1
|
Ju SH, Song M, Lim JY, Kang YE, Yi HS, Shong M. Metabolic Reprogramming in Thyroid Cancer. Endocrinol Metab (Seoul) 2024; 39:425-444. [PMID: 38853437 PMCID: PMC11220218 DOI: 10.3803/enm.2023.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 06/11/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy with increasing incidence globally. Although most cases can be treated effectively, some cases are more aggressive and have a higher risk of mortality. Inhibiting RET and BRAF kinases has emerged as a potential therapeutic strategy for the treatment of thyroid cancer, particularly in cases of advanced or aggressive disease. However, the development of resistance mechanisms may limit the efficacy of these kinase inhibitors. Therefore, developing precise strategies to target thyroid cancer cell metabolism and overcome resistance is a critical area of research for advancing thyroid cancer treatment. In the field of cancer therapeutics, researchers have explored combinatorial strategies involving dual metabolic inhibition and metabolic inhibitors in combination with targeted therapy, chemotherapy, and immunotherapy to overcome the challenge of metabolic plasticity. This review highlights the need for new therapeutic approaches for thyroid cancer and discusses promising metabolic inhibitors targeting thyroid cancer. It also discusses the challenges posed by metabolic plasticity in the development of effective strategies for targeting cancer cell metabolism and explores the potential advantages of combined metabolic targeting.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
2
|
Wu M, Yuan H, Zou W, Xu S, Liu S, Gao Q, Guo Q, Han Y, An X. Circular RNAs: characteristics, functions, mechanisms, and potential applications in thyroid cancer. Clin Transl Oncol 2024; 26:808-824. [PMID: 37864677 DOI: 10.1007/s12094-023-03324-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/08/2023] [Indexed: 10/23/2023]
Abstract
Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/β-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.
Collapse
Affiliation(s)
- Mengmeng Wu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Haibin Yuan
- Department of Health Management, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Shujian Xu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Song Liu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Qiang Gao
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Qingqun Guo
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| | - Xingguo An
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Greco A, Coperchini F, Croce L, Magri F, Teliti M, Rotondi M. Drug repositioning in thyroid cancer treatment: the intriguing case of anti-diabetic drugs. Front Pharmacol 2023; 14:1303844. [PMID: 38146457 PMCID: PMC10749369 DOI: 10.3389/fphar.2023.1303844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Cancer represents the main cause of death worldwide. Thyroid cancer (TC) shows an overall good rate of survival, however there is a percentage of patients that do not respond or are refractory to common therapies. Thus new therapeutics strategies are required. In the past decade, drug repositioning become very important in the field of cancer therapy. This approach shows several advantages including the saving of: i) time, ii) costs, iii) de novo studies regarding the safety (just characterized) of a drug. Regarding TC, few studies considered the potential repositioning of drugs. On the other hand, certain anti-diabetic drugs, were the focus of interesting studies on TC therapy, in view of the fact that they exhibited potential anti-tumor effects. Among these anti-diabetic compounds, not all were judjed as appropriate for repositioning, in view of well documented side effects. However, just to give few examples biguanides, DPP-4-inhibitors and Thiazolidinediones were found to exert strong anti-cancer effects in TC. Indeed, their effects spaced from induction of citotoxicity and inhibition of metastatic spread, to induction of de-differentiation of TC cells and modulation of TC microenvironment. Thus, the multifacial anti-cancer effect of these compounds would make the basis also for combinatory strategies. The present review is aimed at discuss data from studies regarding the anti-cancer effects of several anti-diabetic drugs recently showed in TC in view of their potential repositioning. Specific examples of anti-diabetic repositionable drugs for TC treatment will also be provided.
Collapse
Affiliation(s)
- Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
4
|
Bashraheel SS, Kheraldine H, Khalaf S, Moustafa AEA. Metformin and HER2-positive breast cancer: Mechanisms and therapeutic implications. Biomed Pharmacother 2023; 162:114676. [PMID: 37037091 DOI: 10.1016/j.biopha.2023.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Due to the strong association between diabetes and cancer incidents, several anti-diabetic drugs, including metformin, have been examined for their anticancer activity. Metformin is a biguanide antihyperglycemic agent used as a first-line drug for type II diabetes mellitus. It exhibits anticancer activity by impacting different molecular pathways, such as AMP-inducible protein kinase (AMPK)-dependent and AMPK-independent pathways. Additionally, Metformin indirectly inhibits IGF-1R signaling, which is highly activated in breast malignancy. On the other hand, breast cancer is one of the major causes of cancer-related morbidity and mortality worldwide, where the human epidermal growth factor receptor-positive (HER2-positive) subtype is one of the most aggressive ones with a high rate of lymph node metastasis. In this review, we summarize the association between diabetes and human cancer, listing recent evidence of metformin's anticancer activity. A special focus is dedicated to HER2-positive breast cancer with regards to the interaction between HER2 and IGF-1R. Then, we discuss combination therapy strategies of metformin and other anti-diabetic drugs in HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sarah Khalaf
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, PO. Box 2713, Doha, Qatar; Oncology Department, McGill University, Montreal, Quebec H3A 0G4, Canada.
