1
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Guegan H, Poirier W, Ravenel K, Dion S, Delabarre A, Desvillechabrol D, Pinson X, Sergent O, Gallais I, Gangneux JP, Giraud S, Gastebois A. Deciphering the Role of PIG1 and DHN-Melanin in Scedosporium apiospermum Conidia. J Fungi (Basel) 2023; 9:jof9020134. [PMID: 36836250 PMCID: PMC9965090 DOI: 10.3390/jof9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
- Correspondence: ; Tel.: +33-223233496
| | - Wilfried Poirier
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Kevin Ravenel
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Sarah Dion
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Aymeric Delabarre
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Dimitri Desvillechabrol
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Xavier Pinson
- CNRS, INSERM, Biosit UAR 3480 US_S 018, MRic Core Facility, 35000 Rennes, France
| | - Odile Sergent
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Isabelle Gallais
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Jean-Pierre Gangneux
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Sandrine Giraud
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Amandine Gastebois
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| |
Collapse
|
3
|
Assessment of Host Immune Responses to Fungal Pathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Vymazal O, Bendíčková K, De Zuani M, Vlková M, Hortová-Kohoutková M, Frič J. Immunosuppression Affects Neutrophil Functions: Does Calcineurin-NFAT Signaling Matter? Front Immunol 2021; 12:770515. [PMID: 34795676 PMCID: PMC8593005 DOI: 10.3389/fimmu.2021.770515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Neutrophils are innate immune cells with important roles in antimicrobial defense. However, impaired or dysregulated neutrophil function can result in host tissue damage, loss of homeostasis, hyperinflammation or pathological immunosuppression. A central link between neutrophil activation and immune outcomes is emerging to be the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, which is activated by neutrophil detection of a microbial threat via pattern recognition receptors and results in inflammatory cytokine production. This potent pro-inflammatory pathway is also the target of several immunosuppressive drugs used for the treatment of autoimmune disorders, during solid organ and hematopoietic cell transplantations, and as a part of anti-cancer therapy: but what effects these drugs have on neutrophil function, and their broader consequences for immune homeostasis and microbial defense are not yet known. Here, we bring together the emerging literature describing pathology- and drug- induced neutrophil impairment, with particular focus on their effects on calcineurin-NFAT signaling in the innate immune compartment.
Collapse
Affiliation(s)
- Ondřej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Marcela Vlková
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Clinical Immunology and Allergology, St. Anne´s University Hospital, Brno, Czechia
| | | | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia
| |
Collapse
|
5
|
Mitochondrial Reactive Oxygen Species Enhance Alveolar Macrophage Activity against Aspergillus fumigatus but Are Dispensable for Host Protection. mSphere 2021; 6:e0026021. [PMID: 34077261 PMCID: PMC8265640 DOI: 10.1128/msphere.00260-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aspergillus fumigatus is the most common cause of mold pneumonia worldwide, and a significant cause of infectious morbidity and mortality in immunocompromised individuals. The oxidative burst, which generates reactive oxidative species (ROS), plays a pivotal role in host defense against aspergillosis and induces regulated cell death in Aspergillus conidia, the infectious propagules. Beyond the well-established role of NADP (NADPH) oxidase in ROS generation by neutrophils and other innate effector cells, mitochondria represent a major ROS production site in many cell types, though it is unclear whether mitochondrial ROS (mtROS) contribute to antifungal activity in the lung. Following A. fumigatus infection, we observed that innate effector cells, including alveolar macrophages (AMs), monocyte-derived dendritic cells (Mo-DCS), and neutrophils, generated mtROS, primarily in fungus-infected cells. To examine the functional