1
|
Domán M, Kaszab E, Laczkó L, Bali K, Makrai L, Kovács R, Majoros L, Bányai K. Genomic epidemiology of antifungal resistance in human and avian isolates of Candida albicans: a pilot study from the One Health perspective. Front Vet Sci 2024; 11:1345877. [PMID: 38435368 PMCID: PMC10904516 DOI: 10.3389/fvets.2024.1345877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Stress-induced genomic changes in Candida albicans contribute to the adaptation of this species to various environmental conditions. Variations of the genome composition of animal-origin C. albicans strains are largely unexplored and drug resistance or other selective pressures driving the evolution of these yeasts remained an intriguing question. Comparative genome analysis was carried out to uncover chromosomal aneuploidies and regions with loss of heterozygosity (LOH), two mechanisms that manage genome plasticity. We detected aneuploidy only in human isolates. Bird-derived isolates showed LOH in genes commonly associated with antifungal drug resistance similar to human isolates. Our study suggests that environmental fungicide usage might exert selective pressure on C. albicans infecting animals, thus contributing to the spread of potentially resistant strains between different hosts.
Collapse
Affiliation(s)
- Marianna Domán
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- One Health Institute, University of Debrecen, Debrecen, Hungary
| | - Levente Laczkó
- One Health Institute, University of Debrecen, Debrecen, Hungary
- HUN-REN-UD Conservation Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - Krisztina Bali
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | | | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Alkhars N, Al Jallad N, Wu TT, Xiao J. Multilocus sequence typing of Candida albicans oral isolates reveals high genetic relatedness of mother-child dyads in early life. PLoS One 2024; 19:e0290938. [PMID: 38232064 PMCID: PMC10793898 DOI: 10.1371/journal.pone.0290938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Candida albicans is a pathogenic fungus recently recognized for its role in severe early childhood caries development (S-ECC). C. albicans oral colonization begins at birth, but the extent of the mother's involvement in yeast transmission to their children is unclear, therefore, this study used a prospective mother-infant cohort to investigate the maternal contribution of C. albicans oral colonization in early life. Oral samples were collected from 160 mother-child dyads during pregnancy and from birth to two years of life. We used whole-genome sequencing to obtain the genetic information of C. albicans isolates and examined the genetic relatedness of C. albicans between mothers and their children using Multilocus Sequence Typing. Multivariate statistical methods were used to identify factors associated with C. albicans' acquisition (horizontal and vertical transmissions). Overall, 227 C. albicans oral isolates were obtained from 93 (58.1%) of mother-child pairs. eBURST analysis revealed 16 clonal complexes, and UPGMA analysis identified 6 clades, with clade 1 being the most populated 124 isolates (54.6%). Significantly, 94% of mothers and children with oral C. albicans had highly genetically related strains, highlighting a strong maternal influence on children's C. albicans acquisition. Although factors such as race, ethnicity, delivery method, and feeding behaviors did not show a significant association with C. albicans vertical transmission, the mother's oral hygiene status reflected by plaque index (PI) emerged as a significant factor; Mothers with higher dental plaque accumulation (PI >=2) had a significantly increased risk of vertically transmitting C. albicans to their infants [odds ratio (95% confidence interval) of 8.02 (1.21, 53.24), p=0.03]. Furthermore, Black infants and those who attended daycare had an elevated risk of acquiring C. albicans through horizontal transmission (p <0.01). These findings highlight the substantial role of maternal transmission in the oral acquisition of C. albicans during early life. Incorporating screening for maternal fungal oral carriage and implementing oral health education programs during the perinatal stage may prove valuable in preventing fungal transmission in early infancy.
Collapse
Affiliation(s)
- Naemah Alkhars
- Department of General Dental Practice, College of Dentistry, Health Science Center, Kuwait University, Safat, Kuwait
- Translational Biomedical Science Program, Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Nisreen Al Jallad
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
3
|
Domán M, Makrai L, Vásárhelyi B, Balka G, Bányai K. Molecular epidemiology of Candida albicans infections revealed dominant genotypes in waterfowls diagnosed with esophageal mycosis. Front Vet Sci 2023; 10:1215624. [PMID: 37456960 PMCID: PMC10344593 DOI: 10.3389/fvets.2023.1215624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Fungal infections of animals could yield significant economic losses, especially in the poultry industry, due to their adverse effects on growth, feed intake, digestion, and reproduction. Previous investigations showed that Candida albicans plays the main etiological role in the esophageal mycosis of birds. In this study, we used multilocus sequence typing (MLST) to determine the population structure and molecular epidemiology of C. albicans isolated from geese and ducks in Hungary. Interestingly, only three known genotypes were identified among investigated flocks, namely, diploid sequence type (DST) 840, DST 656, and DST 605, suggesting the intra-species transmission of these genotypes. Additionally, two novel allele combinations (new DSTs) were found that have not been previously submitted to the MLST database. Phylogenetic analysis of isolates revealed a close relationship between DST 656 and DST 605 as well as between the two newly identified genotypes (designated DST 3670 and DST 3671). Although isolates from birds belonged to minor clades in contrast with most human isolates, no species-specificity was observed. Poultry-derived isolates were group founders or closely related to group founders of clonal complexes, suggesting that C. albicans is exposed to lesser selective pressure in animal hosts. The increasing number of genetic information in the C. albicans MLST database could help to reveal the epidemiological characteristics and evolutionary pathways that are essential for disease prevention strategies.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - László Makrai
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Balázs Vásárhelyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Gyula Balka
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Akinbobola AB, Kean R, Hanifi SMA, Quilliam RS. Environmental reservoirs of the drug-resistant pathogenic yeast Candida auris. PLoS Pathog 2023; 19:e1011268. [PMID: 37053164 PMCID: PMC10101498 DOI: 10.1371/journal.ppat.1011268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Candia auris is an emerging human pathogenic yeast; yet, despite phenotypic attributes and genomic evidence suggesting that it probably emerged from a natural reservoir, we know nothing about the environmental phase of its life cycle and the transmission pathways associated with it. The thermotolerant characteristics of C. auris have been hypothesised to be an environmental adaptation to increasing temperatures due to global warming (which may have facilitated its ability to tolerate the mammalian thermal barrier that is considered a protective strategy for humans against colonisation by environmental fungi with pathogenic potential). Thus, C. auris may be the first human pathogenic fungus to have emerged as a result of climate change. In addition, the release of antifungal chemicals, such as azoles, into the environment (from both pharmaceutical and agricultural sources) is likely to be responsible for the environmental enrichment of resistant strains of C. auris; however, the survival and dissemination of C. auris in the natural environment is poorly understood. In this paper, we critically review the possible pathways through which C. auris can be introduced into the environment and evaluate the environmental characteristics that can influence its persistence and transmission in natural environments. Identifying potential environmental niches and reservoirs of C. auris and understanding its emergence against a backdrop of climate change and environmental pollution will be crucial for the development of effective epidemiological and environmental management responses.
