quality, testicular histopathology and BTB integrity, which were damaged by busulfan. Moreover, OCA intervention reduced busulfan-induced oxidative stress and autophagy in mouse testes. In vitro, OCA pretreatment (100 µM) significantly ameliorated Sertoli cell dysfunction by alleviating busulfan (800 µM)-induced oxidative stress and autophagy. Moreover, rapamycin (5 µM)-induced autophagy led to Sertoli cell barrier dysfunction, while OCA administration exerted a protective effect by alleviating autophagy. CONCLUSIONS This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.
Collapse
Affiliation(s)
- Chun Cao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Hong Zhang
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Zhaowanyue He
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Kemei Zhang
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Zhang Qian
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Jiaming Shen
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Lu Zheng
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Mengqi Xue
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Shanshan Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chuwei Li
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Wei Zhao
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xie Ge
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China.
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Bing Yao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, China.
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
- Reproductive Medical Center, Jinling Hospital Department, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
11
|
Acácio BR, Prada AL, Neto SF, Gomes GB, Perdomo RT, Nazario CED, Neto ES, Martines MAU, de Almeida DAT, Gasparotto Junior A, Amado JRR. Cytotoxicity, anti-inflammatory effect, and acute oral toxicity of a novel Attalea phalerata kernel oil-loaded nanocapsules. Biomed Pharmacother 2024; 174:116308. [PMID: 38626517 DOI: 10.1016/j.biopha.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/18/2024] Open
Abstract
The kernel oil of the Attalea phalerata Mart. Ex Spreng (Acurí) is traditionally used in several Latin American countries to treat respiratory problems, inflammation, and fever. However, it cannot be found on the literature any attend to use this oil in pharmaceutical formulation. In this paper, it was developed Acurí oil-loaded nanocapsules, and it was evaluated the cytotoxicity against cancer cells, the antinflammatory activity and the oral acute toxicity in rats. Acurí oil contains lauric acid as the predominant saturated fatty acid (433.26 mg/g) and oleic acid as the main unsaturated fatty acid (180.06 mg/g). The Acurí oil-loaded nanocapsules showed a size of 237 nm, a polydispersity index of 0.260, and a high ζ-potential of -78.75 mV. It was obtained an encapsulation efficiency of 88.77%, and the nanocapsules remain stable on the shelf for 180 days. The nanocapsules showed a rapid release profile (98.25% in 40 minutes). Nanocapsules at a dose of 10 mg/kg exhibit an anti-inflammatory effect similar to indomethacin at the same dose. The nanocapsules showed excellent antiproliferative effect and selectivity index against prostate tumor cells (IC50 2.09 µg/mL, SI=119.61) and kidney tumor cells (IC50 3.03 µg/mL, SI=82.50). Both Acurí oil and Acurí oil-loaded nanocapsules are nontoxic at a dose of 2000 mg/kg. Additionally, they reduce serum triglyceride and total cholesterol levels in rat and could find application in nutraceutical formulations. The Acurí oil-loaded nanocapsules emerge as a promising candidate for new antitumor therapies.
Collapse
Affiliation(s)
- Bianca Rodrigues Acácio
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Ariadna Lafourcade Prada
- Postgraduate Program in Biotechnology, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Serafim Florentino Neto
- Laboratory of Innovation in Pharmaceutical Technology, Federal University of Amazonas, Manaus, AM, Brazil
| | - Giovana Bicudo Gomes
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | - Renata Trentin Perdomo
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Food, and Nutrition, Federal University of Mato Grosso do Sul, Brazil
| | | | - Eduardo Sobieski Neto
- Postgraduate Program in Biotechnology, Institute of Chemistry, Federal University of Mato Grosso do Sul, Brazil
| | | | - Danielle Ayr Tavares de Almeida
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Arquimedes Gasparotto Junior
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Jesus Rafael Rodriguez Amado
- Postgraduate Program in Health Sciences. Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil.
| |
Collapse
|
12
|
Lin Y, Chen Q, Zhang G, Xie L, Yang X, Zhong H, Xu J, Zhang M. Sodium octanoate alleviates cardiac and cerebral injury after traumatic cardiac arrest in a porcine model. Am J Emerg Med 2024; 78:48-56. [PMID: 38199096 DOI: 10.1016/j.ajem.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Traumatic cardiac arrest (TCA) is a severe condition with a high mortality rate, and patients who survive from TCA face a poor prognosis due to post-resuscitation injury, including cardiac and cerebral injury, which remains a serious challenge. Sodium octanoate has shown protective effects against various diseases. The present study aims to investigate sodium octanoate's protective effects against cardiac and cerebral injury after TCA in a porcine model. METHODS The study included a total of 22 male domestic pigs divided into three groups: Sham group (n = 7), TCA group (n = 7), and sodium octanoate (SO) group (n = 8). Hemorrhage was initiated via the right femoral artery by a blood pump at a rate of 2 ml·kg-1·min-1 to establish TCA model. The Sham group underwent only endotracheal intubation and arteriovenous catheterization, without experiencing the blood loss/cardiac arrest/resuscitation model. At 5 min after resuscitation, the SO group received a continuous sodium octanoate infusion while the TCA group received the same volume of saline. General indicators were monitored, and blood samples were collected at baseline and at different time points after resuscitation. At 24 h after resuscitation, pigs were sacrificed, and heart and brain were obtained for cell apoptosis detection, iron deposition staining, oxidative stress detection, and the expression of ferroptosis-related proteins (ACSL4 and GPX4). RESULTS Sodium octanoate significantly improved mean arterial pressure, cardiac output and ejection fraction induced by TCA. Serum biomarkers of cardiac and cerebral injury were found to increase at all time points after resuscitation, while sodium octanoate significantly reduced their levels. The apoptosis rates of cardiomyocytes and cerebral cortex cells in the SO group were significantly lower than in the TCA group, along with a reduced area of iron deposition staining. The sodium octanoate also reduced oxidative stress and down-regulated ferroptosis which was indicated by protein level alteration of ACSL4 and GPX4. CONCLUSION Our study's findings suggest that early infusion of sodium octanoate significantly alleviates post-resuscitation cardiac and cerebral injury in a porcine model of TCA, possibly through inhibition of cell apoptosis and GPX4-mediated ferroptosis. Therefore, sodium octanoate could be a potential therapeutic strategy for patients with TCA.
