1
|
Tepebaşı MY, Aşcı H, Koşar PA, Dinçer EN, Selçuk E, Kolay Ö, Hüseynov İ. Potential Ameliorating Effects of Fluvoxamine in a Rat Model of Endotoxin-Induced Neuroinflammation: Molecular Aspects Through SIRT-1/GPX-4 and HMGB-1 Signaling. Mol Neurobiol 2025:10.1007/s12035-025-04764-1. [PMID: 39954165 DOI: 10.1007/s12035-025-04764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Research on the tissue-protective effects of fluvoxamine (FLV), a selective serotonin reuptake inhibitor, rapidly expands. This study explores FLV's potential to protect against lipopolysaccharide (LPS)-induced neuroinflammation, a key factor in systemic inflammation-related neuronal damage. Four equal groups of thirty-two female Wistar Albino rats were created: FLV, LPS-FLV (50 mg/kg intraperitoneal), LPS (5 mg/kg intraperitoneal), and control. Both drugs were given in one dose on the same day. Tissues from the brain cortex, cerebellum, and hippocampus were taken for histopathology, immunohistochemistry, biochemistry, and genetic analysis. In the LPS group, histological examinations revealed hyperemia, edema, mild degeneration, neuronal death, and modest gliosis. Additionally, while apelin and total antioxidant status levels were reduced, greater levels of oxidative stress index, glial fibrillary acidic protein (GFAP), mammalian target of rapamycin (mTOR), and total oxidant status were noted. FLV treatment reversed all these findings. Genetic analyses revealed that LPS decreased sirtuin-1 (SIRT-1) and glutathione peroxidase 4 (GPX-4) while increasing high mobility group box protein 1 (HMGB-1). FLV treatment reversed all these parameters, and a significant result was obtained only with GPX-4. In this study, FLV treatment was shown to have anti-inflammatory and neuroprotective effects through various mechanisms on the brain cortex, cerebellum, and hippocampus tissues in addition to its antidepressant effects.
Collapse
Affiliation(s)
| | - Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Pınar Aslan Koşar
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Emine Nur Dinçer
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Esma Selçuk
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Öznur Kolay
- Institute of Health Sciences, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - İbrahim Hüseynov
- Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Savran M, Akin SE, Camas HE, Ilhan I, Arlioglu M, Zeynalov T, Ozmen O, Ozcan MS. Protective effect of dapagliflozin on lipopolysaccharide-induced acute lung injury via the SIRT-1/PGC-1α pathway. Mol Biol Rep 2025; 52:171. [PMID: 39878908 DOI: 10.1007/s11033-025-10267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues. METHODS AND RESULTS Thirty-two Wistar albino rats were divided into four groups: control, lipopolysaccharide (LPS) (5 mg/kg), LPS + DPG (10 mg/kg) and DPG. DPG was orally administered for five consecutive days LPS was intraperitoneally applied in a single dose on the fifth day and the animals were euthanized six hours after the last drug administration. Lung tissues were harvested. In addition to hematoxylin-eosin staining, caspase-3 (Cas-3) and tumor necrosis factor alpha (TNF-α) immunostainings were conducted. While total oxidant status (TOS), total antioxidant status (TAS), and oxidative stress index (OSI) were examined biochemically, Sirtuin-1 (SIRT-1), Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), B-cell lymphoma 2 (Bcl-2), and Bcl-2 associated X protein (Bax) were examined by PCR. Histopathological analysis revealed hyperemia, edema, inflammatory cell infiltration, and epithelial cell loss. In LPS group, Cas-3, TNF-α, TOS, OSI, and Bax values increased whereas SIRT-1, PGC-1α, and Bcl-2 values decreased. All these changes were restored with DPG treatment. CONCLUSION DPG exhibited protective effects against inflammation, oxidative stress, and subsequent apoptosis observed in systemic inflammation-induced ALI likely through SIRT-1/ PGC-1α pathway.