role of mtROS, specifically the H2O2 component, in pulmonary host defense against A. fumigatus, we infected transgenic mice that expressed a mitochondrion-targeted catalase. Using a reporter of fungal viability during interactions with leukocytes, mitochondrial H2O2 (mtH2O2) was essential for optimal AM, but not for neutrophil phagocytic and conidiacidal activity in the lung. Catalase-mediated mtH2O2 neutralization did not lead to invasive aspergillosis in otherwise immunocompetent mice and did not shorten survival in mice that lack NADPH oxidase function. Collectively, these studies indicate that mtROS-associated defects in AM antifungal activity can be functionally compensated by the action of NADPH oxidase and by nonoxidative effector mechanisms during murine A. fumigatus lung infection. IMPORTANCE Aspergillus fumigatus is a fungal pathogen that causes invasive disease in humans with defects in immune function. Airborne conidia, the infectious propagules, are ubiquitous and inhaled on a daily basis. In the respiratory tree, conidia are killed by the coordinated actions of phagocytes, including alveolar macrophages, neutrophils, and monocyte-derived dendritic cells. The oxidative burst represents a central killing mechanism and relies on the assembly of the NADPH oxidase complex on the phagosomal membrane. However, NADPH oxidase-deficient leukocytes have significant residual fungicidal activity in vivo, indicating the presence of alternative effector mechanisms. Here, we report that murine innate immune cells produce mitochondrial reactive oxygen species (mtROS) in response to fungal interactions. Neutralizing the mtROS constituent hydrogen peroxide (H2O2) via a catalase expressed in mitochondria of innate immune cells substantially diminished fungicidal properties of alveolar macrophages, but not of other innate immune cells. These data indicate that mtH2O2 represent a novel AM killing mechanism against Aspergillus conidia. mtH2O2 neutralization is compensated by other killing mechanisms in the lung, demonstrating functional redundancy at the level of host defense in the respiratory tree. These findings have important implications for the development of host-directed therapies against invasive aspergillosis in susceptible patient populations.
Collapse
|
6
|
Fernández-Cruz A, Lewis RE, Kontoyiannis DP. How Long Do We Need to Treat an Invasive Mold Disease in Hematology Patients? Factors Influencing Duration of Therapy and Future Questions. Clin Infect Dis 2021; 71:685-692. [PMID: 32170948 DOI: 10.1093/cid/ciz1195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Treatment duration for invasive mold disease (IMD) in patients with hematological malignancy is not standardized and is a challenging subject in antifungal stewardship. Concerns for IMD relapse during subsequent reinduction or consolidation chemotherapy or graft versus host disease treatment in hematopoietic stem cell transplant recipients often results in prolonged or indefinite antifungal treatment. There are no validated criteria that predict when it is safe to stop antifungals. Decisions are individualized and depend on the offending fungus, site and extent of IMD, comorbidities, hematologic disease prognosis, and future plans for chemotherapy or transplantation. Recent studies suggest that FDG-PET/CT could help discriminate between active and residual fungal lesions to support decisions for safely stopping antifungals. Validation of noninvasive biomarkers for monitoring treatment response, tests for quantifying the "net state of immunosuppression," and genetic polymorphisms associated with poor fungal immunity could lead to a personalized assessment for the continued need for antifungal therapy.
Collapse
Affiliation(s)
- Ana Fernández-Cruz
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario Puerta de Hierro-Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Russell E Lewis
- Clinic of Infectious Diseases, Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Bachiller M, Battram AM, Perez-Amill L, Martín-Antonio B. Natural Killer Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) 2020; 12:E3139. [PMID: 33120910 PMCID: PMC7694052 DOI: 10.3390/cancers12113139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.
Collapse
Affiliation(s)
| | | | | | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (A.M.B.); (L.P.-A.)
