1
|
Babaei F, Mirzababaei M, Tavakkoli A, Nassiri-Asl M, Hosseinzadeh H. Can nonsteroidal anti-inflammatory drugs (NSAIDs) be repurposed for fungal infection? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:59-75. [PMID: 37589736 DOI: 10.1007/s00210-023-02651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of anti-inflammatory drugs widely used for the treatment of musculoskeletal disorders, mild-to-moderate pain, and fever. This review aimed to explain the functional role and possible mechanisms of the antifungal effects of NSAIDs alone or in combination with antifungal drugs in vitro and in vivo. Several studies reported that NSAIDs such as aspirin, ibuprofen, diclofenac, indomethacin, ketorolac, celecoxib, flurbiprofen, and nimesulide had antifungal activities in vitro, either fungistatic or fungicidal, against different strains of Candida, Aspergillus, Cryptococcus, Microsporum, and Trichophyton species. These drugs inhibited biofilm adhesion and development, and yeast-to-hypha conversion which may be related to a prostaglandin E2 (PGE2)/PGEx-dependent mechanism. Modulating PGE2 levels by NSAIDs during fungal infection can be introduced as a possible mechanism to overcome. In addition, some important mechanisms of the antifungal activities of NSAIDs and their new derivatives on fungi and host immune responses are summarized. Overall, we believe that using NSAIDs along with classical antifungal drugs has the potential to be investigated as a novel therapeutic strategy in clinical studies. Furthermore, combination therapy can help manage resistant strains, increase the efficacy of antifungal drugs, and reduce toxicity.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Tavakkoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box 9177948954, Mashhad, Iran.
| |
Collapse
|
2
|
43 kDa Glycoprotein (gp43) from Paracoccidioides brasiliensis Induced IL-17A and PGE2 Production by Human Polymorphonuclear Neutrophils: Involvement of TLR2 and TLR4. J Immunol Res 2019; 2019:1790908. [PMID: 31886295 PMCID: PMC6899308 DOI: 10.1155/2019/1790908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022] Open
Abstract
The glycoprotein gp43 is the major antigenic/diagnostic component of Paracoccidioides brasiliensis, one of the etiologic agents of paracoccidioidomycosis (PCM). Gp43 has protective roles in mice, but due to adhesive properties, this glycoprotein has also been associated with immune evasion mechanisms. The present study evaluated gp43 interaction in vitro with Toll-like receptors 2 and 4 (TLR2 and TLR4) present in polymorphonuclear neutrophils (PMNs) from healthy human individuals and the consequent modulation of the immune response through the expression and release of cytokines and eicosanoids. PMNs were incubated in the absence or presence of monoclonal antibodies anti-TLR2 and anti-TLR4 (individually or in combination) before gp43 stimulation. Then, PMNs were analyzed for the expression of both surface receptors and the detection of intracytoplasmic IL-17A and IL-4 using flow cytometry, while the production of PGE2, LTB4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α was evaluated in the supernatants by enzyme-linked immunosorbent assay (ELISA). Our results showed that gp43 increased TLR2 and TLR4 expression by PMNs and induced PGE2 and IL-17A via TLR4 and TLR2, respectively. Thus, our data suggest that gp43 from P. brasiliensis might modulate host susceptibility to the fungal infection by affecting PGE2 and IL-17A production.
