1
|
Caetano CF, Gaspar C, Oliveira AS, Palmeira-de-Oliveira R, Rodrigues L, Gonçalves T, Martinez-de-Oliveira J, Palmeira-de-Oliveira A, Rolo J. Study of Ecological Relationship of Yeast Species with Candida albicans in the Context of Vulvovaginal Infections. Microorganisms 2023; 11:2398. [PMID: 37894056 PMCID: PMC10608876 DOI: 10.3390/microorganisms11102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The role of the fungal community, the mycobiota, in the health of the vagina is currently an important area of research. The emergence of new sequencing technologies and advances in bioinformatics made possible the discovery of novel fungi inhabiting this niche. Candida spp. constitutes the most important group of opportunistic pathogenic fungi, being the most prevalent fungal species in vulvovaginal infections. However, fungi such as Rhodotorula spp., Naganishia spp. and Malassezia spp. have emerged as potential pathogens in this niche, and therefore it is clinically relevant to understand their ecological interaction with Candida spp. The main aim of this study was to evaluate the impact of yeasts on Candida albicans' pathogenicity, focusing on in-vitro growth, and biofilm formation at different times of co-culture and germ tube formation. The assays were performed with isolated species or with co-cultures of C. albicans (ATCC10231) with one other yeast species: Rhodotorula mucilaginosa (DSM13621), Malassezia furfur (DSM6170) or Naganishia albida (DSM70215). The results showed that M. furfur creates a symbiotic relationship with C. albicans, enhancing the growth rate of the co-culture (149.69%), and of germ tube formation of C. albicans (119.8%) and inducing a higher amount of biofilm biomass of the co-culture, both when mixed (154.1%) and preformed (166.8%). As for the yeasts R. mucilaginosa and N. albida, the relationship is antagonistic (with a significant decrease in all assays), thus possibly repressing the mixture's pathogenicity. These results shed light on the complex interactions between yeasts in the vaginal mycobiome.
Collapse
Affiliation(s)
- Cátia Filipa Caetano
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Carlos Gaspar
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Labfit-HPRD: Health Products Research and Development Lda, 6200-284 Covilhã, Portugal
| | - Ana Sofia Oliveira
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Labfit-HPRD: Health Products Research and Development Lda, 6200-284 Covilhã, Portugal
| | - Lisa Rodrigues
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- FMUC—Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Martinez-de-Oliveira
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
| | - Ana Palmeira-de-Oliveira
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
- Labfit-HPRD: Health Products Research and Development Lda, 6200-284 Covilhã, Portugal
| | - Joana Rolo
- CICS-UBI—Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.F.C.)
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
2
|
Ahmed EI, Alhuwaydi AM, Taha AE, Abouelkheir M. Anti-Candidal Activity of Reboxetine and Sertraline Antidepressants: Effects on Pre-Formed Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12050881. [PMID: 37237784 DOI: 10.3390/antibiotics12050881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Reboxetine (REB) and sertraline (SER) are antidepressants. The antifungal potential of these drugs against planktonic Candida has been recently reported with limited data about their effects on Candidal biofilms. Biofilms are self-derived extracellular matrixes produced by the microbial population that is attached to biotic surfaces, such as vaginal and oral mucosa, or abiotic surfaces, such as biomedical devices, resulting in persistent fungal infections. The commonly prescribed antifungals, azoles, are usually less effective when biofilms are formed, and most of the prescribed antifungals are only fungistatic. Therefore, the current study investigates the antifungal potentials of REB and SER, alone and in combination with fluconazole (FLC) and itraconazole (ITR) against Candidal biofilms. Using proper controls, Candida species (Candida albicans, C. albicans; Candida krusei, C. krusei; and Candida glabrata, C. glabrata) were used to form biofilms in 96-well microplates. Serial dilutions corresponding to concentrations ranging from 2 to 4096 µg/mL of the target drugs (REB, SER, FLC, ITR) were prepared and added to the plates. Impairment of the biofilm biomass and biofilm metabolic viability was detected using the crystal violet (CV) assay and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, respectively. In the checkerboard assay, the sessile fractional inhibitory concentration index (SFICI) was calculated to evaluate the effects of drug combinations. SER was more effective in reducing the biomass than REB for C. albicans and C. glabrata, but both were equal for C. krusei. For the reduction in metabolic activity in C. albicans and C. glabrata, SER had a slight advantage over REB. In C. krusei, REB was slightly more potent. Overall, FLC and ITR were almost equal and produced more significant reductions in metabolic activity when compared to SER and REB, except for C. glabrata, where SER was almost equal to FLC. Synergism was detected between REB + FLC and REB + ITR against biofilm cells of C. albicans. Synergism was detected between REB + ITR against biofilm cells of C. krusei. Synergism was detected between REB + FLC and REB + ITR against biofilm cells of C. albicans, C. krusei, and C. glabrata. The results of the present study support the potential of SER and REB as anti-Candidal biofilm agents that are beneficial as a new antifungal to combat Candidal resistance.
Collapse
Affiliation(s)
- Eman Ibrahim Ahmed
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ahmed M Alhuwaydi
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ahmed E Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Brito LL, Borges KRA, Silva GX, da Silva MACN, de Nazaré Silva Alves R, Teles AM, do Carmo Lacerda Barbosa M, Muniz Filho WE, de Barros Bezerra GF, do Desterro Soares Brandão Nascimento M. Effects of Euterpe oleracea Mart. extract on Candida spp. biofilms. Braz J Microbiol 2023; 54:29-36. [PMID: 36746872 PMCID: PMC9944593 DOI: 10.1007/s42770-023-00919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
PROBLEM OF RESEARCH Candida spp. biofilms are complex microbial communities that have been associated with increasing resistance to clinically available antifungal drugs. Hence, novel pharmacological approaches with ability to inhibit biofilm formation have been investigated. AIM OF STUDY The aim was to analyze in vitro antifungal activity of Euterpe oleracea Mart. (açaí berry) extract on biofilm strains of Candida albicans, C. parapsilosis, and C. tropicalis that were formed on abiotic surfaces. REMARKABLE METHODOLOGY Biofilms of C. albicans, C. parapsilosis, and C. tropicalis were grown in vitro. They were then treated with E. oleracea Mart. extract at different concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, 500, and 1000 μg/mL) for evaluation of both biofilm removal and anti-biofilm activity. REMARKABLE RESULTS All Candida species analyzed formed biofilms on abiotic surfaces. Yet, increased biofilm formation was displayed for C. tropicalis in comparison with the other two species. E. oleracea Mart. extract was shown to inhibit biofilm formation at all concentrations used when compared to no treatment (p < 0.05). SIGNIFICANCE OF THE STUDY In the current study, the extract of E. oleracea Mart. demonstrated antifungal activity against Candida albicans, C. parapsilosis, and C. tropicalis biofilms, regardless of the dose utilized. These results are important to evaluate a natural product as antifungal for Candida species.
Collapse
Affiliation(s)
- Larissa Lira Brito
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Kátia Regina Assunção Borges
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Gabriel Xavier Silva
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Marcos Antonio Custódio Neto da Silva
- Postgraduate Program in Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
- Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Rita de Nazaré Silva Alves
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Amanda Mara Teles
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | | | - Geusa Felipa de Barros Bezerra
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Maria do Desterro Soares Brandão Nascimento
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil.
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil.
| |
Collapse
|
4
|
Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM. Non- albicans Candida Species: Immune Response, Evasion Mechanisms, and New Plant-Derived Alternative Therapies. J Fungi (Basel) 2022; 9:jof9010011. [PMID: 36675832 PMCID: PMC9862154 DOI: 10.3390/jof9010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal infections caused by Candida species have become a constant threat to public health, especially for immunocompromised patients, who are considered susceptible to this type of opportunistic infections. Candida albicans is known as the most common etiological agent of candidiasis; however, other species, such as Candida tropicalis, Candida parapsilosis, Nakaseomyces glabrata (previously known as Candida glabrata), Candida auris, Candida guilliermondii, and Pichia kudriavzevii (previously named as Candida krusei), have also gained great importance in recent years. The increasing frequency of the isolation of this non-albicans Candida species is associated with different factors, such as constant exposure to antifungal drugs, the use of catheters in hospitalized patients, cancer, age, and geographic distribution. The main concerns for the control of these pathogens include their ability to evade the mechanisms of action of different drugs, thus developing resistance to antifungal drugs, and it has also been shown that some of these species also manage to evade the host's immunity. These biological traits make candidiasis treatment a challenging task. In this review manuscript, a detailed update of the recent literature on the six most relevant non-albicans Candida species is provided, focusing on the immune response, evasion mechanisms, and new plant-derived compounds with antifungal properties.