| |
Collapse
|
8
|
Vahsen T, Zapata L, Guabiraba R, Melloul E, Cordonnier N, Botterel F, Guillot J, Arné P, Risco-Castillo V. Cellular and molecular insights on the regulation of innate immune responses to experimental aspergillosis in chicken and turkey poults. Med Mycol 2020; 59:465-475. [PMID: 32844181 DOI: 10.1093/mmy/myaa069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Across the world, many commercial poultry flocks and captive birds are threatened by infection with Aspergillus fumigatus. Susceptibility to aspergillosis varies among birds; among galliform birds specifically, morbidity and mortality rates seem to be greater in turkeys than in chickens. Little is known regarding the features of avian immune responses after inhalation of Aspergillus conidia, and to date, scarce information on inflammatory responses during aspergillosis exists. Thus, in the present study, we aimed to improve our understanding of the interactions between A. fumigatus and economically relevant galliform birds in terms of local innate immune responses. Intra-tracheal aerosolization of A. fumigatus conidia in turkey and chicken poults led to more severe clinical signs and lung lesions in turkeys, but leukocyte recovery from lung lavages was higher in chickens at 1dpi only. Interestingly, only chicken CD8+ T lymphocyte proportions increased after infection. Furthermore, the lungs of infected chickens showed an early upregulation of pro-inflammatory cytokines, including IL-1β, IFN-γ and IL-6, whereas in turkeys, most of these cytokines showed a downregulation or a delayed upregulation. These results confirmed the importance of an early pro-inflammatory response to ensure the development of an appropriate anti-fungal immunity to avoid Aspergillus dissemination in the respiratory tract. In conclusion, we show for the first time that differences in local innate immune responses between chickens and turkeys during aspergillosis may determine the outcome of the disease.
Collapse
Affiliation(s)
- Tobias Vahsen
- Dynamic research group EA 7380, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, Maisons-Alfort, France
| | - Laura Zapata
- Dynamic research group EA 7380, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, Maisons-Alfort, France
| | | | - Elise Melloul
- Dynamic research group EA 7380, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, Maisons-Alfort, France
| | - Nathalie Cordonnier
- Biopôle Alfort, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Françoise Botterel
- Dynamic research group EA 7380, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, Maisons-Alfort, France
| | - Jacques Guillot
- Dynamic research group EA 7380, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, Maisons-Alfort, France.,Biopôle Alfort, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Pascal Arné
- Dynamic research group EA 7380, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, Maisons-Alfort, France
| | - Veronica Risco-Castillo
- Dynamic research group EA 7380, Ecole nationale vétérinaire d'Alfort, UPEC, USC ANSES, Maisons-Alfort, France.,Biopôle Alfort, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
9
|
Santos LA, Grisolia JC, Malaquias LCC, Paula FBDA, Dias ALT, Burger E. Medication association and immunomodulation: An approach in fungal diseases and in particular in the treatment of paracoccidioidomycosis. Acta Trop 2020; 206:105412. [PMID: 32135141 DOI: 10.1016/j.actatropica.2020.105412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Fungal infections have been increasing in recent decades, mainly affecting immunocompromised individuals, although certain mycoses, such as paracoccidioidomycosis (PCM), infect immunologically competent individuals. The major problems observed regarding fungal diseases are inadequate diagnosis, prolonged treatment time, the reduced number of drugs available for treatment, in addition to the fact that there are no vaccines for clinical use. Drug combination in order to immunomodulate the immune response is a new strategy used for the treatment of mycoses, since it is difficult to develop new antifungal drugs. The aim of this study is to present and analyze strategies recently suggested for the treatment of fungi of medical interest, in particular for PCM, such as the utilization of combinations of protein fractions or dead microorganisms, as vaccinal antigens, and cellular immunotherapy. We will also propose new therapeutic alternatives, such as lipids, vitamins, synthetic or natural products as well as the use of low intensity LASER therapy (LLLT) to modulate the immune response of the host, enhancing the efficiency of the existing treatments of mycoses of medical interest and in particular of PCM.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Julianne Caravita Grisolia
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Luiz Cosme Cotta Malaquias
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Fernanda Borges de Araújo Paula
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Amanda Latércia Tranches Dias
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Eva Burger
- Microbiology and Immunology Department, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, MG, Brazil.