Collapse
Affiliation(s)
- Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Suleyman Emre Akin
- Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Hasan Ekrem Camas
- Department of Thoracic Surgery, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ilter Ilhan
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Melih Arlioglu
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Toghrul Zeynalov
- Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mustafa Soner Ozcan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
3
|
Özden ES, Özcan MS, Savran M, Ilhan I, Tepebası MY, Sevuk MA, Özmen Ö. Effects of Tasimelteon Treatment on Traumatic Brain Injury Through NRF-2/HO-1 and RIPK1/RIPK3/MLKL Pathways in Rats. Mol Neurobiol 2025:10.1007/s12035-025-04711-0. [PMID: 39878865 DOI: 10.1007/s12035-025-04711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally). At the end of the experimental phase, after sacrifice, blood samples and brain tissue were collected for biochemical, histopathological, immunohistochemical, and genetic analyses. Tasi increased the total antioxidant status and decreased the total oxidant status and oxidative stress index. In addition, Tasi caused histopathological changes characterized by a markedly reduced hemorrhage area in the Tasi-1 group. Normal brain and meningeal structure was observed in rats in the Tasi-10 group. Immunohistochemical analysis indicated that Tasi also decreased the expression of interferon-gamma, caspase-3, and tumor necrosis factor-alpha in the brain tissue. Although NRF-2 and HO-1 expression decreased, RIPK1/RIPK3/MLKL gene expression increased due to trauma. However, Tasi treatment reversed all these findings. Tasi protected against brain injury through the NRF-2/HO-1 and RIPK1/RIPK3/MLKL pathways in rats with TBI.
Collapse
Affiliation(s)
- Eyyüp Sabri Özden
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Cunur, 32260, Isparta, Turkey.
| | - Mustafa Soner Özcan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Cunur, 32260, Isparta, Turkey
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ilter Ilhan
- Department of Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | | | - Mehmet Abdulkadir Sevuk
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
4
|
Lui PPY, Huang C, Zhang X. Selenium Nanoparticles Suppressed Oxidative Stress and Promoted Tenocyte Marker Expression in Tendon-Derived Stem/Progenitor Cells. Antioxidants (Basel) 2024; 13:1536. [PMID: 39765864 PMCID: PMC11727164 DOI: 10.3390/antiox13121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Traumatic tendon injuries generate reactive oxygen species and inflammation, which may account for slow or poor healing outcomes. Selenium is an essential trace element presented in selenoproteins, many of which are strong antioxidant enzymes. Selenium nanoparticles (SeNPs) have been reported to promote tissue repair due to their anti-oxidative, anti-inflammatory, anti-apoptotic, and differentiation-modulating properties. However, its effects on the functions of tendon-derived stem/progenitor cells (TDSCs) and tendon healing have not been reported. This study examined the effects of SeNPs on the functions of hydroperoxide (H2O2)-stimulated TDSCs. Rat patellar TDSCs were treated with H2O2 with or without SeNPs. The viability, marker of proliferation, oxidative stress, inflammation, apoptosis, and tenocyte marker expressions of H2O2-stimulated TDSCs after SeNPs treatment were assessed. Our results showed that SeNPs increased the viability and expression of the marker of proliferation of TDSCs exposed to H2O2, while concurrently reducing oxidative stress, inflammation, and apoptosis. Additionally, the expressions of tenocyte markers were significantly elevated in H2O2-treated TDSCs after treatment with SeNPs. Furthermore, the expressions of Sirt1 and Nrf2 also increased after SeNPs treatment in H2O2-stimulated TDSCs. In conclusion, SeNPs mitigated oxidative stress, inflammation, and apoptosis while enhancing the survival and expression of the marker of proliferation of TDSCs in an oxidative stress environment. Additionally, it promoted the fate of TDSCs towards the tenocyte lineage in the presence of such oxidative stress. The increased expressions of Sirt1 and Nrf2 likely mediated the anti-oxidative and anti-inflammatory effects of SeNPs. SeNPs hold promise as a novel intervention for promoting tendon healing.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Caihao Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China; (C.H.); (X.Z.)