Collapse
Affiliation(s)
- Yao Lin
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Qi Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, The First People's Hospital of Fuyang Hangzhou, Hangzhou, China
| | - Gongping Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, Lishui Municipal Central Hospital, Lishui, China
| | - Lutao Xie
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, Lishui Municipal Central Hospital, Lishui, China
| | - Xuelin Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, Lishui Municipal Central Hospital, Lishui, China
| | - Huiming Zhong
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Zhang Z, Li X, Cao C. Octanoic acid-rich enteral nutrition attenuated hypercatabolism through the acylated ghrelin-POMC pathway in endotoxemic rats. Nutrition 2024; 119:112329. [PMID: 38215672 DOI: 10.1016/j.nut.2023.112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVES Metabolic disorders and no response to intravenous nutrition because of sepsis have been urgent problems for clinical nutrition support. Enteral nutrition (EN) has been an important clinical therapeutic measure in septic patients; however, simple EN has not demonstrated good performance. This study aimed to investigate the effects of different concentrations of octanoic acid (OA)-rich EN on hypercatabolism in endotoxemic rats and test whether OA-rich EN could attenuate hypercatabolism through the acylated ghrelin-proopiomelanocortin (POMC) pathway. METHODS Rats were randomly divided into six groups: sham, lipopolysaccharide (LPS), LPS + EN and LPS + EN + OA (0.25, 0.5, and 1 g/kg, respectively) groups to investigate the effects of different concentrations of OA-rich EN on hypercatabolism in endotoxemic rats. The rats were then randomly divided into four groups: sham, LPS, LPS + OA, and LPS + OA + Go-CoA-Tat, to test whether OA-rich EN attenuated hypercatabolism through the acylated ghrelin-POMC pathway. Rats received nutrition support via a gastric tube for 3 d (100 kcal/kg daily). Insulin resistance, muscle protein synthesis and atrophy, inflammatory cytokines, ghrelin in circulation and hypothalamus, ghrelin O-acyltransferase (GOAT), and the adenosine 5'-monophosphate-activated protein kinase (AMPK)-autophagy-POMC pathway were measured. RESULTS Compared with simple EN, OA-rich EN promoted the acylation of ghrelin in a dose-dependent manner and attenuated POMC-mediated hypercatabolism in endotoxemic rats. Inhibition of GOAT activity decreased the level of acylated ghrelin and aggravated POMC-mediated hypercatabolism conferred by OA-rich EN. CONCLUSIONS OA-rich EN could increase the level of acylated ghrelin and attenuate hypercatabolism through the acylated ghrelin-POMC pathway compared with simple EN in endotoxemic rats.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Anesthesiology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaohua Li
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Chun Cao
- Department of General Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Ilyin NP, Petersen EV, Kolesnikova TO, Demin KA, Khatsko SL, Apuhtin KV, Kalueff AV. Developing Peripheral Biochemical Biomarkers of Brain Disorders: Insights from Zebrafish Models. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:377-391. [PMID: 38622104 DOI: 10.1134/s0006297924020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
High prevalence of human brain disorders necessitates development of the reliable peripheral biomarkers as diagnostic and disease-monitoring tools. In addition to clinical studies, animal models markedly advance studying of non-brain abnormalities associated with brain pathogenesis. The zebrafish (Danio rerio) is becoming increasingly popular as an animal model organism in translational neuroscience. These fish share some practical advantages over mammalian models together with high genetic homology and evolutionarily conserved biochemical and neurobehavioral phenotypes, thus enabling large-scale modeling of human brain diseases. Here, we review mounting evidence on peripheral biomarkers of brain disorders in zebrafish models, focusing on altered biochemistry (lipids, carbohydrates, proteins, and other non-signal molecules, as well as metabolic reactions and activity of enzymes). Collectively, these data strongly support the utility of zebrafish (from a systems biology standpoint) to study peripheral manifestations of brain disorders, as well as highlight potential applications of biochemical biomarkers in zebrafish models to biomarker-based drug discovery and development.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia.
| | - Tatyana O Kolesnikova
- Neuroscience Program, Sirius University of Science and Technology, Sochi, 354340, Russia.
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Moscow Institute of Physics and Technology, Moscow, 115184, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Pesochny, 197758, Russia
| | | | - Kirill V Apuhtin
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.