Collapse
|
5
|
Yang N, Zhang Q, Mao R, Hao Y, Ma X, Teng D, Fan H, Wang J. Effect of NZ2114 against Streptococcus dysgalactiae biofilms and its application in murine mastitis model. Front Microbiol 2022; 13:1010148. [PMID: 36187987 PMCID: PMC9521165 DOI: 10.3389/fmicb.2022.1010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Bovine mastitis caused by Streptococcus dysgalactiae (S. dysgalactiae) is usually treated with antibiotics, which may potentially increase drug resistance as the abuse. NZ2114, a variant of fungal defensin plectasin, displayed a potent antibacterial activity against S. dysgalactiae. The inhibition/eradication effect of the antimicrobial peptide NZ2114 on the early/mature biofilm of S. dysgalactiae CVCC 3938 was evaluated, as well as the elimination of bacteria in mature biofilms. In this study, NZ2114 displayed potent antibacterial activity against S. dysgalactiae CVCC 3938 and three clinical isolated S. dysgalactiae strains (0.11-0.45 μM). The early biofilm inhibition of S. dysgalactiae CVCC 3938 was 55.5–85.9% after treatment with NZ2114 at concentrations of 1–16 × MIC, which was better than that of vancomycin at the same concentration. The mature biofilm eradication rate was up to 92.7–97.6% with the increasing concentration (2–16 × MIC) of NZ2114, and the eradication rate did not change significantly with further increase of NZ2114 concentration, while the biofilm eradication rate of vancomycin-treated group at the same concentration remained at 92.5%. NZ2114 reduced the number of persister bacteria in biofilm. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) further demonstrated that NZ2114 could effectively reduce the biofilm thickness and bacterial number of S. dysgalactiae CVCC 3938. In vivo therapeutic effect of NZ2114 on murine mastitis model showed that NZ2114 was better than vancomycin in alleviating mammary gland inflammation by regulating cytokines production, inhibiting bacterial proliferation, and reducing the number of mammary gland bacteria. These data suggested that NZ2114 is a potential peptide candidate for the treatment of mastitis.
Collapse
Affiliation(s)
- Na Yang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qingjuan Zhang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, China
- College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ruoyu Mao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xuanxuan Ma
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Da Teng,
| | - Huan Fan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, China
- Huan Fan,
| | - Jianhua Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Jianhua Wang, , ; orcid.org/0000-0002-4048-6055
| |
Collapse
|
6
|
Combining Essential Oils with Each Other and with Clotrimazole Prevents the Formation of Candida Biofilms and Eradicates Mature Biofilms. Pharmaceutics 2022; 14:pharmaceutics14091872. [PMID: 36145621 PMCID: PMC9503487 DOI: 10.3390/pharmaceutics14091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal infections by Candida spp. are opportunistic and most often occur in individuals with some predisposing factor. Essential oils (EO) have anti-Candida potential, being a therapeutic alternative to be explored, especially for superficial and mucosal candidiasis. The objective was to analyze the synergistic potential between the EO of Citrus limon, Cupressus sempervirens, Litsea cubeba and Melaleuca alternifolia, and each of them with clotrimazole, to inhibit in vitro the formation and eradication of Candida spp. biofilms. Added to this, the survival of Caenorhabditis elegans was evaluated after exposure to EO, clotrimazole and their synergistic combinations. Anti-Candida activity was determined by microdilution for the substances alone and in EO−EO and EO−clotrimazole combinations. The combinations were performed by the checkerboard method, and the reduction in the metabolic activity of biofilms was determined by the viability of MTT/menadione. C. elegans larvae survival was evaluated after 24 h of exposure to EO, clotrimazole and synergistic combinations. The minimum inhibitory concentration (MIC) of EO ranged from 500 to >4000 µg/mL. The lowest MIC (500 µg/mL) was for C. sempervirens and L. cubeba on a C. krusei isolate; for clotrimazole, the MIC ranged from 0.015 to 0.5 µg/mL. Biofilm inhibition and eradication both ranged from 1000 to >4000 µg/mL. The lethal concentration (LC50) of C. limon, L. cubeba and M. alternifolia was 2000 µg/mL for C. elegans, while for C. sempervirens and clotrimazole, it was not determined within the concentration limits tested. In combination, more than 85% of the larvae survived M. alternifolia−clotrimazole, M. alternifolia−L. cubeba, C. sempervirens−clotrimazole and C. sempervirens−C. limon combinations. This study is the first, to our knowledge, to present a synergistic relationship of EO−EO and EO−clotrimazole combinations on Candida spp. biofilms.
Collapse
|
7
|
Didehdar M, Chegini Z, Tabaeian SP, Razavi S, Shariati A. Cinnamomum: The New Therapeutic Agents for Inhibition of Bacterial and Fungal Biofilm-Associated Infection. Front Cell Infect Microbiol 2022; 12:930624. [PMID: 35899044 PMCID: PMC9309250 DOI: 10.3389/fcimb.2022.930624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the potent antibacterial properties of Cinnamomum and its derivatives, particularly cinnamaldehyde, recent studies have used these compounds to inhibit the growth of the most prevalent bacterial and fungal biofilms. By inhibiting flagella protein synthesis and swarming motility, Cinnamomum could suppress bacterial attachment, colonization, and biofilm formation in an early stage. Furthermore, by downregulation of Cyclic di‐guanosine monophosphate (c‐di‐GMP), biofilm-related genes, and quorum sensing, this compound suppresses intercellular adherence and accumulation of bacterial cells in biofilm and inhibits important bacterial virulence factors. In addition, Cinnamomum could lead to preformed biofilm elimination by enhancing membrane permeability and the disruption of membrane integrity. Moreover, this substance suppresses the Candida species adherence to the oral epithelial cells, leading to the cell wall deformities, damage, and leakages of intracellular material that may contribute to the established Candida’s biofilm elimination. Therefore, by inhibiting biofilm maturation and destroying the external structure of biofilm, Cinnamomum could boost antibiotic treatment success in combination therapy. However, Cinnamomum has several disadvantages, such as poor solubility in aqueous solution, instability, and volatility; thus, the use of different drug-delivery systems may resolve these limitations and should be further considered in future investigations. Overall, Cinnamomum could be a promising agent for inhibiting microbial biofilm-associated infection and could be used as a catheter and other medical materials surface coatings to suppress biofilm formation. Nonetheless, further in vitro toxicology analysis and animal experiments are required to confirm the reported molecular antibiofilm effect of Cinnamomum and its derivative components against microbial biofilm.
Collapse
Affiliation(s)
- Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seidamir Pasha Tabaeian
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- *Correspondence: Aref Shariati,
| |
Collapse
|
8
|
Recent Advances in the Application of Essential Oils as Potential Therapeutic Candidates for Candida-Related Infections. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Candidiasis (oral, vulvovaginal, or systemic bloodstream infections) are important human fungal infections associated with a high global prevalence in otherwise healthy adults but are also opportunistic infections in immunocompromised patients. With the recent discovery of the multidrug resistant—and often difficult to treat—Candida auris, as well as the rising costs associated with hospitalisations and the treatment of infections caused by Candida species, there is an urgent need to develop effective therapeutics against these pathogenic yeasts. Essential oils have been documented for many years as treatments for different ailments and are widely known and utilised in alternative and complementary therapies, including treating microbial infections. This review highlights knowledge from research on the effects of medicinal plants, and in particular, essential oils, as potential treatments against different Candida species. Studies have been evaluated that describe the experimental approaches used in investigating the anticandidal effects of essential oils (in vivo and in vitro), the established mode of action of the different compounds against different Candida species, the effect of a combination of essential oils with other compounds as potential therapies, and the evidence from clinical trial studies.
Collapse
|
9
|
Man A, Mare AD, Mares M, Ruta F, Pribac M, Maier AC, Cighir A, Ciurea CN. Antifungal and anti-virulence activity of six essential oils against important Candida species - a preliminary study. Future Microbiol 2022; 17:737-753. [PMID: 35531749 DOI: 10.2217/fmb-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opportunistic infections with Candida species are becoming more problematic, considering their increasing virulence and resistance to antifungal drugs. AIM To assess the antifungal and anti-virulence activity of basil, cinnamon, clove, melaleuca, oregano and thyme essential oils (EOs) on five Candida species (C. albicans, C. auris, C. krusei C. parapsilosis and C. guillermondii). METHODS The MIC, growth rate, antibiofilm activity, regulation of gene expression (ALS3, SAP2, HSP70) and germ-tube formation were evaluated by specific methods. RESULTS Most EOs inhibited Candida species growth and reduced the expression of some virulence factors. Cinnamon and clove EO showed the most significant inhibitory effects. CONCLUSIONS The tested EOs are promising agents for facilitating the management of some Candida infections.