Collapse
|
3
|
Involvement of the Dectin-1 Receptor upon the Effector Mechanisms of Human Phagocytic Cells against Paracoccidioides brasiliensis. J Immunol Res 2019; 2019:1529189. [PMID: 30882002 PMCID: PMC6381556 DOI: 10.1155/2019/1529189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/20/2018] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioidomycosis (PCM), a systemic mycosis endemic in Latin America, occurs after inhalation of mycelial components of Paracoccidioides spp. When the fungus reaches the lungs and interacts with the alveolar macrophages and other cells, phagocytic cells such as neutrophils and monocytes are immediately recruited to the injured site. The interaction between surface molecules of pathogens and homologous receptors, present on the surface membrane of phagocytes, modulates the innate immune cell activation. Studies have shown the importance of fungal recognition by the Dectin-1 receptor, which can induce a series of cellular protective responses against fungi. The objective of the present study was to evaluate Dectin-1 receptor expression and the effector mechanisms of human monocytes and neutrophils activated or not with different cytokines, such as IFN-γ, TNF-α, and GM-CSF, followed by the challenge with Paracoccidioides brasiliensis (P. brasiliensis or Pb265). Therefore, analysis of Dectin-1 receptor expression was done by flow cytometry whereas the effector mechanisms were evaluated by fungal recovery by colony-forming unit (CFU) counting and hydrogen peroxide (H2O2) production. Our results showed that, after treatment with IFN-γ, TNF-α, and GM-CSF and challenge with Pb265, cells, especially monocytes, demonstrated an increase in Dectin-1 expression. Both types of cells treated with the cytokines exhibited a decreased fungal recovery and, conversely, an increased production of H2O2. However, when cultures were treated with an anti-Dectin-1 monoclonal antibody, to block the P. brasiliensis binding, a decrease in H2O2 production and an increase in fungal recovery were detected. This effect was observed in all cultures treated with the specific monoclonal antibody. These results show the involvement of the Dectin-1 receptor in fungal recognition and its consequent participation in the induction of the killing mechanisms against P. brasiliensis.
Collapse
|
4
|
Abstract
Eicosanoids are bioactive lipid mediators generated in almost all mammalian cells from the oxidation of arachidonic acid and other related twenty-carbon polyunsaturated fatty acids (PUFA). Eicosanoids regulate various physiological functions, including cellular homoeostasis and modulation of inflammatory responses in mammals. The mode of action of these lipid mediators depend on their binding to different G-protein coupled receptors. The three main enzymatic pathways associated with their production are the COX pathway, LOX pathway and cytochrome P450 pathway. Interestingly, investigations have also revealed that several human pathogenic fungi are capable of producing these bioactive lipid mediators; however, the exact biosynthetic pathways and their function in pathogenicity are not yet extensively characterized. The aim of the current review is to summarize the recent discoveries pertaining to eicosanoid production by human pathogenic yeasts with a special focus on the opportunistic human fungal pathogen Candida parapsilosis.
Collapse
Affiliation(s)
- Tanmoy Chakraborty
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Renáta Tóth
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Interdisciplinary Excellence Centre, Department of Microbiology, University of Szeged, Szeged, Hungary.,MTA-SZTE "Lendület" "Mycobiome" Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Gessler NN, Filippovich SY, Bachurina GP, Kharchenko EA, Groza NV, Belozerskaya TA. Oxylipins and oxylipin synthesis pathways in fungi. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ruas LP, Pereira RM, Braga FG, Lima XT, Mamoni RL, Cintra ML, Schreiber AZ, Calich VLG, Blotta MHSL. Severe Paracoccidioidomycosis in a 14-Year-Old Boy. Mycopathologia 2016; 181:915-920. [PMID: 27364896 DOI: 10.1007/s11046-016-0035-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
Paracoccidioidomycosis (PCM) is the most important systemic mycoses in Latin America. We describe a severe case of paracoccidioidomycosis in a 14-year-old boy, with a rapid disease progression. The fungal strain was isolated and inoculated into a T and/or B cell immunocompromised mice, which revealed a highly virulent strain. The case report presented herein emphasizes the importance of considering PCM in the differential diagnosis of patients with other infectious diseases in endemic areas and highlights a novel isolate.
Collapse
Affiliation(s)
- L P Ruas
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessalia Vieira de Camargo, 126, Campinas, São Paulo, 13083-878, Brazil
| | - R M Pereira
- Department of Pediatrics, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - F G Braga
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessalia Vieira de Camargo, 126, Campinas, São Paulo, 13083-878, Brazil
| | - X T Lima
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessalia Vieira de Camargo, 126, Campinas, São Paulo, 13083-878, Brazil.,School of Medicine, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - R L Mamoni
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessalia Vieira de Camargo, 126, Campinas, São Paulo, 13083-878, Brazil
| | - M L Cintra
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - A Z Schreiber
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessalia Vieira de Camargo, 126, Campinas, São Paulo, 13083-878, Brazil
| | - V L G Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M H S L Blotta
- Department of Clinical Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessalia Vieira de Camargo, 126, Campinas, São Paulo, 13083-878, Brazil.
| |
Collapse
|
7
|
Fischer GJ, Keller NP. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity. J Microbiol 2016; 54:254-64. [PMID: 26920885 DOI: 10.1007/s12275-016-5620-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023]
Abstract
Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.