- Neuroscience Division, Sirius University of Science and Technology, Sirius Federal Territory, 354340, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of the Russian Federation, St. Petersburg, 197341, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
15
|
Ünal İ, Cansız D, Beler M, Sezer Z, Güzel E, Emekli-Alturfan E. Sodium-dependent glucose co-transporter-2 inhibitor empagliflozin exerts neuroprotective effects in rotenone-induced Parkinson's disease model in zebrafish; mechanism involving ketogenesis and autophagy. Brain Res 2023; 1820:148536. [PMID: 37591458 DOI: 10.1016/j.brainres.2023.148536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Sodium-dependent glucose co-transporter-2 (SGLT2) inhibitor empagliflozin (EMP), is the new class of oral hypoglycemic agent approved as a treatment for Type 2 diabetes. SGLT2 inhibitors may induce ketogenesis through inhibiting the renal reabsorption of glucose. In recent years, positive effects of ketogenic diets on neurodegenerative diseases such as Parkinson's disease (PD) have been reported by improving autophagy. We aimed to evaluate the effects of EMP treatment as a SGLT2 inhibitor that can mimic the effects of ketogenic diet, in rotenone induced PD model in zebrafish focusing on ketogenesis, autophagy, and molecular pathways related with PD progression including oxidative stress and inflammation. Adult zebrafish were exposed to rotenone and EMP for 30 days. Y-Maze task and locomotor analysis were performed. Neurotransmitter levels were determined by liquid chromatography tandem- mass spectrometry (LC-MS/MS). Lipid peroxidation (LPO), nitric oxide (No), alkaline phosphatase, superoxide dismutase, glutathione, glutathione S-transferase (GST), sialic acid, acetylcholinesterase, and the expressions of autophagy, ketogenesis and PD-related genes were determined. Immunohistochemical staining was performed for the microglial marker L-plastin (Lcp1) and tyrosine hydroxylase (Th). EMP treatment improved DOPAC/DA ratio, Y-Maze task, locomotor activity, expressions of Th and Lcp-1, autophagy and inflammation related (mTor, atg5, tnfα, sirt1, il6, tnfα); PD-related (lrrk2, park2, park7, pink1), and ketone metabolism-related genes (slc16a1b, pparag, and pparab), and oxidant-damage in brain in the rotenone group as evidenced by decreased LPO, No, and improved antioxidant molecules. Our results showed benefical effects of EMP as a SGLT2 inhibitor in neurotoxin-induced PD model in zebrafish. We believe our study, will shed light on the mechanism of the effects of SGLT2 inhibitors, ketogenesis and autopahgy in PD.
Collapse
Affiliation(s)
- İsmail Ünal
- Marmara University, Institute of Health Sciences, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| | - Derya Cansız
- Department Medipol University, Faculty of Medicine, Medical Biochemistry, Istanbul, Turkey
| | - Merih Beler
- Marmara University, Institute of Health Sciences, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| | - Zehra Sezer
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul 34098, Turkey
| | - Elif Güzel
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul 34098, Turkey
| | - Ebru Emekli-Alturfan
- Marmara University, Faculty of Dentistry, Department of Basic Medical Sciences, Istanbul, Turkey.
| |
Collapse
|
16
|
Tang J, Li X, Li W, Cao C. Effects of enteral nutrition supplemented with octanoic acid on lipopolysaccharide-induced intestinal injury: role of peroxisome proliferator-activated receptor γ/STAT-1/myeloid differentiation factor 88 pathway. Nutrition 2023; 116:112216. [PMID: 37776839 DOI: 10.1016/j.nut.2023.112216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE Enteral nutrition is the key therapy in septic patients. Different formulas of enteral nutrition have various effects on gastrointestinal sepsis. Therefore, we investigated the effects of enteral nutrition supplemented with octanoic acid on lipopolysaccharide-induced intestinal injury and explored the potential mechanism. METHODS First, to investigate the effects of enteral nutrition supplemented with octanoic acid on lipopolysaccharide-induced intestinal injury, rats were randomly divided into four groups: sham, lipopolysaccharide, lipopolysaccharide + enteral nutrition, and lipopolysaccharide + enteral nutrition + octanoic acid. Then, to explore whether enteral nutrition supplemented with octanoic acid can prevent lipopolysaccharide-induced intestinal injury via the peroxisome proliferator-activated receptor γ/STAT-1/myeloid differentiation factor 88 pathway, rats were randomly divided into five groups: sham, lipopolysaccharide, lipopolysaccharide + enteral nutrition + octanoic acid, lipopolysaccharide + enteral nutrition + octanoic acid + SR202, and lipopolysaccharide + pioglitazone. All rats received nutritional support for 3 d. We examined the serum levels of inflammatory factors, pathologic changes, goblet cell density, intestinal tight junction protein expression, and the peroxisome proliferator-activated receptor γ/STAT-1/myeloid differentiation factor 88 pathway in the ileum and colon. The effect of octanoic acid on intestinal epithelium injury was also explored in vitro. RESULTS Enteral nutrition supplemented with octanoic acid significantly decreased the serum levels of inflammatory factors and prevented intestinal barrier dysfunction compared with enteral nutrition alone (P < 0.05). Inhibiting the peroxisome proliferator-activated receptor γ/STAT-1/myeloid differentiation factor 88 pathway exacerbated effects of enteral nutrition supplemented with octanoic acid on intestinal injury (P < 0.05). Activation of the peroxisome proliferator-activated receptor γ/STAT-1/myeloid differentiation factor 88 pathway prevented intestinal injury (P < 0.05). Octanoic acid also exerted a similar effect on intestinal epithelium injury in vitro. CONCLUSIONS Enteral nutrition supplemented with octanoic acid prevents lipopolysaccharide-induced intestinal injury via the peroxisome proliferator-activated receptor γ/STAT-1/myeloid differentiation factor 88 pathway.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaohua Li
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Wittwer AE, Lee SG, Ranadheera CS. Potential associations between organic dairy products, gut microbiome, and gut health: A review. Food Res Int 2023; 172:113195. [PMID: 37689944 DOI: 10.1016/j.foodres.2023.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Organic products have received longstanding, widespread attention for their nutritional and ecological benefits, as they are said to have certain positive health attributes and contain fewer harmful compounds than conventional (or non-organic) products. We reviewed the recent literature to examine potential associations between nutrient composition, gut microbiota, and gut health effects in recent comparative studies of organic and conventional dairy products. Trends of increased ratios of omega-3 to omega-6 polyunsaturated fatty acids and unsaturated to saturated fat, increased fat-soluble vitamin content, and decreased levels of certain pernicious contaminants in organic milk were observed across the studies reviewed. Studies of the metabolism of these nutrients in both in vitro and in vivo settings, and their or their metabolites' interaction with the intestinal epithelium show that nutrients enriched in organic dairy products may support host nutrient uptake and mediate gut inflammation. Research on the effects of single food products or classes of food products on gut health is rare. The extent of these benefits is highly likely to be mediated by both the magnitude of the difference in nutrient types and quantities, and by dietary intake levels of dairy products. Intervention studies directly examining the different effects of organic and conventional dairy products on gut health in humans are needed to further elucidate this relationship.