Collapse
Affiliation(s)
- Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Anca-Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Ion Ionescu de la Brad University of Life Sciences of Iași, Iași, 700490, Romania
| | - Florina Ruta
- Department of Community Nutrition & Food Safety, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Mirela Pribac
- Nutrition & Holistic Health, Holomed, Târgu Mureș, 540272, Romania
| | - Adrian-Cornel Maier
- Department of Urology, "Dunarea de Jos" University of Galați, Galați, 800008, Romania
| | - Anca Cighir
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania.,Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| | - Cristina-Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, 540142, Romania.,Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, & Technology of Târgu Mureș, Târgu Mureș, 540142, Romania
| |
Collapse
|
10
|
Franco-Duarte R, Seabra CL, Rocha SM, Henriques M, Sampaio P, Teixeira JA, Botelho CM. Metabolic profile of Candida albicans and Candida parapsilosis interactions within dual-species biofilms. FEMS Microbiol Ecol 2022; 98:6550018. [PMID: 35298615 DOI: 10.1093/femsec/fiac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Within the oral cavity, the ability of Candida species to adhere and form biofilms is well recognized, especially when C. albicans is considered. Lately, a knowledge gap has been identified regarding dual-species communication of Candida isolates, as a way to increase virulence, with evidences being collected to support the existence of interactions between C. albicans and C. parapsilosis. The present work evaluated the synergistic effect of the two Candida species, and explored chemical interactions between cells, evaluating secreted extracellular alcohols and their relation with yeasts´ growth and matrix composition. Four clinical strains of C. albicans and C. parapsilosis species, isolated from single infections of different patients or from co-infections of a same patient, were tested. It was found that dual-species biofilms negatively impacted the growth of C. parapsilosis and their biofilm matrix, in comparison with mono-species biofilms, and had minor effects on the biofilm biomass. Alcohol secretion revealed to be species- and strain-dependent. However, some dual-species cultures produced much higher amounts of some alcohols (E-nerolidol and E, E-Farnesol) than the respective single cultures, which proves the existence of a synergy between species. These results show evidence that interactions between Candida species affect the biofilm matrix, which is a key element of oral biofilms.
Collapse
Affiliation(s)
- Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Catarina L Seabra
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Silvia M Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Sampaio
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Cláudia M Botelho
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Silva JDL, Pereira PS, Oliveira CVB, de Freitas MA, Silva JRDL, Costa AR, Oliveira-Tintino CDDM, Braga MFBM, Duarte AE, Coutinho HDM, Barros LM. Study of the capacity of the essential oil of Lantana montevidensis to modulate the action of fluconazole on Candida albicans and Candida tropicalis strains. J Mycol Med 2021; 31:101171. [PMID: 34224939 DOI: 10.1016/j.mycmed.2021.101171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
In recent decades, fungal infections have been increasing, as well as the indiscriminate use of large-scale antifungal. The objective of the present study was to characterize the chemical components of L. montevidensis leaf essential oil (EOLm) and evaluate its antifungal potential and fluconazole modulating activity against Candida strains. The essential oil was obtained by hydrodistillation and its chemical components were determined by Gas Chromatography coupled to Mass Spectrometry. The antifungal activity was determined by the microdilution method to determine the minimum inhibitory concentration. The modulatory activity of fluconazole by the oil (EOLm) was evaluated against the four Candida strains. Our results demonstrated a predominance of β-Caryophyllene (34.96%) and Germacrene D (25.49%), while (E)-Caryophyllene (0.08%) and δ-Cadinene (0.13%) were the minor constituents. For the antifungal activity, it was evidenced that the EOLm did not inhibit the growth of Candida albicans (CA LM 77 and CA INQS 40006) and Candida tropicalis (CT INCQS 40042 and CT LM 23), but, potentiated the effect of fluconazole in particular against C. tropicalis, although the FIC index indicates indifferent modulation for all strains tested. This study strongly suggests that administration of the fluconazole in combination with plant essential oils can provide a new opportunity to improve the outcome of the drug effect.
Collapse
Affiliation(s)
| | - Pedro Silvino Pereira
- Microscopy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil.
| | | | - Maria Audilene de Freitas
- Microbiology and Molecular Biology Laboratory - LMBM, Regional University of Cariri - URCA, Crato, CE, Brazil
| | | | | | | | | | - Antonia Eliene Duarte
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | | |
Collapse
|
12
|
Choonharuangdej S, Srithavaj T, Thummawanit S. Fungicidal and inhibitory efficacy of cinnamon and lemongrass essential oils on Candida albicans biofilm established on acrylic resin: An in vitro study. J Prosthet Dent 2021; 125:707.e1-707.e6. [PMID: 33468317 DOI: 10.1016/j.prosdent.2020.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/27/2023]
Abstract
STATEMENT OF PROBLEM It is unclear whether cinnamon and lemongrass essential oils can effectively reduce the Candida-biofilm frequently formed on dental devices made from heat-polymerized polymethyl methacrylate (PMMA) resin that contributes to the development of mild oropharyngeal as well as life-threatening candidiasis in patients wearing the devices. PURPOSE The purpose of this in vitro study was to determine the efficacy of cinnamon and lemongrass essential oils in eradicating Candida albicans biofilm on heat-polymerized PMMA specimens and to determine whether they retard the formation of fungal biofilm. MATERIAL AND METHODS The antifungal effect of cinnamon and lemongrass essential oils was determined by using agar disk diffusion and broth microdilution methods to obtain minimum inhibitory concentrations. The mature C albicans biofilm (48 hours) was pre-established on PMMA specimens before being individually treated with various concentrations (½, 1, 2, 4, 8, 16 times minimum inhibitory concentration) of each tested oil for different exposure times (1, 2, 4, 8, and 24 hours). In another experiment, fungal biofilm was established on the PMMA specimens that were primed individually with various concentrations of the tested oils for different times. The 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)-reduction assay was used to quantitate biofilm viability in both experiments. Statistical analysis was performed by using the 1-sample Kolmogorov-Smirnov test and 2-way ANOVA followed by the Tukey multiple comparison test (α=.05). RESULTS Minimum inhibitory concentration values of cinnamon and lemongrass essential oils against planktonic C albicans were 0.1 μL/mL (0.01% v/v) and 0.4 μL/mL (0.04% v/v). At 8 times the minimum inhibitory concentration, cinnamon oil (0.8 μL/mL or 0.08% v/v) and lemongrass oil (3.2 μL/mL or 0.32% v/v) eradicated the pre-established fungal biofilm by 99.0% in an exposure time of 1 hour. In contrast, high concentrations of 8 and 16 times the minimum inhibitory concentration of cinnamon oil (0.8 μL/mL or 0.08% v/v) and lemongrass oil (6.4 μL/mL or 0.64% v/v) coated on PMMA specimens for 24 hours were only able to inhibit the formation of fungal biofilm by approximately 70.0%. CONCLUSIONS Cinnamon and lemongrass essential oils can eliminate pre-established C albicans biofilm and restrain the formation of fungal biofilm on heat-polymerized PMMA specimens. Both effects of the tested essential oils depended on dose and exposure or priming time.
Collapse
Affiliation(s)
- Suwan Choonharuangdej
- Assistant Professor, Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| | - Theerathavaj Srithavaj
- Associate Professor, Maxillofacial Prosthodontics, Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
13
|
El-Baz AM, Mosbah RA, Goda RM, Mansour B, Sultana T, Dahms TES, El-Ganiny AM. Back to Nature: Combating Candida albicans Biofilm, Phospholipase and Hemolysin Using Plant Essential Oils. Antibiotics (Basel) 2021; 10:antibiotics10010081. [PMID: 33467766 PMCID: PMC7830859 DOI: 10.3390/antibiotics10010081] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is the causative agent of fatal systemic candidiasis. Due to limitations of antifungals, new drugs are needed. The anti-virulence effect of plant essential oils (EOs) was evaluated against clinical C. albicans isolates including cinnamon, clove, jasmine and rosemary oils. Biofilm, phospholipase and hemolysin were assessed phenotypically. EOs were evaluated for their anti-virulence activity using phenotypic methods as well as scanning electron microscopy (SEM) and atomic force microscopy (AFM). Among the C. albicans isolates, biofilm, phospholipase and hemolysins were detected in 40.4, 86.5 and 78.8% of isolates, respectively. Jasmine oil showed the highest anti-biofilm activity followed by cinnamon, clove and rosemary oils. SEM and AFM analysis showed reduced adherence and roughness in the presence of EOs. For phospholipase, rosemary oil was the most inhibitory, followed by jasmine, cinnamon and clove oils, and for hemolysins, cinnamon had the highest inhibition followed by jasmine, rosemary and clove oils. A molecular docking study revealed major EO constituents as promising inhibitors of the Als3 adhesive protein, with the highest binding for eugenol, followed by 1,8-cineole, 2-phenylthiolane and cinnamaldehyde. In conclusion, EOs have a promising inhibitory impact on Candida biofilm, phospholipase and hemolysin production, hence EOs could be used as potential antifungals that impact virulence factors.
Collapse
Affiliation(s)
- Ahmed M. El-Baz
- Microbiology and Biotechnology Department, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Mansoura, 11152 Dakhaliya, Egypt; (A.M.E.-B.); (R.M.G.)
| | - Rasha A. Mosbah
- Infection Control Unit, Zagazig University Hospitals, 44519 Zagazig, Egypt;
| | - Reham M. Goda
- Microbiology and Biotechnology Department, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Mansoura, 11152 Dakhaliya, Egypt; (A.M.E.-B.); (R.M.G.)
| | - Basem Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Mansoura, 11152 Dakhaliya, Egypt;
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 1P4, Canada; (T.S.); (T.E.S.D.)