Collapse
Affiliation(s)
- Ayorinde B Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Syed Manzoor Ahmed Hanifi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Health System and Population Studies Division, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, Bangladesh
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
5
|
Fayez MM, Swelum AA, Alharbi NK, AlRokban AH, Almubarak A, Almubarak AH, Alaql F, Ahmed AE. Multilocus Sequence Typing and Antifungal Susceptibility of Candida albicans Isolates From Milk and Genital Tract of Dromedary Camel. Front Vet Sci 2022; 9:905962. [PMID: 35873700 PMCID: PMC9305711 DOI: 10.3389/fvets.2022.905962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Multilocus sequence typing (MLST) was used to study the genetic diversity and population structure of 48 Candida albicans (C. albicans) isolates from the udder or genital tract of apparently healthy or diseased camels. This study aimed also to determine the frequency of C. albicans isolates in the genital tract and udder of healthy or diseased female dromedary camels. A total of 240 mature dromedary camels (230 females and 10 males) were categorized based on the clinical examination of gentile tract and udder into five groups [fertile females (n = 70), infertile females (n = 115), healthy udder (n = 15), mastitis (n = 30), and fertile males (n = 10)]. Swabs were collected from male and female genital tracts of dromedary camels and milk samples were collected from healthy and diseased udders. C. albicans was isolated from 20% of the samples. The frequency of isolation was significantly higher (p < 0.00001) in disease camels (75%) compared with apparently healthy camels (25%). Most of C. albicans was isolated from infertile female genitalia (62.50%) which was significantly higher than that isolated from fertile female genitalia (16.67%). Multilocus sequence (MLS) analysis identified seven different diploid sequence types (DSTs) including DST2, DST50, DST62, DST69, DST124, DST142, and DST144. The most frequently identified DTS was DST69 (13/48) which significantly higher (p ≤ 0.05) than DST2, DST62, and DST124. The frequency of identification of DST50, DST142, and DST 144 was significantly higher (p ≤ 0.05) than DST62. DST62 and DST124 were isolated only from diseased camels. DST62 was isolated only from mastitic milk. DST124 was isolated only from infertile female genitalia. The percentage of DST50 and DST 142 was significantly higher in diseased camels (infertile females) than in the apparently healthy ones (fertile females). DST2 and DST50 were isolated only from female genitalia of apparent health and diseased camels. The C. albicans isolated from diseased camels had significantly higher biofilm formation, hydrophobicity, phospholipase, proteinase, and hemolysin activities compared with the isolates from apparent healthy camels. All isolates were sensitive to amphotericin B, itraconazole, micafungin, posaconazole and voriconazole. In conclusion, the present study represents the first molecular typing of C. albicans in samples isolated from milk and the genital tract of the dromedary camel. MLST is a useful tool for studying the epidemiology and evolution of C. albicans. Early identification of Candida species and attention to Candida virulence factors and their antifungal susceptibility patterns is very important for establishing strategies to control and/or prevent candidiasis by novel therapeutic management. Amphotericin B, itraconazole, micafungin, posaconazole, or voriconazole can be efficient in treatment of candidiasis.
Collapse
Affiliation(s)
- Mahmoud M. Fayez
- Department of Bacteriology, Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
- Al Ahsa Laboratory, Ministry of Agriculture Kingdom of Saudi Arabia, Al Ahsa, Saudi Arabia
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nada K. Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahlam H. AlRokban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah Almubarak
- Al Ahsa Laboratory, Ministry of Agriculture Kingdom of Saudi Arabia, Al Ahsa, Saudi Arabia
| | - Ameen H. Almubarak
- Al Ahsa Laboratory, Ministry of Agriculture Kingdom of Saudi Arabia, Al Ahsa, Saudi Arabia
| | - Fanan Alaql
- Riyadh Veterinary Diagnostic Lab, Ministry of Environment, Water and Agriculture, Riyadh, Saudi Arabia
| | - Ahmed E. Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
6
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|