Collapse
Affiliation(s)
- Anna Elizabeth Wittwer
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Simon Gardner Lee
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Chaminda Senaka Ranadheera
- School of Agriculture, Food & Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
19
|
Liu Y. Zebrafish as a Model Organism for Studying Pathologic Mechanisms of Neurodegenerative Diseases and other Neural Disorders. Cell Mol Neurobiol 2023:10.1007/s10571-023-01340-w. [PMID: 37004595 DOI: 10.1007/s10571-023-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Zebrafish are widely considered an excellent vertebrate model for studying the pathogenesis of human diseases because of their transparency of embryonic development, easy breeding, high similarity with human genes, and easy gene manipulation. Previous studies have shown that zebrafish as a model organism provides an ideal operating platform for clarifying the pathological and molecular mechanisms of neurodegenerative diseases and related human diseases. This review mainly summarizes the achievements and prospects of zebrafish used as model organisms in the research of neurodegenerative diseases and other human diseases related to the nervous system in recent years. In the future study of human disease mechanisms, the application of the zebrafish model will continue to provide a valuable operating platform and technical support for investigating and finding better prevention and treatment of these diseases, which has broad application prospects and practical significance. Zebrafish models used in neurodegenerative diseases and other diseases related to the nervous system.
Collapse
Affiliation(s)
- Yanying Liu
- Department of Basic Medicine, School of Nursing and Health, Qingdao Huanghai University, Qingdao, 266427, China.
| |
Collapse
|
20
|
Zhao M, Zhang Z, Liu Y, Zhang W, Gong Y, Tang Y, Chen F, Zhang J, Liu G, Zhang H, Li Y, Mai K, Ai Q. Effects of supplemental octanoate on hepatic lipid metabolism, serum biochemical indexes, antioxidant capacity and inflammation-related genes expression of large yellow croaker (Larimichthys crocea) fed with high soybean oil diet. Front Immunol 2023; 14:1162633. [PMID: 37051230 PMCID: PMC10083288 DOI: 10.3389/fimmu.2023.1162633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
Dietary high soybean oil (SO) levels might cause hepatic lipid deposition, induce oxidative stress and inflammatory response in aquatic animals, while octanoate (OCT) is beneficial to metabolism and health in mammals. However, the effect of OCT has been studied rarely in aquatic animals. In this study, a 10-week feeding trial was conducted to investigate the effect of supplemental OCT on hepatic lipid metabolism, serum biochemical indexes, antioxidant capacity and inflammatory response of large yellow croaker (Larimichthys crocea) fed with high SO levels diet. The negative control diet contained 7% fish oil (FO), while the positive control diet contained 7% SO. The other four experimental diets were supplemented with 0.7, 2.1, 6.3 and 18.9 g/kg sodium octanoate (OCT) based on the positive control diet. Results showed that OCT supplementation effectively reduced the hepatic crude lipid, triglyceride (TG), total cholesterol (TC) and non-esterified free fatty acids contents, and alleviated lipid accumulation caused by the SO diet. Meanwhile, OCT supplementation decreased the serum TG, TC, alanine transaminase, aspartate transaminase and low-density lipoprotein cholesterol levels, increased the serum high-density lipoprotein cholesterol level, improved the serum lipid profiles and alleviated hepatic injury. Furthermore, with the supplementation of OCT, the mRNA expression of genes related to lipogenesis (acc1, scd1, fas, srebp1, dgat1 and cebpα) and fatty acid (FA) transport (fabp3, fatp and cd36) were down-regulated, while the mRNA expression of genes related to lipolysis (atgl, hsl and lpl) and FA β-oxidation (cpt1 and mcad) were up-regulated. Besides that, dietary OCT increased the total antioxidant capacity, activities of peroxidase, catalase and superoxide dismutase and the content of reduced glutathione, decreased the content of 8-hydroxy-deoxyguanosine and malondialdehyde and relieved hepatic oxidative stress. Supplementation of 0.7 and 2.1 g/kg OCT down-regulated the mRNA expression of genes related to pro-inflammatory cytokines (tnfα, il1β and ifnγ), and suppressed hepatic inflammatory response. In conclusion, supplementation with 0.7-2.1 g/kg OCT could reduce hepatic lipid accumulation, relieve oxidative stress and regulate inflammatory response in large yellow croaker fed the diet with high SO levels, providing a new way to alleviate the hepatic fat deposition in aquatic animals.
Collapse
|
21
|
Yang J, Wang P, Jiang X, Xu J, Zhang M, Liu F, Lin Y, Tao J, He J, Zhou X, Zhang M. A Nanotherapy of Octanoic Acid Ameliorates Cardiac Arrest/Cardiopulmonary Resuscitation-Induced Brain Injury via RVG29- and Neutrophil Membrane-Mediated Injury Relay Targeting. ACS NANO 2023; 17:3528-3548. [PMID: 36758159 DOI: 10.1021/acsnano.2c09931] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Treatment of cardiac arrest/cardiopulmonary resuscitation (CA/CPR)-induced brain injury remains a challenging issue without viable therapeutic options. Octanoic acid (OA), a lipid oil that is mainly metabolized in the astrocytes of the brain, is a promising treatment for this type of injury owing to its potential functions against oxidative stress, apoptosis, inflammation, and ability to stabilize mitochondria. However, the application of OA is strictly limited by its short half-life and low available concentration in the target organ. Herein, based on our previous research, an OA-based nanotherapy coated with a neutrophil membrane highly expressing RVG29, RVG29-H-NPOA, was successfully constructed by computer simulation-guided supramolecular assembly of polyethylenimine and OA. The in vitro and in vivo experiments showed that RVG29-H-NPOA could target and be distributed in the injured brain focus via the relay-targeted delivery mediated by RVG29-induced blood-brain barrier (BBB) penetration and neutrophil membrane protein-induced BBB binding and injury targeting. This results in enhancements of the antioxidant, antiapoptotic, mitochondrial stability-promoting and anti-inflammatory effects of OA and exhibited systematic alleviation of astrocyte injury, neuronal damage, and inflammatory response in the brain. Due to their systematic intervention in multiple pathological processes, RVG29-H-NPOA significantly increased the 24 h survival rate of CA/CPR model rats from 40% to 100% and significantly improved their neurological functions. Thus, RVG29-H-NPOA are expected to be a promising therapeutic for the treatment of CA/CPR-induced brain injury.