| |
Collapse
|
5
|
Ghavami G, Kiasari RE, Pakzad F, Sardari S. Effect of metformin alone and in combination with etoposide and epirubicin on proliferation, apoptosis, necrosis, and migration of B-CPAP and SW cells as thyroid cancer cell lines. Res Pharm Sci 2023; 18:185-201. [PMID: 36873273 PMCID: PMC9976061 DOI: 10.4103/1735-5362.367797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/27/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
Background and purpose There has not been a comprehensive study on the simultaneous effects of metformin, etoposide, and epirubicin on thyroid cancer cells. Hence, the current research proposed the in vitro study on the effect of metformin alone and in combination with etoposide and epirubicin on the rate of proliferation, apoptosis, necrosis, and migration against B-CPAP and SW-1736 cells as thyroid cancer cell lines. Experimental approach MTT-based proliferation assay, combination index method, flow cytometry, and scratch wound healing assays were used to evaluate the simultaneous effects of the three approved drugs against thyroid cancer cells. Findings/Results This study showed that the toxic concentration of metformin on normal Hu02 cells was more than 10 folds higher than B-CPAP and SW cancerous cells. Metformin in combination with epirubicin and etoposide could increase percentages of B-CPAP and SW cells in early and late apoptosis and necrosis phases in comparison with their single concentrations, significantly. Metformin in combination with epirubicin and etoposide could arrest the S phase in B-CPAP and SW cells, significantly. Metformin in combination with epirubicin and etoposide could reduce ~100% migration rate, whereas single concentrations of epirubicin and etoposide could reduce ~50% migration rate. Conclusion and implication Combined treatment of metformin with anticancer drugs epirubicin and etoposide can increase the mortality in thyroid cancer cell lines and reduce the toxicity of these drugs on the normal cell line, which could be the starting point for proposing a new combination strategy in the therapy of thyroid cancer to induce more potency and reduce acute toxicity.
Collapse
Affiliation(s)
- Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Ramin Ebrahimi Kiasari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Faezeh Pakzad
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, I.R. Iran
| |
Collapse
|
6
|
Morale MG, Tamura RE, Rubio IGS. Metformin and Cancer Hallmarks: Molecular Mechanisms in Thyroid, Prostate and Head and Neck Cancer Models. Biomolecules 2022; 12:357. [PMID: 35327549 PMCID: PMC8945547 DOI: 10.3390/biom12030357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Metformin is the most used drug for type 2 diabetes (T2DM). Its antitumor activity has been described by clinical studies showing reduced risk of cancer development in T2DM patients, as well as management of T2DM compared with those receiving other glucose-lowering drugs. Metformin has a plethora of molecular actions in cancer cells. This review focused on in vitro data on the action mechanisms of metformin on thyroid, prostate and head and neck cancer. AMPK activation regulating specific downstream targets is a constant antineoplastic activity in different types of cancer; however, AMPK-independent mechanisms are also relevant. In vitro evidence makes it clear that depending on the type of tumor, metformin has different actions; its effects may be modulated by different cell conditions (for instance, presence of HPV infection), or it may regulate tissue-specific factors, such as the Na+/I- symporter (NIS) and androgen receptors. The hallmarks of cancer are a set of functional features acquired by the cell during malignant development. In vitro studies show that metformin regulates almost all the hallmarks of cancer. Interestingly, metformin is one of these therapeutic agents with the potential to synergize with other chemotherapeutic agents, with low cost, low side effects and high positive consequences. Some questions are still challenging: Are metformin in vitro data able to translate from bench to bedside? Does metformin affect drug resistance? Can metformin be used as a generic anticancer drug for all types of tumors? Which are the specific actions of metformin on the peculiarities of each type of cancer? Several clinical trials are in progress or have been concluded for repurposing metformin as an anticancer drug. The continuous efforts in the field and future in vitro studies will be essential to corroborate clinical trials results and to elucidate the raised questions.
Collapse
Affiliation(s)
- Mirian Galliote Morale
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| | - Rodrigo Esaki Tamura
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| | - Ileana Gabriela Sanchez Rubio
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil; (M.G.M.); (R.E.T.)
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
- Thyroid Molecular Sciences Laboratory, Federal University of São Paulo, Rua Pedro de Toledo 669, 11° Andar, São Paulo 04039-032, Brazil
| |
Collapse
|
7
|
Ju SH, Lee SE, Kang YE, Shong M. Development of Metabolic Synthetic Lethality and Its Implications for Thyroid Cancer. Endocrinol Metab (Seoul) 2022; 37:53-61. [PMID: 35255601 PMCID: PMC8901971 DOI: 10.3803/enm.2022.1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer therapies targeting genetic alterations are a topic of great interest in the field of thyroid cancer, which frequently harbors mutations in the RAS, RAF, and RET genes. Unfortunately, U.S. Food and Drug Administration-approved BRAF inhibitors have relatively low therapeutic efficacy against BRAF-mutant thyroid cancer; in addition, the cancer often acquires drug resistance, which prevents effective treatment. Recent advances in genomics and transcriptomics are leading to a more complete picture of the range of mutations, both driver and messenger, present in thyroid cancer. Furthermore, our understanding of cancer suggests that oncogenic mutations drive tumorigenesis and induce rewiring of cancer cell metabolism, which promotes survival of mutated cells. Synthetic lethality (SL) is a method of neutralizing mutated genes that were previously considered untargetable by traditional genotype-targeted treatments. Because these metabolic events are specific to cancer cells, we have the opportunity to develop new therapies that target tumor cells specifically without affecting healthy tissue. Here, we describe developments in metabolism-based cancer therapy, focusing on the concept of metabolic SL in thyroid cancer. Finally, we discuss the essential implications of metabolic reprogramming and its role in the future direction of SL for thyroid cancer.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Seong Eun Lee
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| |
Collapse
|