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 1P4, Canada; (T.S.); (T.E.S.D.)
| | - Amira M. El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Egypt
- Correspondence: or ; Tel.: +2-010-22799736; Fax: +2-055-2303266
| |
Collapse
|
14
|
Hurtado R, Peltroche N, Mauricio F, Gallo W, Alvítez-Temoche D, Vilchez L, Mayta-Tovalino F. Antifungal Efficacy of Four Different Concentrations of the Essential Oil of Cinnamomum zeylanicum (Canela) against Candida albicans: An In Vitro Study. J Int Soc Prev Community Dent 2020; 10:724-730. [PMID: 33437705 PMCID: PMC7791585 DOI: 10.4103/jispcd.jispcd_251_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 11/05/2022] Open
Abstract
Objective: The objective of this study was to compare in vitro the antifungal efficacy of the essential oil of Cinnamomum zeylanicum (Canela) (EOC) at 25%, 50%, 75%, and 100% against strains of Candida albicans ATCC 10231. Materials and Methods: The design was experimental, in vitro, prospective, and longitudinal study, having a sample of n = 30 petri dishes per six groups. The test was conducted in the microbiology laboratory of the Universidad Nacional Federico Villarreal. The essential oil was prepared by steam distillation, which means that the pressure steam enters in connection with the plant cells and breaks them, releasing the essence and trapping it in drops of water. Cinnamon essential oil was obtained using the hydrodistillation method, subsequently the oil obtained was dehydrated with sodium sulfate and then filtered at 0.22 µm. Then the vials were stored at a temperature of 4°C. Finally, Candida albicans ATCC 10231 was used as the biological material. Antifungal efficacy was measured by the Kirby–Bauer method (disk diffusion). Results: It was found that in the 24-h group the concentration that had the greatest antifungal effect was 100% EOC with a mean of 22.1 ± 11 mm; however, the lowest antifungal activity was seen in the 25% EOC with 17.9 ± 1.6 mm. On the contrary, in the 48-h group, it was shown that the highest antifungal efficacy was also observed in the 100% EOC with an average of 31.2 ± 3.2 mm, but the lowest antifungal activity was in the 25% EOC with 22.6 ± 1.7 mm. Although in both groups, both at 24 and 48h, nystatin was the one with the lowest antifungal efficacy 15.1 ± 1.0 and 19.9 ± 0.1 mm, respectively. Conclusions: EOC had a better statistically significant antifungal effect compared to nystatin. Otherwise, on analysis of the results in different concentrations, the EOC showed a directly proportional antifungal effectiveness as the concentration against the strains of C. albicans ATCC 10231 increased, compared to nystatin, suggesting its potential use as a possible attractive therapeutic alternative for the control of diseases caused by strains of C. albicans resistant to nystatin.
Collapse
Affiliation(s)
- René Hurtado
- Academic Department, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Nimia Peltroche
- Academic Department, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Franco Mauricio
- PhD Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Walter Gallo
- Academic Department of Rehabilitative Stomatology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Daniel Alvítez-Temoche
- PhD Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Luzmila Vilchez
- Academic Department, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Frank Mayta-Tovalino
- Academic Department of Rehabilitative Stomatology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru.,Postgraduate Department, Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
15
|
Miastkowska M, Michalczyk A, Figacz K, Sikora E. Nanoformulations as a modern form of biofungicide. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:119-128. [PMID: 32399225 PMCID: PMC7203301 DOI: 10.1007/s40201-020-00445-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE The aim of this study was to elaborate new forms of biofungicide formulations which could increase biological activity of essential oil against various strains of pathogenic fungi of plants, dermatophytes, and molds. METHODS The nanoemulsions containing four various essential oils (cinnamon, thyme, manuka, and tea tree oil) were obtained by using the low-energy (PIC) and the high-energy emulsification methods (ultrasonification). The physicochemical properties and activity of prepared systems against strains of pathogenic fungi of plants (F. culmorum, Ph. cactorum), dermatophytes (T. mentagrophytes M. gypseum) and molds (S. brevicaulis, A. niger) were examined. Fungicidal activity was tested by the method of linear growth of mycelium on an agar medium. Macroemulsions containing the oils and the pure essential oils were used as comparative samples. RESULTS It was found that nanoemulsions prepared by ultrasonification showed excellent fungicidal activity compared to pure oils and macroemulsions. Among others, the manuka oil nanoformulations showed the highest activity against the tested fungi. CONCLUSIONS Nanoemulsions can be applied as the effective carriers of essential oils. They allow the reduction of the concentration of the bioactive oils while maintaining biological activity. The obtained nanosystems can be applied as safe, biodegradable, eco-friendly antifungal products in pharmaceutical, cosmetic, and agrochemical industries as they increase the biological activity of the tested oils against various type of fungi.
Collapse
Affiliation(s)
- Małgorzata Miastkowska
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, Kraków, Poland
| | - Alicja Michalczyk
- Lukasiewicz - Research Network-Institute of Industrial Organic Chemistry, Warsaw, Poland
| | - Katarzyna Figacz
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, Kraków, Poland
| | - Elżbieta Sikora
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, Kraków, Poland
| |
Collapse
|
16
|
Speranza B, Corbo MR, Campaniello D, Altieri C, Sinigaglia M, Bevilacqua A. Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains. Food Microbiol 2019; 87:103393. [PMID: 31948634 DOI: 10.1016/j.fm.2019.103393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 11/24/2022]
Abstract
Four wild strains of Saccharomyces cerevisiae and the collection strain S. cerevisiae var. boulardii ATCC MYA-796 were used as test organisms to study the effect of some environmental conditions on the formation of biofilm by potentially probiotic yeasts. In a first step, the formation of biofilm was studied in four different media (YPD-Yeast Peptone Glucose; diluted YPD; 2% BP, a medium containing only bacteriological peptone; 2% GLC, a medium containing only glucose). Then, the dilution of YPD was combined with pH and temperature through a mixture design to assess the weight of the interaction of the variables; the experiments were done on S. boulardii and on S. cerevisiae strain 4. The dilution of nutrients generally determined an increased biofilm formation, whereas the effect of pH relied upon the strain. For S. cerevisiae strain 4, the highest level of sessile cells was found at pH 4-5, while S. boulardii experienced an enhanced biofilm formation at pH 6.0. Concerning temperature, the highest biofilm formation was found at 25-30 °C for both strains. The importance of this work lies in its extension of our knowledge of the effect of different environmental conditions on biofilm formation by potentially probiotic S. cerevisiae strains, as a better understanding of this trait could be an important screening tool into the selection of new multifunctional yeasts.
Collapse
Affiliation(s)
- Barbara Speranza
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Daniela Campaniello
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Clelia Altieri
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| |
Collapse
|
17
|
Adnan M, Ali Shah MR, Jamal M, Jalil F, Andleeb S, Nawaz MA, Pervez S, Hussain T, Shah I, Imran M, Kamil A. Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals 2019; 63:89-96. [PMID: 31685418 DOI: 10.1016/j.biologicals.2019.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/05/2019] [Accepted: 10/12/2019] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is Gram-negative bacterium, one of the leading cause of drug-resistant nosocomial infections in developing countries. This bacterium possesses chromosomally encoded efflux pumps, poor permeability of outer-membrane and high tendency for biofilm formation which are tools to confer resistance. Bacteriophages are regarded as feasible treatment option for control of resistant P. aeruginosa. The aim of the current study was isolate and characterized a bacteriophage against P. aeruginosa with MDR and biofilm ability. A bacteriophage MA-1 with moderate host range was isolated from waste water. The phage was considerable heat and pH stable. Electron microscopy revealed that phage MA-1 belongs to Myoviridae family. Its genome was dsDNA (≈50 kb), coding for eighteen different proteins (ranging from 12 to 250 KDa). P. aeruginosa-2949 log growth phase was significantly reduced by phage MA-1 (2.5 × 103 CFU/ml) as compared to control (without phage). Phage MA-1 also showed significant reductions of 2.0, 2.5 and 3.2 folds in 24, 48, and 74 h old biofilms after 6 h treatment with phage respectively as compared to control. It was concluded from this study that phage MA-1 has capability of killing P. aeruginosa planktonic cells and biofilm, but for complete eradication cocktail will more effective to avoid resistance.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | | | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Saadia Andleeb
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan
| | - Sidra Pervez
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ismail Shah
- Department of Microbiology, University of Health Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Atif Kamil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Pakistan
| |
Collapse
|
18
|
Rodrigues CF, Rodrigues ME, Henriques MC. Promising Alternative Therapeutics for Oral Candidiasis. Curr Med Chem 2019; 26:2515-2528. [DOI: 10.2174/0929867325666180601102333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/29/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
:Candida is the main human fungal pathogen causing infections (candidiasis), mostly in the elderly and immunocompromised hosts. Even though Candida spp. is a member of the oral microbiota in symbiosis, in some circumstances, it can cause microbial imbalance leading to dysbiosis, resulting in oral diseases. Alternative therapies are urgently needed to treat oral candidiasis (usually associated to biofilms), as several antifungal drugs’ activity has been compromised. This has occurred especially due to an increasing occurrence of drugresistant in Candida spp. strains. The overuse of antifungal medications, systemic toxicity, cross-reactivity with other drugs and a presently low number of drug molecules with antifungal activity, have contributed to important clinical limitations.:We undertook a structured search of bibliographic databases (PubMed Central, Elsevier’s ScienceDirect, SCOPUS and Springer’s SpringerLink) for peer-reviewed research literature using a focused review in the areas of alternatives to manage oral candidiasis. The keywords used were “candidiasis”, “oral candidiasis”, “biofilm + candida”, “alternative treatment”, “combination therapy + candida” and the reports from the last 10 to 15 years were considered for this review.:This review identified several promising new approaches in the treatment of oral candidiasis: combination anti-Candida therapies, denture cleansers, mouth rinses as alternatives for disrupting candidal biofilms, natural compounds (e.g. honey, probiotics, plant extracts and essential oils) and photodynamic therapy.:The findings of this review confirm the importance and the urgency of the development of efficacious therapies for oral candidal infections.