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116000, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110000, China; (C.H.); (X.Z.)
| |
Collapse
|
5
|
İlhan İ, Ascı H, Buyukbayram Hİ, Imeci OB, Sevuk MA, Erol Z, Aksoy F, Milletsever A. The Impact of the High-Fructose Corn Syrup on Cardiac Damage via SIRT1/PGC1-α Pathway: Potential Ameliorative Effect of Selenium. Biol Trace Elem Res 2024; 202:5166-5176. [PMID: 38305829 PMCID: PMC11442503 DOI: 10.1007/s12011-024-04081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
High-fructose corn syrup (HFCS) has been a subject of intense debate due to its association with cardiovascular risks. This study investigates the potential protective effects of selenium (Se) supplementation against cardiac damage induced by HFCS. Thirty-two male Wistar albino rats were divided into four equal groups: control, CS (20%-HFCS), CS with Se (20%-HFCS, 0.3 mg/kg-Se), and Se (0.3 mg/kg-Se) only. After a 6-week period, heart and aorta tissues were collected for histopathological, immunohistochemical, biochemical, and genetic analyses. HFCS consumption led to severe cardiac pathologies, increased oxidative stress, and altered gene expressions associated with inflammation, apoptosis, and antioxidant defenses. In the CS group, pronounced oxidative stress within the cardiac tissue was concomitant with elevated Bcl-2-associated X protein (Bax) expression and diminished expressions of B-cell-lymphoma-2 (Bcl-2), nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α), and silenced information regulator 1 (SIRT1). Se supplementation mitigated these effects, showing protective properties. Immunohistochemical analysis supported these findings, demonstrating decreased expressions of caspase-3, tumor necrosis factor-alpha (TNF-α), IL-1β, and vascular endothelial growth factor (VEGF) in the CS + Se group compared to the CS group. The study suggests that Se supplementation exerts anti-inflammatory, antioxidant, and antiapoptotic effects, potentially attenuating HFCS-induced cardiovascular toxicity. These findings highlight the importance of dietary considerations and selenium supplementation in mitigating cardiovascular risks associated with HFCS consumption.
Collapse
Affiliation(s)
- İlter İlhan
- Faculty of Medicine, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey.
| | - Halil Ascı
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | | | - Orhan Berk Imeci
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Abdulkadir Sevuk
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
| | - Zeki Erol
- Faculty of Veterinary, Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Fatih Aksoy
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Turkey
- Faculty of Medicine, Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Adem Milletsever
- Faculty of Veterinary, Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
6
|
Tepebaşı MY, Savran M, Coşan S, Taştan ŞA, Aydın B. The protective role of selenium against high-fructose corn syrup-induced kidney damage: a histopathological and molecular analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7829-7837. [PMID: 38734838 PMCID: PMC11450133 DOI: 10.1007/s00210-024-03149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
With the growth of the food industry, fructose, the intake of which increases with food, causes obesity and metabolic syndrome. Kidney damage may develop from metabolic syndrome. Selenium (Se) participates in the structure of antioxidant enzymes and has a medicinal effect. In this work, the protective impact of Se on kidney damage produced by high-fructose corn syrup (HFCS) via endoplasmic reticulum (ER) stress was examined. The study comprised four groups, each consisting of ten experimental animals: control, HFCS (20%-HFCS), HFCS (20%-HFCS), + Se (0.3 mg/kg/day/po), and Se (0.3 mg/kg/day/po) alone. The duration of the experiment was 6 weeks. Kidney tissues were stained with hematoxylin and eosin for histological examination. Immunohistochemical analysis was conducted to assess TNF-α and caspase-3 levels. The spectrophotometric evaluation was performed to measure TOS (total oxidant status), TAS (total antioxidant status), and OSI (oxidative stress index) levels. The PERK, ATF4, CHOP, BCL-2, and caspase-9 gene expression levels were assessed by the RT-qPCR method. After Se treatment, histopathological abnormalities and TNF-α and caspase-3 levels in the HFCS+Se group decreased (p < 0.001). While TOS and OSI levels increased dramatically in the HFCS group, TAS values decreased significantly but improved after Se application (p < 0.001). The expression levels of the genes PERK, ATF4, CHOP, and caspase-9 were significantly lower in the HFCS group when compared to the HFCS+Se group (p < 0.05). Our findings suggest that Se may protect against ER stress, oxidative stress, apoptosis, and kidney damage caused by high-dose fructose consumption.