| |
Collapse
|
10
|
Bigot J, Guillot L, Guitard J, Ruffin M, Corvol H, Balloy V, Hennequin C. Bronchial Epithelial Cells on the Front Line to Fight Lung Infection-Causing Aspergillus fumigatus. Front Immunol 2020; 11:1041. [PMID: 32528481 PMCID: PMC7257779 DOI: 10.3389/fimmu.2020.01041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that can be pathogenic for humans, wherein it is responsible for a large variety of clinical forms ranging from allergic diseases to life-threatening disseminated infections. The contamination occurs by inhalation of conidia present in the air, and the first encounter of this fungus in the human host is most likely with the bronchial epithelial cells. Although alveolar macrophages have been widely studied in the Aspergillus–lung interaction, increasing evidence suggests that bronchial epithelium plays a key role in responding to the fungus. This review focuses on the innate immune response of the bronchial epithelial cells against A. fumigatus, the predominant pathogenic species. We have also detailed the molecular interactants and the effects of the different modes of interaction between these cells and the fungus.
Collapse
Affiliation(s)
- Jeanne Bigot
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Juliette Guitard
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France
| | - Viviane Balloy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Christophe Hennequin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, Paris, France
| |
Collapse
|
11
|
Mackel JJ, Garth JM, Blackburn JP, Jones M, Steele C. 12/15-Lipoxygenase Deficiency Impairs Neutrophil Granulopoiesis and Lung Proinflammatory Responses to Aspergillus fumigatus. THE JOURNAL OF IMMUNOLOGY 2020; 204:1849-1858. [PMID: 32102903 PMCID: PMC8771824 DOI: 10.4049/jimmunol.1900808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Development of invasive aspergillosis correlates with impairments in innate immunity. We and others have recently shown that arachidonic acid metabolism pathways, specifically the cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) pathways, participate in the induction of protective innate immune responses during invasive aspergillosis. Based on the high degree of cooperation and interconnection within the eicosanoid network, we hypothesized that 12/15-LOX is also active during invasive aspergillosis. We report in this study that mice deficient in the gene encoding 12/15-LOX (Alox15) are profoundly susceptible to invasive aspergillosis. Decreased survival correlated with increased fungal burden and evidence of increased lung damage. These defects were associated with very early (6 and 12 h) 12/15-LOX-dependent inflammatory cytokine (IL-1α, IL-1β, and TNF-α) and chemokine (CCL3 and CCL4) production. Neutrophil levels in the lung were blunted in the absence of 12/15-LOX, although neutrophil antifungal activity was intact. However, lower neutrophil levels in the lungs of Alox15−/− mice were not a result of impaired recruitment or survival; rather, Alox15−/− mice demonstrated impaired neutrophil granulopoiesis in the bone marrow intrinsically and after fungal exposure. Employing a lower inoculum to allow for better survival allowed the identification of 12/15-LOX-dependent induction of IL-17A and IL-22. Impaired IL-17A and IL-22 production correlated with reduced invariant NKT cell numbers as well as lower IL-23 levels. Together, these data indicate that 12/15-LOX is a critical player in induction of the earliest aspects of the innate immune response to Aspergillus fumigatus.
Collapse
Affiliation(s)
- Joseph J Mackel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jonathan P Blackburn
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112
| |
Collapse
|
12
|
Su H, Li C, Wang Y, Li Y, Dong L, Li L, Zhu J, Zhang Q, Liu G, Xu J, Zhu M. Kinetic host defense of the mice infected with Aspergillus Fumigatus. Future Microbiol 2019; 14:705-716. [PMID: 31161794 DOI: 10.2217/fmb-2019-0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Aspergillus fumigatus is one of the most common opportunistic fungi that can cause invasive infection. To profile the kinetic variation of immune cells and cytokines after exposure to A. fumigatus thoroughly, we established a pulmonary A. fumigatus infection model in temporarily immunosuppressed mice. Materials & methods: Systematic and kinetic studies of different immune cells and cytokines were performed. Results: We observed that the granulocytes and macrophages recruited to the site of infection played an important role in the infectious phase. There was a significant increase in the cytokines IFN-γ, IL-6, TNF-α as well as the chemokines CXCL1, MIP-1α, MIP-2 and CCL5 after infection. IL-10 was found to participate in balancing the anti-inflammatory response in the recovery phases. The immune response mediated by T cells was mainly presented by the Th1-type on day 7 after exposure with a high proportion of IFN-γ+ CD4+ T cells and CD4+CD44highCD62Llow effector T cells. Conclusion: These kinetic parameters of the immune response might provide diagnostic clues for A. fumigatus infection.