Collapse
Affiliation(s)
- Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Pan Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Minhai Zhang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fei Liu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Yao Lin
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Jiantao He
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
22
|
Ünal İ, Cansız D, Sürmen MG, Sürmen S, Sezer Z, Beler M, Üstündağ ÜV, Güzel E, Alturfan AA, Emekli-Alturfan E. Identification of molecular network of gut-brain axis associated with neuroprotective effects of PPARδ-ligand erucic acid in rotenone-induced Parkinson's disease model in zebrafish. Eur J Neurosci 2023; 57:585-606. [PMID: 36564343 DOI: 10.1111/ejn.15904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Disruption of the gut-brain axis in Parkinson's disease (PD) may lead to motor symptoms and PD pathogenesis. Recently, the neuroprotective potential of different PPARδ-agonists has been shown. We aimed to reveal the effects of erucic acid, peroxisome proliferator-activated receptors (PPARs)-ligand in rotenone-induced PD model in zebrafish, focusing on the gut-brain axis. Adult zebrafish were exposed to rotenone and erucic acid for 30 days. Liquid chromatography-mass spectrometry and tandem mass spectrometry (LC-MS/MS) analysis was performed. Raw files were analysed by Proteome Discoverer 2.4 software; peptide lists were searched against Danio rerio proteins. STRING database was used for protein annotations or interactions. Lipid peroxidation (LPO), nitric oxide (No), alkaline phosphatase, superoxide dismutase, glutathione S-transferase (GST), acetylcholinesterase and the expressions of PD-related genes were determined. Immunohistochemical tyrosine hydroxylase (TH) staining was performed. LC-MS/MS analyses allowed identification of over 2000 proteins in each sample. The 2502 and 2707 proteins overlapped for intestine and brain. The 196 and 243 significantly dysregulated proteins in the brain and intestines were found in rotenone groups. Erucic acid treatment corrected the changes in the expression of proteins associated with cytoskeletal organisation, transport and localisation and improved locomotor activity, expressions of TH, PD-related genes (lrrk2, park2, park7, pink1) and oxidant-damage in brain and intestines in the rotenone group as evidenced by decreased LPO, No and increased GST. Our results showed beneficial effects of erucic acid as a PPARδ-ligand in neurotoxin-induced PD model in zebrafish. We believe that our study will shed light on the mechanism of the effects of PPARδ agonists and ω9-fatty acids in the gut-brain axis of PD.
Collapse
Affiliation(s)
- İsmail Ünal
- Institute of Health Sciences, Department of Biochemistry, Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa Gani Sürmen
- Hamidiye Institute of Health Sciences, Department of Molecular Medicine, University of Health Sciences, Istanbul, Turkey
| | - Saime Sürmen
- Hamidiye Institute of Health Sciences, Department of Molecular Medicine, University of Health Sciences, Istanbul, Turkey
| | - Zehra Sezer
- Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merih Beler
- Institute of Health Sciences, Department of Biochemistry, Marmara University, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul Medipol University, Istanbul, Turkey
| | - Elif Güzel
- Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - A Ata Alturfan
- Faculty of Medicine, Department of Biochemistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Faculty of Dentistry, Department of Basic Medical Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
23
|
Gui W, Guo H, Chen X, Wang J, Guo Y, Zhang H, Zhou X, Zhao Y, Dai J. Emerging polyfluorinated compound Nafion by-product 2 disturbs intestinal homeostasis in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114368. [PMID: 36508837 DOI: 10.1016/j.ecoenv.2022.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nafion by-product 2 (Nafion BP2), an emerging fluorinated sulfonic acid commonly used in polymer electrolyte membrane technologies, has been detected in various environmental and human matrices. To date, however, few studies have explored its toxicity. In this study, zebrafish embryos were exposed to Nafion BP2 at concentrations of 20, 40, 60, 80, 100, 120, 140, and 160 mg/L from fertilization to 120 post-fertilization (hpf), and multiple developmental parameters (survival rate, hatching rate, and malformation rate) were then determined. Results showed that Nafion BP2 exposure led to a significant decrease in survival and hatching rates and an increase in malformations. The half maximal effective concentration (EC50) of Nafion BP2 for malformation at 120 hpf was 55 mg/L, which is higher than the globally important contaminant perfluorooctane sulfonate (PFOS, 6 mg/L). Furthermore, exposure to Nafion BP2 resulted in additional types of malformations compared to PFOS exposure. Pathologically, Nafion BP2 caused abnormal early foregut development, with exfoliation of intestinal mucosa, damage to lamina propria, and aberrant proliferation of lamina propria cells. Nitric oxide content also decreased markedly. In addition, embryos showed an inflammatory response following Nafion BP2 exposure, with significantly increased levels of pro-inflammatory factors C4 and IL-6. Acidic mucin in the hindgut increased more than two-fold. 16 S rRNA sequencing revealed a marked increase in the pathogen Pseudomonas otitidis. Furthermore, pathways involved in intestinal protein digestion and absorption, inflammatory response, and immune response were significantly altered. Our findings suggest that the intestine is a crucial toxicity target of Nafion BP2 in zebrafish, thus highlighting the need to evaluate its health risks.