Collapse
Affiliation(s)
| | - Mehtap Savran
- Department of Medical Pharmacology, University of Süleyman Demirel, Isparta, Turkey
| | - Samet Coşan
- Department of Medical Pharmacology, University of Süleyman Demirel, Isparta, Turkey
| | | | - Bünyamin Aydın
- Department of Internal Medicine, Kütahya University of Health Sciences, Kütahya, Turkey
| |
Collapse
|
7
|
Ji SY, Yin ZC, Ma CL, Bai JX, Min JY, Wang BY, Gao ML, Yang XY, Yang XJ, Lei XG. Dietary Selenium Insufficiency Induces Cardiac Inflammatory Injury in Chicks. J Nutr 2024; 154:2315-2325. [PMID: 38763264 DOI: 10.1016/j.tjnut.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Laying hens undergo intensive metabolism and are vulnerable to cardiac insults. Previous research demonstrated overt heart disorders of broiler chickens induced by dietary Se deficiency. OBJECTIVES This study aimed to reveal effects and mechanism of dietary Se insufficiency on cardiac injuries of egg-type chicks in their early life. METHODS White Leghorn chicks (0-d-old, female) were fed a corn-soy, Se-insufficient basal diet (BD, 0.05 mg Se/kg; n = 11) or the BD supplemented with 0.3 mg Se/kg (as sodium selenite; n = 8) for 35 d. Cardiac tissues were collected at the end of study for histology and to determine its relationship with heart Se contents, selenoprotein expression profiles, antioxidant and inflammatory status, and the Toll-like receptor 4/extracellular signal-regulated kinases/p38 map kinase/c-Jun N-terminal kinase (TLR4/ERK/P38/JNK) pathway. RESULTS Compared with those fed 0.35 mg Se/kg, chicks fed BD had significantly lower body weights and average daily gain, and 28% lower heart Se, and developed cardiac mononuclear inflammatory cell infiltration, along with elevated (P < 0.05) serum concentrations of creatine kinase, aldolase, and interleukin-1 (IL-1). The BD decreased (P < 0.05) body weight and heart glutathione contents and expression of selenoproteins but increased (P < 0.05) heart concentrations of malondialdehyde and reactive oxygen species. These changes were associated with increased (P < 0.05) mRNA and/or protein concentrations of cyclooxygenases, lipoxygenase-12, cytokines (IL-1β), nuclear factor (NF) κB subunit, chemokines, and receptors (CCL20, CXCR1, and CXCLI2) and increased (P < 0.1) TLR4/ERK /P38/JNK in the heart of Se-insufficient chicks. CONCLUSIONS Dietary Se insufficiency induces infiltration of mononuclear inflammatory cells in the heart of egg-type chicks. This cardiac injury was mediated by decreased functional expressions of selenoproteins, which resulted in apparent elevated oxidative stress and subsequent activations of the TLR4 pathway and NF κB.
Collapse
Affiliation(s)
- Shu Yun Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen Chen Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chun Lai Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Xia Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ji Yang Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Yan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Lu Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiang Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Jun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
8
|
Su X, Liu W, Yang B, Yang S, Hou J, Yu G, Feng Y, Li J. Constructing network structures to enhance stability and target deposition of selenium nanoparticles via amphiphilic sodium alginate and alkyl glycosides. Int J Biol Macromol 2024; 267:131588. [PMID: 38615860 DOI: 10.1016/j.ijbiomac.2024.131588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.