Collapse
Affiliation(s)
- Huilin Su
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chunxiao Li
- Key Laboratory of Cell Proliferation & Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Li
- Key Laboratory of Cell Proliferation & Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation & Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Junhao Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - QiangQiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation & Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Min Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
13
|
Cunha C, Carvalho A. Genetic defects in fungal recognition and susceptibility to invasive pulmonary aspergillosis. Med Mycol 2019; 57:S211-S218. [PMID: 30816966 DOI: 10.1093/mmy/myy057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/04/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
The interindividual variability in the onset and clinical course of invasive pulmonary aspergillosis (IPA) raises fundamental questions about its actual pathogenesis. Clinical and epidemiological studies have reported only a few examples of monogenic defects, however an expanding number of common polymorphisms associated with IPA has been identified. Understanding how genetic variation regulates the immune response to Aspergillus provides critical insights into the human immunobiology of IPA by pinpointing directly relevant immune molecules and interacting pathways. Most of the genetic defects reported to increase susceptibility to infection were described or suggested to impair fungal recognition by the innate immune system. In this review, we discuss the contribution of host genetic variation in pattern recognition receptors to the development of IPA. An improved understanding of the molecular and cellular processes that regulate human susceptibility to IPA is ultimately expected to pave the way toward personalized medical interventions based on host-directed risk stratification and individualized immunotherapy.
Collapse
Affiliation(s)
- Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Arias M, Santiago L, Vidal-García M, Redrado S, Lanuza P, Comas L, Domingo MP, Rezusta A, Gálvez EM. Preparations for Invasion: Modulation of Host Lung Immunity During Pulmonary Aspergillosis by Gliotoxin and Other Fungal Secondary Metabolites. Front Immunol 2018; 9:2549. [PMID: 30459771 PMCID: PMC6232612 DOI: 10.3389/fimmu.2018.02549] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary aspergillosis is a severe infectious disease caused by some members of the Aspergillus genus, that affects immunocompetent as well as immunocompromised patients. Among the different disease forms, Invasive Aspergillosis is the one causing the highest mortality, mainly, although not exclusively, affecting neutropenic patients. This genus is very well known by humans, since different sectors like pharmaceutical or food industry have taken advantage of the biological activity of some molecules synthetized by the fungus, known as secondary metabolites, including statins, antibiotics, fermentative compounds or colorants among others. However, during infection, in response to a hostile host environment, the fungal secondary metabolism is activated, producing different virulence factors to increase its survival chances. Some of these factors also contribute to fungal dissemination and invasion of adjacent and distant organs. Among the different secondary metabolites produced by Aspergillus spp. Gliotoxin (GT) is the best known and better characterized virulence factor. It is able to generate reactive oxygen species (ROS) due to the disulfide bridge present in its structure. It also presents immunosuppressive activity related with its ability to kill mammalian cells and/or inactivate critical immune signaling pathways like NFkB. In this comprehensive review, we will briefly give an overview of the lung immune response against Aspergillus as a preface to analyse the effect of different secondary metabolites on the host immune response, with a special attention to GT. We will discuss the results reported in the literature on the context of the animal models employed to analyse the role of GT as virulence factor, which is expected to greatly depend on the immune status of the host: why should you hide when nobody is seeking for you? Finally, GT immunosuppressive activity will be related with different human diseases predisposing to invasive aspergillosis in order to have a global view on the potential of GT to be used as a target to treat IA.