Collapse
Affiliation(s)
- Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
8
|
Lipoxin Inhibits Fungal Uptake by Macrophages and Reduces the Severity of Acute Pulmonary Infection Caused by Paracoccidioides brasiliensis. Mediators Inflamm 2015; 2015:852574. [PMID: 26635449 PMCID: PMC4618125 DOI: 10.1155/2015/852574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 01/01/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) and lipoxins (LXs) are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J) and susceptible (B10.A) mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.
Collapse
|
9
|
Balderramas HA, Penitenti M, Rodrigues DR, Bachiega TF, Fernandes RK, Ikoma MRV, Dias-Melicio LA, Oliveira SL, Soares ÂMVC. Human neutrophils produce IL-12, IL-10, PGE2 and LTB4 in response to Paracoccidioides brasiliensis. Involvement of TLR2, mannose receptor and dectin-1. Cytokine 2014; 67:36-43. [PMID: 24680480 DOI: 10.1016/j.cyto.2014.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 01/23/2023]
Abstract
The functions of phagocytic cells against pathogens are initiated by the interaction between membrane receptors and molecular structures which compose the cell wall of these microorganisms. Thus our study aimed to identify the neutrophil receptors involved in the recognition of different strains of Paracoccidioides brasiliensis and the consequent modulation of immune response through the production of cytokines and inflammatory mediators. Neutrophils did not produce TNF-alfa in response to both strains. However, these cells produce IL-12, mainly in response to Pb 265, with participation of TLR2 and dectin-1. These cells also produce L-10, whose levels were higher for Pb 18 with involvement of TLR2 and MR and only TLR2 for Pb 265. The production of PGE2 and LTB4 was detected similarly for the two strains. For PGE2, MR and dectin-1 were involved, while in relation to LTB4, none of them. In summary, we demonstrated that neutrophils have a dynamic role during host immune response to P. brasiliensis, since in addition to their role as effector cells of innate immunity; they have the capacity to modulate innate and adaptative immune response against this fungus by producing cytokines and lipidic mediators. This modulation may be toward a pró- or anti-inflammatory pattern in a dependence of P. brasiliensis strains and PRR involved in fungus recognition by these cells.
Collapse
Affiliation(s)
- Helanderson A Balderramas
- Botucatu School of Medicine, Department of Tropical Diseases, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil; Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil.
| | | | - Daniela R Rodrigues
- Botucatu School of Medicine, Department of Tropical Diseases, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil; Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil
| | - Tatiana F Bachiega
- Botucatu School of Medicine, Department of Tropical Diseases, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil; Department of Pathology, Botucatu Medical School, UNESP - Universidade Estadual Paulista, Brazil
| | - Reginaldo K Fernandes
- Botucatu School of Medicine, Department of Tropical Diseases, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil; Department of Pathology, Botucatu Medical School, UNESP - Universidade Estadual Paulista, Brazil
| | | | | | - Silvio L Oliveira
- Botucatu School of Medicine, Department of Tropical Diseases, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil; Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil
| | - Ângela M V C Soares
- Botucatu School of Medicine, Department of Tropical Diseases, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil; Department of Microbiology and Immunology, Institute of Biosciences, Universidade Estadual Paulista - UNESP, Bairro: Distrito de Rubião Junior S/N, Botucatu, SP 18618-000, Brazil
| |
Collapse
|
10
|
Pohl CH, Kock JLF. Oxidized fatty acids as inter-kingdom signaling molecules. Molecules 2014; 19:1273-85. [PMID: 24448067 PMCID: PMC6270766 DOI: 10.3390/molecules19011273] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 12/27/2022] Open
Abstract
Oxylipins or oxidized fatty acids are a group of molecules found to play a role in signaling in many different cell types. These fatty acid derivatives have ancient evolutionary origins as signaling molecules and are ideal candidates for inter-kingdom communication. This review discusses examples of the ability of organisms from different kingdoms to “listen” and respond to oxylipin signals during interactions. The interactions that will be looked at are signaling between animals and plants; between animals and fungi; between animals and bacteria and between plants and fungi. This will aid in understanding these interactions, which often have implications in ecology, agriculture as well as human and animal health.