Collapse
Affiliation(s)
- Xiaona Su
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Wenyan Liu
- School of Food Science and Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Bei Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Shujuan Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Jinjian Hou
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Gaobo Yu
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Jiacheng Li
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| |
Collapse
|
9
|
Tu Z, Tang L, Khan FU, Hu M, Shen H, Wang Y. Low-frequency noise aggravates the toxicity of cadmium in sea slug Onchdium reevesii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169558. [PMID: 38135081 DOI: 10.1016/j.scitotenv.2023.169558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Industrial development not only triggers heavy metal pollution but also introduces a less easily discernible disturbance: low-frequency noise pollution. Low-frequency noise can disrupt wildlife behavior, potentially exerting complex effects through interacting with heavy metals. Nevertheless, the cumulative impacts of low-frequency noise and cadmium (Cd) pollution on marine organisms remain largely unexplored. This study aimed to evaluate the immune defense response of sea slugs (Onchdium reevesii) exposed to Cd (1.32 mg/L) and low-frequency noise (500 Hz, 1000 Hz). Our results show that Cd exposure results in Cd2+ accumulation in the sea slug's hepatopancreas, leading to a decrease in total antioxidant capacity (TAC) and a significant increase in enzyme activities, including glutathione (GSH), lipid peroxidation (LPO), and aspartate transferase (AST). Additionally, there is a substantial upregulation in the expression of genes related to tumor protein p53 (p53), Cytochrome C (CytC), Caspase 3, and Caspase 9, as well as metallothionein (MT) and heat shock protein 70 (Hsp70) genes. Concurrently, an excessive production of reactive oxygen species (ROS) occurs in the hemocytes, resulting in apoptosis and subsequent diminished cell viability, with these effects positively correlating with the exposure duration. Furthermore, when sea slugs were exposed to both Cd and low-frequency noise, there was a decrease in the hepatopancreas's antioxidant capacity and an enhancement in hemocytes immune responses, which positively correlated with low-frequency noise frequency. The comprehensive assessment of biomarker responses highlights that low-frequency noise has the potential to amplify the deleterious effects of Cd on sea slug physiology, with this negative impact positively linked to noise frequency. Consequently, our study underscores that the combined influence of low-frequency noise and Cd pollution magnifies the effects on sea slug health. This could potentially disrupt the population stability of this species within its natural habitat, providing fresh insights into the evaluation of cumulative environmental pollution risks.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Segovia-Cubero J, Ruiz-Bautista L, Maiz-Carro L, Girón-Moreno RM, Prados-Sánchez MC, Martínez-Martínez MT, González-Estecha M, Mingo-Santos S, Gómez-Bueno M, Salas-Antón C, Cavero-Gibanel MA, Pastrana-Ledesma M, García-Pavía P, Laporta-Hernández R, Sánchez-Ortiz D, Alonso-Pulpón L. The cardiomyopathy of cystic fibrosis: a modern form of Keshan disease. Front Cardiovasc Med 2024; 11:1285223. [PMID: 38361580 PMCID: PMC10867141 DOI: 10.3389/fcvm.2024.1285223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction We conducted a study to determine the prevalence of structural heart disease in patients with CF, the characteristics of a cardiomyopathy not previously described in this population, and its possible relationship with nutritional deficiencies in CF. Methods We studied 3 CMP CF patients referred for heart-lung transplantation and a prospective series of 120 adult CF patients. All patients underwent a clinical examination, blood tests including levels of vitamins and trace elements, and echocardiography with evaluation of myocardial strain. Cardiac magnetic resonance imaging (CMR) was performed in patients with CMP and in a control group. Histopathological study was performed on hearts obtained in transplant or necropsy. Results We found a prevalence of 10% (CI 4.6%-15.4%) of left ventricular (LV) dysfunction in the prospective cohort. Myocardial strain parameters were already altered in CF patients with otherwise normal hearts. Histopathological examination of 4 hearts from CF CMP patients showed a unique histological pattern of multifocal myocardial fibrosis similar to Keshan disease. Four of the five CF CMP patients undergoing CMR showed late gadolinium uptake, with a characteristic patchy pattern in 3 cases (p < 0.001 vs. CF controls). Selenium deficiency (Se < 60 µg/L) was associated with more severe LV dysfunction, higher prevalence of CF CMP, higher NTproBNP levels, and more severe pulmonary and digestive involvement. Conclusion 10% of adults with CF showed significant cardiac involvement, with histological and imaging features resembling Keshan disease. Selenium deficiency was associated with the presence and severity of LV dysfunction in these patients.