Collapse
Affiliation(s)
- Maykel Arias
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Llipsy Santiago
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Matxalen Vidal-García
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Servicio de Microbiología - Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Pilar Lanuza
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | | | - Antonio Rezusta
- Servicio de Microbiología - Hospital Universitario Miguel Servet, Zaragoza, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
15
|
Gresnigt MS, Jaeger M, Subbarao Malireddi RK, Rasid O, Jouvion G, Fitting C, Melchers WJG, Kanneganti TD, Carvalho A, Ibrahim-Granet O, van de Veerdonk FL. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression. Front Immunol 2017; 8:1777. [PMID: 29326692 PMCID: PMC5733348 DOI: 10.3389/fimmu.2017.01777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells to clear the infection by increasing fungal killing and cytokine responses.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Unité de recherche Cytokines and Inflammation, Institut Pasteur, Paris, France.,Laboratory for Experimental Internal Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martin Jaeger
- Laboratory for Experimental Internal Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Orhan Rasid
- Unité de recherche Cytokines and Inflammation, Institut Pasteur, Paris, France
| | - Grégory Jouvion
- Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Catherine Fitting
- Unité de recherche Cytokines and Inflammation, Institut Pasteur, Paris, France
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Frank L van de Veerdonk
- Laboratory for Experimental Internal Medicine, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
16
|
Schmidt S, Tramsen L, Lehrnbecher T. Natural Killer Cells in Antifungal Immunity. Front Immunol 2017; 8:1623. [PMID: 29213274 PMCID: PMC5702641 DOI: 10.3389/fimmu.2017.01623] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
Invasive fungal infections are still an important cause of morbidity and mortality in immunocompromised patients such as patients suffering from hematological malignancies or patients undergoing hematopoietic stem cell transplantion. In addition, other populations such as human immunodeficiency virus-patients are at higher risk for invasive fungal infection. Despite the availability of new antifungal compounds and better supportive care measures, the fatality rate of invasive fungal infection remained unacceptably high. It is therefore of major interest to improve our understanding of the host-pathogen interaction to develop new therapeutic approaches such as adoptive immunotherapy. As experimental methodologies have improved and we now better understand the complex network of the immune system, the insight in the interaction of the host with the fungus has significantly increased. It has become clear that host resistance to fungal infections is not only associated with strong innate immunity but that adaptive immunity (e.g., T cells) also plays an important role. The antifungal activity of natural killer (NK) cells has been underestimated for a long time. In vitro studies demonstrated that NK cells from murine and human origin are able to attack fungi of different genera and species. NK cells exhibit not only a direct antifungal activity via cytotoxic molecules but also an indirect antifungal activity via cytokines. However, it has been show that fungi exert immunosuppressive effects on NK cells. Whereas clinical data are scarce, animal models have clearly demonstrated that NK cells play an important role in the host response against invasive fungal infections. In this review, we summarize clinical data as well as results from in vitro and animal studies on the impact of NK cells on fungal pathogens.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| |
Collapse
|
17
|
Calcineurin inhibitors impair neutrophil activity against Aspergillus fumigatus in allogeneic hematopoietic stem cell transplant recipients. J Allergy Clin Immunol 2016; 138:860-868. [DOI: 10.1016/j.jaci.2016.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 02/10/2016] [Indexed: 02/07/2023]
|
18
|
Kerr SC, Fischer GJ, Sinha M, McCabe O, Palmer JM, Choera T, Yun Lim F, Wimmerova M, Carrington SD, Yuan S, Lowell CA, Oscarson S, Keller NP, Fahy JV. FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathog 2016; 12:e1005555. [PMID: 27058347 PMCID: PMC4825926 DOI: 10.1371/journal.ppat.1005555] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/16/2016] [Indexed: 11/18/2022] Open
Abstract
The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia.