Collapse
Affiliation(s)
- Wanying Gui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
24
|
Hettiarachchi P, Niyangoda SS, Jarosova R, Johnson MA. Dopamine Release Impairments Accompany Locomotor and Cognitive Deficiencies in Rotenone-Treated Parkinson's Disease Model Zebrafish. Chem Res Toxicol 2022; 35:1974-1982. [PMID: 36178476 PMCID: PMC10127151 DOI: 10.1021/acs.chemrestox.2c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work, we carried out neurochemical and behavioral analysis of zebrafish (Danio rerio) treated with rotenone, an agent used to chemically induce a syndrome resembling Parkinson's disease (PD). Dopamine release, measured with fast-scan cyclic voltammetry (FSCV) at carbon-fiber electrodes in acutely harvested whole brains, was about 30% of that found in controls. Uptake, represented by the first order rate constant (k) and the half-life (t1/2) determined by nonlinear regression modeling of the stimulated release plots, was also diminished. Behavioral analysis revealed that rotenone treatment increased the time required for zebrafish to reach a reward within a maze by more than 50% and caused fish to select the wrong pathway, suggesting that latent learning was impaired. Additionally, zebrafish treated with rotenone suffered from diminished locomotor activity, swimming shorter distances with lower mean velocity and acceleration. Thus, the neurochemical and behavioral approaches, as applied, were able to resolve rotenone-induced differences in key parameters. This approach may be effective for screening therapies in this and other models of neurodegeneration.
Collapse
Affiliation(s)
- Piyanka Hettiarachchi
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Sayuri S. Niyangoda
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
- Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czech Republic 12843
| | - Michael A. Johnson
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
25
|
Assessing the Neurotoxicity of a Sub-Optimal Dose of Rotenone in Zebrafish (Danio rerio) and the Possible Neuroactive Potential of Valproic Acid, Combination of Levodopa and Carbidopa, and Lactic Acid Bacteria Strains. Antioxidants (Basel) 2022; 11:antiox11102040. [PMID: 36290763 PMCID: PMC9598446 DOI: 10.3390/antiox11102040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson’s disease (PD) is an enigmatic neurodegenerative disorder that is currently the subject of extensive research approaches aiming at deepening the understanding of its etiopathophysiology. Recent data suggest that distinct compounds used either as anticonvulsants or agents usually used as dopaminergic agonists or supplements consisting of live active lactic acid bacteria strains might alleviate and improve PD-related phenotypes. This is why we aimed to elucidate how the administration of rotenone (ROT) disrupts homeostasis and the possible neuroactive potential of valproic acid (VPA), antiparkinsonian agents (levodopa and carbidopa – LEV+CARB), and a mixture of six Lactobacillus and three Bifidobacterium species (PROBIO) might re-establish the optimal internal parameters. ROT causes significant changes in the central nervous system (CNS), notably reduced neurogenesis and angiogenesis, by triggering apoptosis, reflected by the increased expression of PARKIN and PINK1 gene(s), low brain dopamine (DA) levels, and as opposed to LRRK2 and SNCA compared with healthy zebrafish. VPA, LEV/CARB, and PROBIO sustain neurogenesis and angiogenesis, manifesting a neuroprotective role in diminishing the effect of ROT in zebrafish. Interestingly, none of the tested compounds influenced oxidative stress (OS), as reflected by the level of malondialdehyde (MDA) level and superoxide dismutase (SOD) enzymatic activity revealed in non-ROT-exposed zebrafish. Overall, the selected concentrations were enough to trigger particular behavioral patterns as reflected by our parameters of interest (swimming distance (mm), velocity (mm/s), and freezing episodes (s)), but sequential testing is mandatory to decipher whether they exert an inhibitory role following ROT exposure. In this way, we further offer data into how ROT may trigger a PD-related phenotype and the possible beneficial role of VPA, LEV+CARB, and PROBIO in re-establishing homeostasis in Danio rerio.
Collapse
|
26
|
Ucar A, Parlak V, Ozgeris FB, Yeltekin AC, Arslan ME, Alak G, Turkez H, Kocaman EM, Atamanalp M. Magnetic nanoparticles-induced neurotoxicity and oxidative stress in brain of rainbow trout: Mitigation by ulexite through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155718. [PMID: 35525350 DOI: 10.1016/j.scitotenv.2022.155718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The prevalent exposition of metallic nanoparticles (MNPs) to the aquatic medium and their negative influence on human life is one of the major concerns global. Stress mechanization, as a non-specific and pervasive response, involves all physiological systems, particularly the closely interconnected neuroendocrine and immune systems. In this study, which was designed to obtain more data on the biological effects of ulexit, which prevents oxidative DNA damage by protecting against toxicity damage and offers new antioxidant roles. The concomitant use of ulexite (UX, as 18.75 mg/l) as a natural therapeutic agent against exposure to magnetic nanoparticles (Fe3O4-MNPs/0.013 ml/l) on Oncorhynchus mykiss was investigated for 96 h. The brain tissues were taken at the 48th and 96th hours of the trial period, the effects on neurotoxic, pro-inflammatory cytokine genes, antioxidant immune system, DNA and apoptosis mechanisms were analyzed. In the present study, it was determined that AChE activity and BDNF level in the brain tissue decreased over time in the Fe3O4-MNPs group compared to the control, and UX tried to depress this inhibition. While inhibition was determined in antioxidant system biomarkers (SOD, CAT, GPx, and GSH values), an induction was observed in lipid peroxidation indicators (MDA and MPO values) in Fe3O4-MNPs applied group. The same group data showed that TNF-α, IL-6, 8-OHdG and caspase-3 levels were increased, but Nrf-2 levels were decreased. The alterations in all biomarkers were found to be significant at the p < 0.05 level. In general, it was determined that Fe3O4-MNPs caused stress in O. mykiss and UX exhibited a positive effect on this stress management.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | | | - Mehmet Enes Arslan
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
27
|