Collapse
Affiliation(s)
- Javier Segovia-Cubero
- Cardiolology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Luis Maiz-Carro
- Cystic Fibrosis Unit, Pneumology Dept., Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Rosa M. Girón-Moreno
- Cystic Fibrosis Unit, Pneumology Dept., Hospital Universitario La Princesa, Madrid, Spain
| | | | | | | | | | - Manuel Gómez-Bueno
- Cardiolology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Clara Salas-Antón
- Pathology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | - Pablo García-Pavía
- Cardiolology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Luis Alonso-Pulpón
- Cardiolology Dept., Hospital Universitario Puerta de Hierro, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
11
|
Aisa-Álvarez A, Pérez-Torres I, Guarner-Lans V, Manzano-Pech L, Cruz-Soto R, Márquez-Velasco R, Casarez-Alvarado S, Franco-Granillo J, Núñez-Martínez ME, Soto ME. Randomized Clinical Trial of Antioxidant Therapy Patients with Septic Shock and Organ Dysfunction in the ICU: SOFA Score Reduction by Improvement of the Enzymatic and Non-Enzymatic Antioxidant System. Cells 2023; 12:cells12091330. [PMID: 37174730 PMCID: PMC10177152 DOI: 10.3390/cells12091330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND AND AIM Here, we assess the effect of adjuvant antioxidant therapies in septic shock patients with organ dysfunction and their effect on the enzymatic and non-enzymatic antioxidant systems. METHODS Randomized clinical trial run between 2018 and 2022. One hundred and thirty-one patients with septic shock were included in five groups with 25, 27, 24, 26 and 29 patients each. Group 1 received vitamin C (Vit C), Group 2 vitamin E (Vit E), Group 3 n-acetylcysteine (NAC), Group 4 melatonin (MT) and group 5 no treatment. All antioxidants were administered orally or through a nasogastric tube for 5 days as an adjuvant to standard therapy. RESULTS All patients had multiple organ failure (MOF) and low Vit C levels. Vit C therapy decreased CRP, PCT and NO3-/NO2- but increased Vit C levels. The SOFA score decreased with MT in 75%, Vit C 63% and NAC 50% vs. controls 33% (p = 0.0001, p = 0.03 and p = 0.001 respectively). MT diminished lipid peroxidation (LPO) (p = 0.01) and improved total antioxidant capacity (TAC) (p = 0.04). Vit E increased thiol levels (p = 0.02) and tended to decrease LPO (p = 0.06). Selenium levels were decreased in the control group (p = 0.04). CONCLUSIONS Antioxidants used as an adjuvant therapy in the standard treatment of septic shock decrease MOF and oxidative stress markers. They increase the TAC and thiols, and maintain selenium levels.
Collapse
Affiliation(s)
- Alfredo Aisa-Álvarez
- Critical Care Department, American British Cowdray (ABC) Medical Center, I.A.P. ABC Sur 136 No. 116 Col. Las Américas, México City 01120, Mexico
- UNAM Master's and Doctoral Program in Medical, Dental and Health Sciences UNAM, México. Av. Universidad 3000, Coyoacán, México City 04510, Mexico
| | - Israel Pérez-Torres
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Linaloe Manzano-Pech
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Randall Cruz-Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Ricardo Márquez-Velasco
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Sergio Casarez-Alvarado
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Juvenal Franco-Granillo
- Critical Care Department, American British Cowdray (ABC) Medical Center, I.A.P. ABC Sur 136 No. 116 Col. Las Américas, México City 01120, Mexico
| | | | - María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
- Department of the Cardiovascular, Division of the American British Cowdray Medical Center, Sur 136 No. 116 Col. Las Américas, México City 01120, Mexico
| |
Collapse
|