Collapse
Affiliation(s)
- Sheena C. Kerr
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - Gregory J. Fischer
- Department of Genetics, University of Wisconsin, Madison, Madison, Wisconsin
| | - Meenal Sinha
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Orla McCabe
- Center for Synthesis and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Jonathan M. Palmer
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin
| | - Michaela Wimmerova
- Faculty of Science and Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Stephen D. Carrington
- Veterinary Science Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Shaopeng Yuan
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Stefan Oscarson
- Center for Synthesis and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin
| | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California
- * E-mail:
| |
Collapse
|
19
|
Pisa D, Alonso R, Rábano A, Carrasco L. Corpora Amylacea of Brain Tissue from Neurodegenerative Diseases Are Stained with Specific Antifungal Antibodies. Front Neurosci 2016; 10:86. [PMID: 27013948 PMCID: PMC4781869 DOI: 10.3389/fnins.2016.00086] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
The origin and potential function of corpora amylacea (CA) remains largely unknown. Low numbers of CA are detected in the aging brain of normal individuals but they are abundant in the central nervous system of patients with neurodegenerative diseases. In the present study, we show that CA from patients diagnosed with Alzheimer's disease (AD) contain fungal proteins as detected by immunohistochemistry analyses. Accordingly, CA were labeled with different anti-fungal antibodies at the external surface, whereas the central portion composed of calcium salts contain less proteins. Detection of fungal proteins was achieved using a number of antibodies raised against different fungal species, which indicated cross-reactivity between the fungal proteins present in CA and the antibodies employed. Importantly, these antibodies do not immunoreact with cellular proteins. Additionally, CNS samples from patients diagnosed with amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) also contained CA that were immunoreactive with a range of antifungal antibodies. However, CA were less abundant in ALS or PD patients as compared to CNS samples from AD. By contrast, CA from brain tissue of control subjects were almost devoid of fungal immunoreactivity. These observations are consistent with the concept that CA associate with fungal infections and may contribute to the elucidation of the origin of CA.
Collapse
Affiliation(s)
- Diana Pisa
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| | - Ruth Alonso
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación Centro de Investigación de Enfermedades Neurologicas, Instituto de Salud Carlos III Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
20
|
The First Case of Invasive Mixed-Mold Infections Due to Emericella nidulans var. echinulata and Rasamsonia piperina in a Patient with Chronic Granulomatous Disease. Mycopathologia 2015; 181:305-9. [PMID: 26563166 DOI: 10.1007/s11046-015-9963-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
Abstract
A 16-year-old boy with chronic granulomatous disease presented with pneumonia and rib osteomyelitis. Emericella nidulans var. echinulata was isolated from his sputum. After starting voriconazole, Rasamsonia piperina was isolated from the rib swelling. A combination therapy of voriconazole and micafungin effectively eradicated this invasive mixed-mold infection. In immunocompromised patients, a precise pathogenic diagnosis is clinically useful for administration of an appropriate treatment regimen.
Collapse
|
21
|
Jones CN, Dimisko L, Forrest K, Judice K, Poznansky MC, Markmann JF, Vyas JM, Irimia D. Human Neutrophils Are Primed by Chemoattractant Gradients for Blocking the Growth of Aspergillus fumigatus. J Infect Dis 2015; 213:465-75. [PMID: 26272935 DOI: 10.1093/infdis/jiv419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023] Open
Abstract
The contribution of human neutrophils to the protection against fungal infections by Aspergillus fumigatus is essential but not fully understood. Whereas healthy people can inhale spores of A. fumigatus without developing disease, neutropenic patients and those receiving immunosuppressive drugs have a higher incidence of invasive fungal infections. To study the role of neutrophils in protection against A. fumigatus infections, we developed an in vitro assay in which the interactions between human neutrophils and A. fumigatus were observed in real time, at single-cell resolution, in precisely controlled conditions. We measured the outcomes of neutrophil-fungus interactions and found that human neutrophils have a limited ability to migrate toward A. fumigatus and block the growth of A. fumigatus conidia (proportion with growth blocked, 69%). The blocking ability of human neutrophils increased to 85.1% when they were stimulated by uniform concentrations of fMLP and was enhanced further, to 99.4%, in the presence of chemoattractant gradients. Neutrophils from patients receiving immunosuppressive treatment after transplantation were less effective against the fungus than those from healthy donors, and broader heterogeneity exists between patients, compared with healthy individuals. Further studies using this microfluidic platform will help understand the relevance of innate immune deficiencies responsible for the higher risk of fungal infections in patients with immunosuppressive disease.