Zhang Z, Tang Y, Fang W, Cui K, Xu D, Liu G, Chi S, Tan B, Mai K, Ai Q. Octanoate Alleviates Dietary Soybean Oil-Induced Intestinal Physical Barrier Damage, Oxidative Stress, Inflammatory Response and Microbial Dysbiosis in Large Yellow Croaker ( Larimichthys Crocea). Front Immunol 2022; 13:892901. [PMID: 35844501 PMCID: PMC9277137 DOI: 10.3389/fimmu.2022.892901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Octanoate is a type of classical medium-chain fatty acids, which is widely used to treat neurological and metabolic syndrome. However, the specific role of octanoate in repairing intestinal health impairment is currently unknown. Therefore, we investigated whether dietary octanoate repaired the intestinal damage induced by surplus soybean oil in Larimichthys crocea. In this study, dietary octanoate alleviated abnormal morphology of the intestine and enhanced expression of ZO-1 and ZO-2 to improve intestinal physical barrier. Further, dietary octanoate increased antioxidant enzymic activities and decreased the level of ROS to alleviate the intestinal oxidative stress. Dietary octanoate also attenuated the expression of proinflammatory cytokines and the polarity of macrophage to reduce the intestinal inflammatory response. Moreover, the result of intestinal microbial 16S rRNA sequence showed that dietary octanoate repaired the intestinal mucosal microbial dysbiosis, and increased the relative abundance of Lactobacillus. Dietary octanoate supplementation also increased the level of acetic acid in intestinal content and serum through increasing the abundance of acetate-producing strains. Overall, in Larimichthys crocea, dietary octanoate might alleviated oxidative stress, inflammatory response and microbial dysbiosis to repair the intestinal damage induced by surplus soybean oil. This work provides vital insights into the underlying mechanisms and treatment strategies for intestinal damage in vertebrates.
Collapse
Affiliation(s)
- Zhou Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Guobin Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Shuyan Chi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
28
|
Assessing Anti-Social and Aggressive Behavior in a Zebrafish ( Danio rerio) Model of Parkinson's Disease Chronically Exposed to Rotenone. Brain Sci 2022; 12:brainsci12070898. [PMID: 35884705 PMCID: PMC9313068 DOI: 10.3390/brainsci12070898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Rotenone (ROT) is currently being used in various research fields, especially neuroscience. Separated from other neurotoxins, ROT induces a Parkinson’s disease (PD)-related phenotype that mimics the associated clinical spectrum by directly entering the central nervous system (CNS). It easily crosses through the blood−brain barrier (BBB) and accumulates in mitochondria. Unfortunately, most of the existing data focus on locomotion. This is why the present study aimed to bring novel evidence on how ROT alone or in combination with different potential ant(agonists) might influence the social and aggressive behavior using the counterclockwise rotation as a neurological pointer. Material and Methods: Thus, we exposed zebrafish to ROT—2.5 µg/L, valproic acid (VPA)—0.5 mg/mL, anti-parkinsonian drugs (LEV/CARB)—250 mg + 25 mg, and probiotics (PROBIO)—3 g for 32 days by assessing the anti-social profile and mirror tests and counterclockwise rotation every 4 days to avoid chronic stress. Results: We observed an abnormal pattern in the counterclockwise rotation only in the (a) CONTROL, (c) LEV/CARB, and (d) PROBIO groups, from both the top and side views, this indicating a reaction to medication and supplements administered or a normal intrinsic feature due to high levels of stress/anxiety (p < 0.05). Four out of eight studied groups—(b) VPA, (c) LEV/CARB, (e) ROT, and (f) ROT + VPA—displayed an impaired, often antithetical behavior demonstrated by long periods of time on distinct days spent on the right and the central arm (p < 0.05, 0.005, and 0.0005). Interestingly, groups (d) PROBIO, (g) ROT + LEV/CARB, and (h) ROT + PROBIO registered fluctuations but not significant ones in contrast with the above groups (p > 0.05). Except for groups (a) CONTROL and (d) PROBIO, where a normalized trend in terms of behavior was noted, the rest of the experimental groups exhibited exacerbated levels of aggression (p < 0.05, 0.005, and 0.001) not only near the mirror but as an overall reaction (p < 0.05, 0.005, and 0.001). Conclusions: The (d) PROBIO group showed a significant improvement compared with (b) VPA, (c) LEV/CARB, and ROT-treated zebrafish (e−h). Independently of the aggressive-like reactions and fluctuations among the testing day(s) and groups, ROT disrupted the social behavior, while VPA promoted a specific typology in contrast with LEV/CARB.
Collapse
|
29
|
Ketogenic therapy for Parkinson's disease: A systematic review and synthesis without meta-analysis of animal and human trials. Maturitas 2022; 163:46-61. [PMID: 35714419 DOI: 10.1016/j.maturitas.2022.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of the present systematic review was to assess the efficacy of ketogenic therapy in Parkinson's disease (PD), using all available data from randomized controlled trials (RCTs) on humans and animal studies with PD models. DESIGN Systematic review of in vivo studies. METHODS Studies related to the research question were identified through searches in PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, clinicaltrials.gov and the gray literature, from inception until November 2021. Rayyan was employed to screen and identify all studies fulfilling the inclusion criteria. Cochrane's revised Risk of Bias 2.0 and SYRCLE tools evaluated bias in RCTs and animal studies, respectively. An effect direction plot was developed to synthesize the evidence of the RCTs. RESULTS Twelve studies were identified and included in the qualitative synthesis (4 RCTs and 8 animal trials). Interventions included ketogenic diets (KDs), supplementation with medium-chain triglyceride (MCT) oil, caprylic acid administration and ketone ester drinks. The animal research used zebrafish and rodents, and PD was toxin-induced. Based on the available RCTs, ketogenic therapy does not improve motor coordination and functioning, cognitive impairment, anthropometrics, blood lipids and glycemic control, exercise performance or voice disorders in patients with PD. The evidence is scattered and heterogenous, with single trials assessing different outcomes; thus, a synthesis of the evidence cannot be conclusive regarding the efficacy of ketogenic therapy. On the other hand, animal studies tend to demonstrate more promising results, with marked improvements in locomotor activity, dopaminergic activity, redox status, and inflammatory markers. CONCLUSIONS Although animal studies indicate promising results, research on the effect of ketogenic therapy in PD is still in its infancy, with RCTs conducted on humans being heterogeneous and lacking PD-specific outcomes. More studies are required to recommend or refute the use of ketogenic therapy in PD.