Collapse
Affiliation(s)
- Célia F. Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Maria E. Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Mariana C.R. Henriques
- CEB, Centre of Biological Engineering, LIBRO - Laboratorio de Investigacao em Biofilmes Rosario Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
19
|
Fennel oil: A promising antifungal agent against biofilm forming fluconazole resistant Candida albicans causing vulvovaginal candidiasis. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Singla RK, Dubey AK. Molecules and Metabolites from Natural Products as Inhibitors of Biofilm in Candida spp. pathogens. Curr Top Med Chem 2019; 19:2567-2578. [PMID: 31654510 PMCID: PMC7403689 DOI: 10.2174/1568026619666191025154834] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Biofilm is a critical virulence factor associated with the strains of Candida spp. pathogens as it confers significant resistance to the pathogen against antifungal drugs. METHODS A systematic review of the literature was undertaken by focusing on natural products, which have been reported to inhibit biofilms produced by Candida spp. The databases explored were from PubMed and Google Scholar. The abstracts and full text of the manuscripts from the literature were analyzed and included if found significant. RESULTS Medicinal plants from the order Lamiales, Apiales, Asterales, Myrtales, Sapindales, Acorales, Poales and Laurales were reported to inhibit the biofilms formed by Candida spp. From the microbiological sources, lactobacilli, Streptomyces chrestomyceticus and Streptococcus thermophilus B had shown the strong biofilm inhibition potential. Further, the diverse nature of the compounds from classes like terpenoids, phenylpropanoid, alkaloids, flavonoids, polyphenol, naphthoquinone and saponin was found to be significant in inhibiting the biofilm of Candida spp. CONCLUSION Natural products from both plant and microbial origins have proven themselves as a goldmine for isolating the potential biofilm inhibitors with a specific or multi-locus mechanism of action. Structural and functional characterization of the bioactive molecules from active extracts should be the next line of approach along with the thorough exploration of the mechanism of action for the already identified bioactive molecules.
Collapse
Affiliation(s)
| | - Ashok K. Dubey
- Address correspondence to this author at the Drug Discovery Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi-110078, India; Emails: ;
| |
Collapse
|
21
|
Lee HG, Jo Y, Ameer K, Kwon JH. Optimization of green extraction methods for cinnamic acid and cinnamaldehyde from Cinnamon ( Cinnamomum cassia) by response surface methodology. Food Sci Biotechnol 2018; 27:1607-1617. [PMID: 30483424 PMCID: PMC6233399 DOI: 10.1007/s10068-018-0441-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022] Open
Abstract
The major compounds of cinnamon are cinnamic acid and cinnamaldehyde, for which the conditions of microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and reflux extraction (RE) were optimized using response surface methodology for comparing their efficiencies in terms of extraction yield, consumption of time and energy, and CO2 emission. The results indicated MAE superiority to UAE and RE owing to the highest yield of target compounds (total yield: 0.89%, cinnamic acid: 6.48 mg/100 mL, and cinnamaldehyde: 244.45 mg/100 mL) at optimum MAE conditions: 59% ethanol, 147.5 W microwave power and 3.4 min of extraction time. RE resulted in comparable yields with the highest consumption of time, energy, and solvent, and least CO2 emission. Therefore, it is concluded that MAE is the most efficient method for green extraction of cinnamic acid and cinnamaldehyde from cinnamon powder compared to UAE and RE.
Collapse
Affiliation(s)
- Hyun-Gyu Lee
- School of Food Science and Biotechnology and Food Bio-industry Research Institute, Kyungpook National University, Daegu, 41566 Korea
- World Institute of Kimchi, Gwangju, 61755 Korea
| | - Yunhee Jo
- School of Food Science and Biotechnology and Food Bio-industry Research Institute, Kyungpook National University, Daegu, 41566 Korea
| | - Kashif Ameer
- School of Food Science and Biotechnology and Food Bio-industry Research Institute, Kyungpook National University, Daegu, 41566 Korea
- Department of Food Science and Technology and BK 21 Plus Program, Graduate School of Chonnam National University, Gwangju, 61186 Korea
| | - Joong-Ho Kwon
- School of Food Science and Biotechnology and Food Bio-industry Research Institute, Kyungpook National University, Daegu, 41566 Korea
| |
Collapse
|
22
|
In Vitro Effect of Cinnamomum zeylanicum Blume Essential Oil on Candida spp. Involved in Oral Infections. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4045013. [PMID: 30416530 PMCID: PMC6207861 DOI: 10.1155/2018/4045013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
Abstract
The present study demonstrates the antifungal potential of chemically characterized essential oil (EO) of Cinnamomum zeylanicum Blume on Candida spp. biofilm and establishes its mode of action, effect on fungal growth kinetics, and cytotoxicity to human cells. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values varied from 62.5 to 1,000 μg/mL, and the effect seems to be due to interference with cell wall biosynthesis. The kinetics assay showed that EO at MICx2 (500 μg/mL) induced a significant (p < 0.05) reduction of the fungal growth after exposure for 8 h. At this concentration, the EO was also able to hinder biofilm formation and reduce Candida spp. monospecies and multispecies in mature biofilm at 24 h and 48 h (p < 0.05). A protective effect on human red blood cells was detected with the EO at concentrations up to 750 μg/mL, as well as an absence of a significant reduction (p > 0.05) in the viability of human red blood cells at concentrations up to 1,000 μg/mL. Phytochemical analysis identified eugenol as the main component (68.96%) of the EO. C. zeylanicum Blume EO shows antifungal activity, action on the yeast cell wall, and a deleterious effect on Candida spp. biofilms. This natural product did not show evidence of cytotoxicity toward human cells.
Collapse
|
23
|
Condò C, Anacarso I, Sabia C, Iseppi R, Anfelli I, Forti L, de Niederhäusern S, Bondi M, Messi P. Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens. Nat Prod Res 2018; 34:567-574. [DOI: 10.1080/14786419.2018.1490904] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carla Condò
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Immacolata Anacarso
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Carla Sabia
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Ramona Iseppi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Igor Anfelli
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Forti
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Moreno Bondi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Messi
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
24
|
Influence of Eugenia uniflora Extract on Adhesion to Human Buccal Epithelial Cells, Biofilm Formation, and Cell Surface Hydrophobicity of Candida spp. from the Oral Cavity of Kidney Transplant Recipients. Molecules 2018; 23:molecules23102418. [PMID: 30241381 PMCID: PMC6222389 DOI: 10.3390/molecules23102418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the influence of the extract of Eugenia uniflora in adhesion to human buccal epithelial cells (HBEC) biofilm formation and cell surface hydrophobicity (CSH) of Candida spp. isolated from the oral cavity of kidney transplant patients. To evaluate virulence attributes in vitro, nine yeasts were grown in the presence and absence of 1000 μg/mL of the extract. Adhesion was quantified using the number of Candida cells adhered to 150 HBEC determined by optical microscope. Biofilm formation was evaluated using two methodologies: XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and crystal violet assay, and further analyzed by electronic scan microscopy. CSH was quantified with the microbial adhesion to hydrocarbons test. We could detect that the extract of E. uniflora was able to reduce adhesion to HBEC and CSH for both Candida albicans and non-Candida albicansCandida species. We also observed a statistically significant reduced ability to form biofilms in biofilm-producing strains using both methods of quantification. However, two highly biofilm-producing strains of Candida tropicalis had a very large reduction in biofilm formation. This study reinforces the idea that besides growth inhibition, E. uniflora may interfere with the expression of some virulence factors of Candida spp. and may be possibly applied in the future as a novel antifungal agent.
Collapse
|
25
|
Gucwa K, Milewski S, Dymerski T, Szweda P. Investigation of the Antifungal Activity and Mode of Action of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimum basilicum, and Eugenia caryophyllus Essential Oils. Molecules 2018; 23:E1116. [PMID: 29738503 PMCID: PMC6099571 DOI: 10.3390/molecules23051116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022] Open
Abstract
The antimicrobial activity of plant oils and extracts has been recognized for many years. In this study the activity of Thymus vulgaris, Citrus limonum, Pelargonium graveolens, Cinnamomum cassia, Ocimumbasilicum, and Eugenia caryophyllus essential oils (EOs) distributed by Pollena Aroma (Nowy Dwór Mazowiecki, Poland) was investigated against a group of 183 clinical isolates of C. albicans and 76 isolates of C. glabrata. All of the oils exhibited both fungistatic and fungicidal activity toward C. albicans and C. glabrata isolates. The highest activity was observed for cinnamon oil, with MIC (Minimum Inhibitory Concentration) values in the range 0.002⁻0.125% (v/v). The MIC values of the rest of the oils were in the range 0.005% (or less) to 2.5% (v/v). In most cases MFC (Minimum Fungicidal Concentration) values were equal to MIC or twice as high. Additionally, we examined the mode of action of selected EOs. The effect on cell wall components could not be clearly proved. Three of the tested EOs (thyme, lemon, and clove) affected cell membranes. At the same time, thyme, cinnamon, and clove oil influenced potassium ion efflux, which was not seen in the case of lemon oil. All of the tested oils demonstrated the ability to inhibit the transition of yeast to mycelium form, but the effect was the lowest in the case of cinnamon oil.