Collapse
Affiliation(s)
| | | | | | | | - Mark C Poznansky
- Vaccine and Immunotherapy Center Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston
| | | | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston
| | | |
Collapse
|
22
|
Lehnert T, Timme S, Pollmächer J, Hünniger K, Kurzai O, Figge MT. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions. Front Microbiol 2015; 6:608. [PMID: 26150807 PMCID: PMC4473060 DOI: 10.3389/fmicb.2015.00608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 01/23/2023] Open
Abstract
Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation.
Collapse
Affiliation(s)
- Teresa Lehnert
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany ; Faculty of Biology and Pharmacy, Friedrich Schiller University Jena Jena, Germany
| | - Sandra Timme
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany ; Faculty of Biology and Pharmacy, Friedrich Schiller University Jena Jena, Germany
| | - Johannes Pollmächer
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany ; Faculty of Biology and Pharmacy, Friedrich Schiller University Jena Jena, Germany
| | - Kerstin Hünniger
- Fungal Septomics, Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute Jena, Germany
| | - Oliver Kurzai
- Faculty of Biology and Pharmacy, Friedrich Schiller University Jena Jena, Germany ; Fungal Septomics, Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology Hans-Knöll-Institute Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany ; Faculty of Biology and Pharmacy, Friedrich Schiller University Jena Jena, Germany
| |
Collapse
|
23
|
Oliveira-Coelho A, Rodrigues F, Campos A, Lacerda JF, Carvalho A, Cunha C. Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Front Microbiol 2015; 6:411. [PMID: 25999936 PMCID: PMC4419722 DOI: 10.3389/fmicb.2015.00411] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/20/2015] [Indexed: 01/24/2023] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening fungal disease commonly diagnosed among individuals with immunological deficits, namely hematological patients undergoing chemotherapy or allogeneic hematopoietic stem cell transplantation. Vaccines are not available, and despite the improved diagnosis and antifungal therapy, the treatment of IA is associated with a poor outcome. Importantly, the risk of infection and its clinical outcome vary significantly even among patients with similar predisposing clinical factors and microbiological exposure. Recent insights into antifungal immunity have further highlighted the complexity of host-fungus interactions and the multiple pathogen-sensing systems activated to control infection. How to decode this information into clinical practice remains however, a challenging issue in medical mycology. Here, we address recent advances in our understanding of the host-fungus interaction and discuss the application of this knowledge in potential strategies with the aim of moving toward personalized diagnostics and treatment (theranostics) in immunocompromised patients. Ultimately, the integration of individual traits into a clinically applicable process to predict the risk and progression of disease, and the efficacy of antifungal prophylaxis and therapy, holds the promise of a pioneering innovation benefiting patients at risk of IA.
Collapse
Affiliation(s)
- Ana Oliveira-Coelho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto , Porto, Portugal
| | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa , Lisboa, Portugal ; Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria , Lisboa, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Linde J, Duggan S, Weber M, Horn F, Sieber P, Hellwig D, Riege K, Marz M, Martin R, Guthke R, Kurzai O. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Res 2015; 43:1392-406. [PMID: 25586221 PMCID: PMC4330350 DOI: 10.1093/nar/gku1357] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host–pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.
Collapse
Affiliation(s)
- Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Seána Duggan
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Michael Weber
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Fabian Horn
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Patricia Sieber
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany Department of Bioinformatics, Faculty of Biology and Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Daniela Hellwig
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Konstantin Riege
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Manja Marz
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany National Reference Center for Invasive Mycoses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| |
Collapse
|