Collapse
|
30
|
Wang LC, Huang YM, Lu C, Chiang BL, Shen YR, Huang HY, Lee CC, Su NW, Lin BF. Lower caprylate and acetate levels in the breast milk is associated with atopic dermatitis in infancy. Pediatr Allergy Immunol 2022; 33:e13744. [PMID: 35212041 DOI: 10.1111/pai.13744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) occurs in exclusively breastfed infants. As fatty acids have some immunomodulatory effect, we aimed to investigate the influence of fatty acid compositions in breast milk (BM) on the development of AD in exclusively breastfed infants. METHODS We enrolled two- to four-month-old exclusively breastfed infants. The objective SCORing Atopic Dermatitis (objSCORAD) was evaluated. The lipid layer of BM was analyzed by gas chromatography for fatty acid levels. Medical charts were reviewed. RESULTS Forty-seven AD infants and 47 healthy controls were enrolled. The objSCORAD was 20.5 ± 1.7 (shown as mean ± SEM) in the AD group. The age, sex, parental atopy history, and nutrient intake of mothers were not significantly different between two groups. The palmitate and monounsaturated fatty acid (MUFA) levels in BM positively correlated with objSCORAD, while caprylate, acetate, and short-chain fatty acid (SCFA) levels negatively correlated with objSCORAD (p = .031, .019, .039, .013, .022, respectively). However, the butyrate levels in BM were not significantly different. The caprylate and acetate levels in BM were significantly associated with the presence of infantile AD (p = .021 and .015, respectively) after adjusting for age, sex, parental allergy history, MUFA, palmitate, and SCFA levels in BM. ObjSCORAD in infancy was significantly associated with persistent AD (p = .026) after adjusting for age, sex, parental atopy history, caprylate, palmitate, MUFA, acetate, and SCFA levels in BM. CONCLUSION Caprylate and acetate levels in BM for exclusively breastfed infants were negatively associated with objSCORAD. Lower caprylate and acetate in BM might be the risk factors for infantile AD, while butyrate in BM was not associated with infantile AD.
Collapse
Affiliation(s)
- Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Ming Huang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Emergency Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chieh Lu
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Rou Shen
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Hsun-Yi Huang
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Bi-Fong Lin
- Department of Biochemical Science and Technology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Sürmen MG, Sürmen S, Cansız D, Ünal İ, Üstündağ ÜV, Alturfan AA, Emekli-Alturfan E. Quantitative phosphoproteomics to resolve the cellular responses to octanoic acid in rotenone exposed zebrafish. J Food Biochem 2021; 45:e13923. [PMID: 34494670 DOI: 10.1111/jfbc.13923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023]
Abstract
Ketosis is a potentially beneficial metabolic state for health especially in neurological conditions including Parkinson's disease (PD). Medium-chain-triglycerides (MCT) have specific metabolic properties and they are described as ketogenic even without restriction of carbohydrate. Octanoic acid (C8) is the main MCT showing this effect. Rotenone is a neurotoxin that is used to induce experimental PD model. Rotenone inhibits mitochondrial respiratory complex 1 (MRC1) and causes reactive oxygen species formation. Mass spectrometry (MS)-based phosphoproteomic methods enable discovering specific signaling events in special molecular pathways through identification and quantification of phosphoproteins. Signaling networks involved in rotenone-mediated biological processes and beneficial effects of MCTs on neurodegenerative diseases are not well understood. We aimed to gain comprehensive molecular perspective on the global phosphoproteome differences in rotenone-exposed zebrafish treated with octanoic acid. Raw files obtained from MS analysis were processed and searched against the Danio rerio protein database using SEQUEST-HT algorithm to identify and quantify phosphopeptides with 2,569 unique phosphoproteins and 4,161 unique phosphopeptides corresponding to 2005 proteins. Microtubule-associated protein (MAP) family members were significantly lower in rotenone group. Phosphoproteins involved in ion binding (calcium, magnesium, zinc ion), oxygen binding, microtubule binding, ATP- and GTP-binding were among differentially expressed 347 proteins in rotenone group and they were reversed after octanoic acid treatments. Phosphoproteins and phosphorylation sites were identified for future exploration of signaling pathways involved in rotenone toxicity. We believe our findings might help in the formulation of effective therapeutic strategies for the treatment of PD using ketogenic formulations involving MCTs. PRACTICAL APPLICATIONS: Ketosis is a potentially beneficial metabolic state for health especially in neurological conditions including Parkinson's disease (PD). Medium-chain-triglycerides (MCT) (C6-C12) have specific metabolic properties making them described as ketogenic even without restriction of carbohydrate. Octanoic acid (caprylic acid, C8) is the main MCT showing this effect. Our findings might help in the formulation of effective therapeutic strategies for the treatment of Parkinson's disease using ketogenic formulations involving Medium-chain-triglycerides.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University-Çapa, Istanbul, Turkey
| | - Derya Cansız
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - İsmail Ünal
- Department of Biochemistry, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Ünsal Veli Üstündağ
- Medical Biochemistry, Faculty of Medicine, Department Medipol University, Istanbul, Turkey
| | - Ahmet Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|