Collapse
Affiliation(s)
- Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | - Johan L F Kock
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| |
Collapse
|
11
|
Role of omega-3 polyunsaturated fatty acids in the production of prostaglandin E2 and nitric oxide during experimental murine paracoccidioidomycosis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:947687. [PMID: 24455741 PMCID: PMC3886617 DOI: 10.1155/2013/947687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 11/23/2022]
Abstract
There has recently been increased interest in the potential health effects of omega-3 polyunsaturated fatty acids on the immune system. Paracoccidioidomycosis is the most important endemic mycosis in Latin America. Macrophages have a fundamental role and act as first line of organism defense. The purpose of this study was to analyze the effect of n-3 fatty acids on the production of PGE2 and NO by mice infected with Pb18 and fed a diet enriched with LNA for 8 weeks. To study the effect of omega-3 fatty acids on macrophage activity during experimental paracoccidioidomycosis, mice were infected with Pb18 and fed a diet supplemented with LNA. PGE2 in the serum of animals was analyzed and NO in the supernatants of macrophages cultured and challenged in vitro with Pb18 was measured. Omega-3 fatty acids seemed to decrease the production of PGE2 in vivo in the infected group fed an LNA-supplemented diet during the 4th and 8th weeks of the experiment. At the same time, we observed an increase in synthesis of NO by peritoneal macrophages in this group. Omega-3 fatty acids thus appear to have an immunomodulatory effect in paracoccidioidomycosis.
Collapse
|
12
|
Arachidonic acid metabolites in pathogenic yeasts. Lipids Health Dis 2012; 11:100. [PMID: 22873782 PMCID: PMC3475069 DOI: 10.1186/1476-511x-11-100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/03/2012] [Indexed: 01/18/2023] Open
Abstract
Although most of what is known about the biology and function of arachidonic acid metabolites comes from the study of mammalian biology, these compounds can also be produced by lower eukaryotes, including yeasts and other fungi. It is also in this group of organisms that the least is known about the metabolic pathways leading to the production of these compounds as well as the functions of these compounds in the biology of fungi and yeasts. This review will deal with the discovery of oxylipins from polyunsaturated fatty acids, and more specifically the arachidonic acid derived eicosanoids, such as 3-hydroxy eicosatetraenoic acid, prostaglandin F2α and prostaglandin E2, in yeasts starting in the early 1990s. This review will also focus on what is known about the metabolic pathways and/or proteins involved in the production of these compounds in pathogenic yeasts. The possible roles of these compounds in the biology, including the pathology, of these organisms will be discussed.
Collapse
|
13
|
Biondo GA, Dias-Melicio LA, Bordon-Graciani AP, Kurokawa CS, Soares AMV. Production of leukotriene B4 by Paracoccidioides brasiliensis. Yeast 2012; 29:201-8. [DOI: 10.1002/yea.2900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 03/21/2012] [Accepted: 04/03/2012] [Indexed: 01/27/2023] Open
Affiliation(s)
- Guilherme Augusto Biondo
- Departamento de Microbiologia e Imunologia; Universidade Estadual Paulista (UNESP); Campus de Botucatu; SP; Brazil
| | | | - Ana Paula Bordon-Graciani
- Departamento de Microbiologia e Imunologia; Universidade Estadual Paulista (UNESP); Campus de Botucatu; SP; Brazil
| | - Cilmery Suemi Kurokawa
- Departamento de Pediatria; Universidade Estadual Paulista (UNESP); Campus de Botucatu; SP; Brazil
| | | |
Collapse
|
14
|
Abstract
In nearly every living organism, metabolites derived from lipid peroxidation, the so-called oxylipins, are involved in regulating developmental processes as well as environmental responses. Among these bioactive lipids, the mammalian and plant oxylipins are the best characterized, and much information about their physiological role and biosynthetic pathways has accumulated during recent years. Although the occurrence of oxylipins and enzymes involved in their biosynthesis has been studied for nearly three decades, knowledge about fungal oxylipins is still scarce as compared with the situation in plants and mammals. However, the research performed so far has shown that the structural diversity of oxylipins produced by fungi is high and, furthermore, that the enzymes involved in oxylipin metabolism are diverse and often exhibit unusual catalytic activities. The aim of this review is to present a synopsis of the oxylipins identified so far in fungi and the enzymes involved in their biosynthesis.
Collapse
Affiliation(s)
- Florian Brodhun
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | | |
Collapse
|