Collapse
Affiliation(s)
- Katarzyna Gucwa
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., 80-233 Gdańsk, Poland.
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., 80-233 Gdańsk, Poland.
| | - Tomasz Dymerski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., 80-233 Gdańsk, Poland.
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., 80-233 Gdańsk, Poland.
| |
Collapse
|
26
|
Anti-Candida activity of antidepressants sertraline and fluoxetine: effect upon pre-formed biofilms. Med Microbiol Immunol 2018; 207:195-200. [PMID: 29556778 DOI: 10.1007/s00430-018-0539-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
As an opportunistic fungal pathogen Candida spp. has the ability to form biofilms. The most prescribed drugs for Candida infections, azoles, have shown to be less effective when biofilms are present. In addition, increasing treatment costs and the fact that most prescribed antifungal drugs have only fungistatic activity justify the search for new treatment strategies. One promising approach is third generation antidepressants, selective serotonin re-uptake inhibitors (SSRIs), because of their proven antifungal activity against several Candida spp. Thus, the aim of this work was to determine the ability of two commonly used SSRIs, fluoxetine and sertraline, to impair both biofilm metabolic viability and biofilm biomass. The in vitro effect of fluoxetine and sertraline was individually tested against biofilm metabolic viability and biofilm biomass using the MTT assay and the Crystal Violet assay, respectively. For both drugs, a dose-dependent reduction on both biofilm metabolism and biomass was present. At high concentrations, fluoxetine was able to reduce biofilm metabolism by 96% (C. krusei) and biofilm biomass by 82% (C. glabrata), when compared to the control. At similar conditions, sertraline achieved a reduction of 88% on biofilm biomass (C. glabrata) and 90% on biofilm metabolism (C. parapsilosis). Moreover, fluoxetine showed interesting anti-biofilm activity at previously reported planktonic MIC values and even at sub-MIC values. These results reinforce the potential interest of SSRIs as anti-biofilm agents to be study to counteract resistance phenomena on candidosis.
Collapse
|
27
|
Shahina Z, El-Ganiny AM, Minion J, Whiteway M, Sultana T, Dahms TES. Cinnamomum zeylanicum bark essential oil induces cell wall remodelling and spindle defects in Candida albicans. Fungal Biol Biotechnol 2018; 5:3. [PMID: 29456868 PMCID: PMC5807769 DOI: 10.1186/s40694-018-0046-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/16/2018] [Indexed: 12/01/2022] Open
Abstract
Background Cinnamon (Cinnamomum zeylanicum) bark extract exhibits potent inhibitory activity against Candida albicans but the antifungal mechanisms of this essential oil remain largely unexplored. Results We analyzed the impact of cinnamon bark oil on C. albicans RSY150, and clinical strains isolated from patients with candidemia and candidiasis. The viability of RSY150 was significantly compromised in a dose dependent manner when exposed to cinnamon bark oil, with extensive cell surface remodelling at sub inhibitory levels (62.5 μg/mL). Atomic force microscopy revealed cell surface exfoliation, altered ultrastructure and reduced cell wall integrity for both RSY150 and clinical isolates exposed to cinnamon bark oil. Cell wall damage induced by cinnamon bark oil was confirmed by exposure to stressors and the sensitivity of cell wall mutants involved in cell wall organization, biogenesis, and morphogenesis. The essential oil triggered cell cycle arrest by disrupting beta tubulin distribution, which led to mitotic spindle defects, ultimately compromising the cell membrane and allowing leakage of cellular components. The multiple targets of cinnamon bark oil can be attributed to its components, including cinnamaldehyde (74%), and minor components (< 6%) such as linalool (3.9%), cinamyl acetate (3.8%), α-caryophyllene (5.3%) and limonene (2%). Complete inhibition of the mitotic spindle assembly was observed in C. albicans treated with cinnamaldehyde at MIC (112 μg/mL). Conclusions Since cinnamaldehyde disrupts both the cell wall and tubulin polymerization, it may serve as an effective antifungal, either by chemical modification to improve its specificity and efficacy or in combination with other antifungal drugs. Electronic supplementary material The online version of this article (10.1186/s40694-018-0046-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zinnat Shahina
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| | - Amira M El-Ganiny
- 2Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Malcolm Whiteway
- 4Centre for Structural and Functional Genomics, Concordia University, Montreal, QC Canada
| | - Taranum Sultana
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| | - Tanya E S Dahms
- 1Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK Canada.,3Regina Qu'Appelle Health Region, Regina, SK Canada
| |
Collapse
|
28
|
Liu X, Ma Z, Zhang J, Yang L. Antifungal Compounds against Candida Infections from Traditional Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4614183. [PMID: 29445739 PMCID: PMC5763084 DOI: 10.1155/2017/4614183] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jingxiao Zhang
- Department of Emergency, The Second Hospital of Jilin University, Changchun 130041, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
29
|
Protocol for Identifying Natural Agents That Selectively Affect Adhesion, Thickness, Architecture, Cellular Phenotypes, Extracellular Matrix, and Human White Blood Cell Impenetrability of Candida albicans Biofilms. Antimicrob Agents Chemother 2017; 61:AAC.01319-17. [PMID: 28893778 DOI: 10.1128/aac.01319-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 11/20/2022] Open
Abstract
In the screening of natural plant extracts for antifungal activity, assessment of their effects on the growth of cells in suspension or in the wells of microtiter plates is expedient. However, microorganisms, including Candida albicans, grow in nature as biofilms, which are organized cellular communities with a complex architecture capable of conditioning their microenvironment, communicating, and excluding low- and high-molecular-weight molecules and white blood cells. Here, a confocal laser scanning microscopy (CLSM) protocol for testing the effects of large numbers of agents on biofilm development is described. The protocol assessed nine parameters from a single z-stack series of CLSM scans for each individual biofilm analyzed. The parameters included adhesion, thickness, formation of a basal yeast cell polylayer, hypha formation, the vertical orientation of hyphae, the hyphal bend point, pseudohypha formation, calcofluor white staining of the extracellular matrix (ECM), and human white blood cell impenetrability. The protocol was applied first to five plant extracts and derivative compounds and then to a collection of 88 previously untested plant extracts. They were found to cause a variety of phenotypic profiles, as was the case for 64 of the 88 extracts (73%). Half of the 46 extracts that did not affect biofilm thickness affected other biofilm parameters. Correlations between specific effects were revealed. The protocol will be useful not only in the screening of chemical libraries but also in the analysis of compounds with known effects and mutations.
Collapse
|
30
|
Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains. Appl Microbiol Biotechnol 2017; 101:6993-7006. [DOI: 10.1007/s00253-017-8442-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
31
|
Risk of Fungal Infection to Dental Patients. ScientificWorldJournal 2017; 2017:2982478. [PMID: 28695189 PMCID: PMC5488164 DOI: 10.1155/2017/2982478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/09/2017] [Accepted: 05/21/2017] [Indexed: 01/12/2023] Open
Abstract
Fungi can cause various diseases, and some pathogenic fungi have been detected in the water of dental equipment. This environment offers suitable conditions for fungal biofilms to emerge, which can facilitate mycological contamination. This study verified whether the water employed in the dental units of two dental clinics at the University of Franca was contaminated with fungi. This study also evaluated the ability of the detected fungi to form biofilms. The high-revving engine contained the largest average amount of fungi, 14.93 ± 18.18 CFU/mL. The main fungal species verified in this equipment belonged to the genera Aspergillus spp., Fusarium spp., Candida spp., and Rhodotorula spp. Among the isolated filamentous fungi, only one fungus of the genus Fusarium spp. did not form biofilms. As for yeasts, all the Candida spp. isolates grew as biofilm, but none of the Rhodotorula spp. isolates demonstrated this ability. Given that professionals and patients are often exposed to water and aerosols generated by the dental procedure, the several fungal species detected herein represent a potential risk especially to immunocompromised patients undergoing dental treatment. Therefore, frequent microbiological monitoring of the water employed in dental equipment is crucial to reduce the presence of contaminants.
Collapse
|
32
|
Costa-Orlandi CB, Sardi JCO, Pitangui NS, de Oliveira HC, Scorzoni L, Galeane MC, Medina-Alarcón KP, Melo WCMA, Marcelino MY, Braz JD, Fusco-Almeida AM, Mendes-Giannini MJS. Fungal Biofilms and Polymicrobial Diseases. J Fungi (Basel) 2017; 3:jof3020022. [PMID: 29371540 PMCID: PMC5715925 DOI: 10.3390/jof3020022] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/19/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation is an important virulence factor for pathogenic fungi. Both yeasts and filamentous fungi can adhere to biotic and abiotic surfaces, developing into highly organized communities that are resistant to antimicrobials and environmental conditions. In recent years, new genera of fungi have been correlated with biofilm formation. However, Candida biofilms remain the most widely studied from the morphological and molecular perspectives. Biofilms formed by yeast and filamentous fungi present differences, and studies of polymicrobial communities have become increasingly important. A key feature of resistance is the extracellular matrix, which covers and protects biofilm cells from the surrounding environment. Furthermore, to achieve cell–cell communication, microorganisms secrete quorum-sensing molecules that control their biological activities and behaviors and play a role in fungal resistance and pathogenicity. Several in vitro techniques have been developed to study fungal biofilms, from colorimetric methods to omics approaches that aim to identify new therapeutic strategies by developing new compounds to combat these microbial communities as well as new diagnostic tools to identify these complex formations in vivo. In this review, recent advances related to pathogenic fungal biofilms are addressed.
Collapse
Affiliation(s)
- Caroline B Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Janaina C O Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba SP 13414-018, Brazil.
| | - Nayla S Pitangui
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Haroldo C de Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Liliana Scorzoni
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Kaila P Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Wanessa C M A Melo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Mônica Y Marcelino
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Jaqueline D Braz
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| | - Maria José S Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara SP 14800-903, Brazil.
| |
Collapse
|
33
|
Hovijitra RS, Choonharuangdej S, Srithavaj T. Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures. J Oral Sci 2017; 58:365-71. [PMID: 27665976 DOI: 10.2334/josnusd.15-0736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Although medicinal herbs with fungicidal effects have been ubiquitously employed in traditional medicine, such effects of culinary herbs and spices still have to be elucidated. Therefore, it is noteworthy to determine the antifungal efficacy of some edible herbs used in Thai cuisine against sessile Candida albicans cultures, and to inquire if they can be further utilized as naturally-derived antifungals. Fourteen essential oils extracted from Thai culinary herbs and spices were tested for their antifungal activity against C. albicans using the agar disk diffusion method followed by broth micro-dilution method for the determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration. The oils with potent antifungal effects against planktonic fungi were then assessed for their effect against sessile fungus (adherent organisms and established biofilm culture). MIC of the oils against sessile C. albicans was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. All selected culinary herbs and spices, except galangal, garlic, and turmeric, exhibited inhibitory effects on planktonic yeast cells. Cinnamon bark and sweet basil leaf essential oils exhibited potent fungicidal effect on planktonic and sessile fungus. Sessile MICs were 8-16 times higher than planktonic MICs. Consequently, both cinnamon bark and sweet basil leaf herbal oils seem to be highly effective anti-Candida choices. (J Oral Sci 58, 365-371, 2016).
Collapse
Affiliation(s)
- Ray S Hovijitra
- Maxillofacial Prosthodontic Unit, Department of Prosthodontics, Faculty of Dentistry, Mahidol University
| | | | | |
Collapse
|
34
|
Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0141-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Bandara HMHN, Matsubara VH, Samaranayake LP. Future therapies targeted towards eliminating Candida biofilms and associated infections. Expert Rev Anti Infect Ther 2016; 15:299-318. [PMID: 27927053 DOI: 10.1080/14787210.2017.1268530] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Candida species are common human commensals and cause either superficial or invasive opportunistic infections. The biofilm form of candida as opposed to its suspended, planktonic form, is predominantly associated with these infections. Alternative or adjunctive therapies are urgently needed to manage Candida infections as the currently available short arsenal of antifungal drugs has been compromised due to their systemic toxicity, cross-reactivity with other drugs, and above all, by the emergence of drug-resistant Candida species due to irrational drug use. Areas covered: Combination anti-Candida therapies, antifungal lock therapy, denture cleansers, and mouth rinses have all been proposed as alternatives for disrupting candidal biofilms on different substrates. Other suggested approaches for the management of candidiasis include the use of natural compounds, such as probiotics, plants extracts and oils, antifungal quorum sensing molecules, anti-Candida antibodies and vaccines, cytokine therapy, transfer of primed immune cells, photodynamic therapy, and nanoparticles. Expert commentary: The sparsity of currently available antifungals and the plethora of proposed anti-candidal therapies is a distinct indication of the urgent necessity to develop efficacious therapies for candidal infections. Alternative drug delivery approaches, such as probiotics, reviewed here is likely to be a reality in clinical settings in the not too distant future.
Collapse
Affiliation(s)
- H M H N Bandara
- a School of Dentistry , The University of Queensland , Herston , QLD , Australia
| | - V H Matsubara
- b School of Dentistry , University of São Paulo , São Paulo , SP , Brazil.,c Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , SP , Brazil
| | - L P Samaranayake
- a School of Dentistry , The University of Queensland , Herston , QLD , Australia.,d Faculty of Dentistry , University of Kuwait , Kuwait
| |
Collapse
|
36
|
Parai D, Islam E, Mitra J, Mukherjee SK. Effect of Bacoside A on growth and biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. Can J Microbiol 2016; 63:169-178. [PMID: 28099040 DOI: 10.1139/cjm-2016-0365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The goal of this study was to evaluate the antibiofilm and antimicrobial activities of Bacoside A, a formulation of phytochemicals from Bacopa monnieri, against Staphylococcus aureus and Pseudomonas aeruginosa, which are known to form biofilms as one of their virulence traits. The antimicrobial effects of Bacoside A were tested using the minimum inhibitory concentration and minimum bactericidal concentration assays. A cell membrane disruption assay was performed to find its possible target site. MTT assay, crystal violet assay, and microscopic studies were performed to assess the antibiofilm activity. Bacoside A showed antimicrobial activity against both test organisms in their planktonic and biofilm states. At a subminimum inhibitory concentration of 200 μg·mL-1, Bacoside A significantly removed ∼88%-93% of bacterial biofilm developed on microtiter plates. Biochemical and microscopic studies suggested that the eradication of biofilm might be due to the loss of extracellular polymeric substances and to a change in cell membrane integrity of the selected bacterial strains treated with Bacoside A. These results indicate that Bacoside A might be considered as an antimicrobial having the ability to disrupt biofilms. Thus, either alone or in combination with other therapeutics, Bacoside A could be useful to treat biofilm-related infections caused by opportunistic bacterial pathogens.
Collapse
Affiliation(s)
- Debaprasad Parai
- a Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Ekramul Islam
- a Department of Microbiology, University of Kalyani, Kalyani 741235, India
| | - Jayati Mitra
- b Department of Pathology, Regional Institute of Ophthalmology, Kolkata 700073, India
| | | |
Collapse
|
37
|
Bassyouni RH, Kamel Z, Abdelfattah MM, Mostafa E. Cinnamon oil: A possible alternative for contact lens disinfection. Cont Lens Anterior Eye 2016; 39:277-83. [DOI: 10.1016/j.clae.2016.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/05/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
38
|
Sharifzadeh A, Khosravi AR, Ahmadian S. Chemical composition and antifungal activity of Satureja hortensis L. essentiall oil against planktonic and biofilm growth of Candida albicans isolates from buccal lesions of HIV(+) individuals. Microb Pathog 2016; 96:1-9. [PMID: 27126187 DOI: 10.1016/j.micpath.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/10/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oral candidiasis is an opportunistic infection of the oral cavity which usually occurs in the immunocompromised individuals. Candida albicans (C. albicans) is the most common species of yeast responsible for oral candidiasis. This study investigated the effects of Satureja hortensis L. essentiall oil (EO) on the planktonic, biofilm formation and mature biofilms of C. albicans isolates from buccal lesions of HIV(+) individuals. MATERIALS AND METHODS MTT reduction assay, broth micro-dilution method and scanning electron microscopy (SEM) were employed to determine the effect of mentioned EO on the C. albicans planktonic and biofilm forms. GC-GC/MS was used to detect the major active compounds of EO. RESULTS Thymol (45.9%), gamma-terpinen (16.71%), carvacrol (12.81%) and p-cymene (9.61%) were found as the most abundant constituents. MIC values ranged from 250 to 400 μg/ml and MFC values ranged from 350 to 500 μg/ml. All C. albicans isolates formed biofilm on polystyrene plats but the quantity of biofilm mass (optical density) was different for the isolates ranging from 0.850 to 0.559 nm. The mean of biofilm formation by C. albicans isolates was reduced by 87.1 ± 3.7%, 73.6 ± 5.1%, 69.4 ± 5.3% and 67 ± 4.2% at 4800, 3200, 2400 and 1600 μg/ml, respectively. In sub-MIC concentration, SEM analysis revealed loosening of cells, deformity of three dimensional structures of biofilms and shrinkage in cell membranes of sessile cells. CONCLUSIONS In conclusion, the substantial anti-fungal activity showed by S. hortensis L. EO suggests exploitation of this oil as potential natural anti-biofilm product to deal with the problem of buccal cavity lesion associated with C. albicans.
Collapse
Affiliation(s)
- Aghil Sharifzadeh
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Reza Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
39
|
Natural Sources as Innovative Solutions Against Fungal Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:105-25. [PMID: 27115410 DOI: 10.1007/5584_2016_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungal cells are capable of adhering to biotic and abiotic surfaces and form biofilms containing one or more microbial species that are microbial reservoirs. These biofilms may cause chronic and acute infections. Fungal biofilms related to medical devices are particularly responsible for serious infections such as candidemia. Nowadays, only a few therapeutic agents have demonstrated activities against fungal biofilms in vitro and/or in vivo. So the discovery of new anti-biofilm molecules is definitely needed. In this context, biodiversity is a large source of original active compounds including some that have already proven effective in therapies such as antimicrobial compounds (antibacterial or antifungal agents). Bioactive metabolites from natural sources, useful for developing new anti-biofilm drugs, are of interest. In this chapter, the role of molecules isolated from plants, lichens, algae, microorganisms, or from animal or human origin in inhibition and/or dispersion of fungal biofilms (especially Candida and Aspergillus biofilms) is discussed. Some essential oils, phenolic compounds, saponins, peptides and proteins and alkaloids could be of particular interest in fighting fungal biofilms.
Collapse
|
40
|
Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J Microbiol Methods 2015; 118:106-12. [DOI: 10.1016/j.mimet.2015.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 11/21/2022]
|
41
|
de Cássia J, de Souza N, Gullo F, Fusco-Almeida A, Mendes-Giannini M. Fungal Biofilms: Formation, Resistance and Pathogenicity. Med Mycol 2015. [DOI: 10.1201/b18707-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
The Role of Antifungals against Candida Biofilm in Catheter-Related Candidemia. Antibiotics (Basel) 2014; 4:1-17. [PMID: 27025612 PMCID: PMC4790322 DOI: 10.3390/antibiotics4010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
Catheter-related bloodstream infection (C-RBSI) is one of the most frequent nosocomial infections. It is associated with high rates of morbidity and mortality. Candida spp. is the third most common cause of C-RBSI after coagulase-negative staphylococci and Staphylococcus aureus and is responsible for approximately 8% of episodes. The main cause of catheter-related candidemia is the ability of some Candida strains-mainly C. albicans and C. parapsilosis-to produce biofilms. Many in vitro and in vivo models have been designed to assess the activity of antifungal drugs against Candida biofilms. Echinocandins have proven to be the most active antifungal drugs. Potential options in situations where the catheter cannot be removed include the combination of systemic and lock antifungal therapy. However, well-designed and -executed clinical trials must be performed before firm recommendations can be issued.
Collapse
|
43
|
Rueda DC, Raith M, De Mieri M, Schöffmann A, Hering S, Hamburger M. Identification of dehydroabietc acid from Boswellia thurifera resin as a positive GABAA receptor modulator. Fitoterapia 2014; 99:28-34. [DOI: 10.1016/j.fitote.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
44
|
Cannas S, Molicotti P, Usai D, Maxia A, Zanetti S. Antifungal, anti-biofilm and adhesion activity of the essential oil of Myrtus communis L. against Candida species. Nat Prod Res 2014; 28:2173-7. [PMID: 24960256 DOI: 10.1080/14786419.2014.925892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Candida species belong to the normal microbiota of the oral cavity, gastrointestinal tract and vagina. The increasing incidence of drug-resistant pathogens and the toxicity of the antifungal compounds have drawn the attention towards the antimicrobial activity of natural products, an inexpensive alternative. The aim of this work was to evaluate the adhesion activity, the biofilm formation and the action of the Myrtus communis L. essential oil (EO) on the biofilm formation towards three species isolated from clinical samples: Candida albicans, Candida parapsilosis and Candida tropicalis. Furthermore, we evaluated the antimycotic activity of the EO towards the three species, and the results were compared with the minimum inhibitory concentration of six antimycotics. The activity of the EO against C. albicans and C. parapsilosis was better than that obtained against C. tropicalis; moreover, the strains used in the assay were adhesive and biofilm producer, and the effect of myrtle EO on the biofilm formation yielded encouraging results.
Collapse
Affiliation(s)
- Sara Cannas
- a Microbiologia Sperimentale e Clinica, Dipartimento di Scienze Biomediche , Università degli Studi di Sassari , Viale San Pietro 43/b, 07100 Sassari , Italy
| | | | | | | | | |
Collapse
|
45
|
Costa-Orlandi CB, Sardi JCO, Santos CT, Fusco-Almeida AM, Mendes-Giannini MJS. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. BIOFOULING 2014; 30:719-727. [PMID: 24856309 DOI: 10.1080/08927014.2014.919282] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dermatophytes are fungi responsible for a disease known as dermatophytosis. Biofilms are sessile microbial communities surrounded by extracellular polymeric substances (EPS) with increased resistance to antimicrobial agents and host defenses. This paper describes, for the first time, the characteristics of Trichophyton rubrum and T. mentagrophytes biofilms. Biofilm formation was analyzed by light microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) as well as by staining with crystal violet and safranin. Metabolic activity was determined using the XTT reduction assay. Both species were able to form mature biofilms in 72 h. T. rubrum biofilm produced more biomass and EPS and was denser than T. mentagrophytes biofilm. The SEM results demonstrated a coordinated network of hyphae in all directions, embedded within EPS in some areas. Research and characterization of biofilms formed by dermatophytes may contribute to the search of new drugs for the treatment of these mycoses and might inform future revisions with respect to the dose and duration of treatment of currently available antifungals.
Collapse
Affiliation(s)
- C B Costa-Orlandi
- a Department of Clinical Analysis, Clinical Mycology Laboratory, School of Pharmaceutical Sciences , UNESP - Universidade Estadual Paulista , Araraquara , SP 14801-902 , Brazil
| | | | | | | | | |
Collapse
|
46
|
Abstract
While proliferating in its most common mode of growth, a biofilm, Candida spp. exhibit increased resistance to available antifungal agents. These adherent communities are difficult to eradicate and often responsible for treatment failures. New therapies are urgently needed to treat a variety of Candida biofilm infections in the medical setting. This review discusses the medical relevance of Candida biofilms, the drug resistance associated with this mode of growth, and approaches to combat these resilient infections.
Collapse
Affiliation(s)
- Jeniel E Nett
- Department of Medicine, Department of Medical Microbiology and Immunology, University of Wisconsin, 4153 Microbial Sciences Building, 1550 Linden Drive, Madison, WI 53705, USA
| |
Collapse
|
47
|
Highlights in pathogenic fungal biofilms. Rev Iberoam Micol 2014; 31:22-9. [DOI: 10.1016/j.riam.2013.09.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022] Open
|
48
|
Gandomi H, Abbaszadeh S, JebelliJavan A, Sharifzadeh A. Chemical Constituents, Antimicrobial and Antioxidative Effects of Trachyspermum ammi
Essential Oil. J FOOD PROCESS PRES 2013. [DOI: 10.1111/jfpp.12131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hassan Gandomi
- Department of Food Hygiene; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Sepideh Abbaszadeh
- Nutrition and Food Hygiene; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Ashkan JebelliJavan
- Department of Food Hygiene; Faculty of Veterinary; University of Semnan; Semnan Iran
| | - Aghil Sharifzadeh
- Mycology Research Center; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| |
Collapse
|
49
|
Wu T, Hu W, Guo L, Finnegan M, Bradshaw DJ, Webster P, Loewy ZG, Zhou X, Shi W, Lux R. Development of a new model system to study microbial colonization on dentures. J Prosthodont 2013; 22:344-50. [PMID: 23790238 DOI: 10.1111/jopr.12002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Dentures are often colonized with a variety of microorganisms, including Candida albicans, that contribute to denture stomatitis. Several in vitro models have been previously established to study denture-related microbial colonization and evaluate treatment efficacy of denture cleansers; however, those models typically fail to appreciate the complex topology and heterogeneity of denture surfaces and lack effective ways to accurately measure microbial colonization. The purpose of this study was to study microbial colonization with a new model system based on real dentures, to more realistically mimic in vivo conditions. MATERIALS AND METHODS Scanning electron microscopy was used to observe topological structures among surfaces from different parts of the denture. Employing C. albicans as a model microorganism, we established microbial colonization on different denture surfaces. Moreover, we applied a modified MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) colorimetric assay to quantify C. albicans colonization on dentures without the necessity of biofilm removal and to evaluate treatment efficacy of denture cleansers. RESULTS There were significant variations in topological structures among surfaces from different parts of the denture, with the unpolished side having the highest amounts of indentations and pores. The distinct denture surfaces support microbial colonization differently, with the unpolished side containing the highest level of microbial colonization and biofilm formation. Furthermore, the modified MTT colorimetric assay proved to be an accurate assay to measure biofilm formation on dentures and evaluate treatment efficacy of denture cleansers. CONCLUSION This new denture model system in conjunction with the MTT colorimetric assay is a valuable tool to study denture-related microbiology and treatment approaches.
Collapse
Affiliation(s)
- Tingxi Wu
- West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013. [DOI: 10.1099/jmm.0.045054-0] [Citation(s) in RCA: 730] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- J. C. O. Sardi
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - L. Scorzoni
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - T. Bernardi
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - A. M. Fusco-Almeida
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| | - M. J. S. Mendes Giannini
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP, Araraquara, Brazil
| |
Collapse
|