1
|
Lehman LL, Kaseka ML, Stout J, See AP, Pabst L, Sun LR, Hassanein SA, Waak M, Vossough A, Smith ER, Dlamini N. Pediatric Moyamoya Biomarkers: Narrowing the Knowledge Gap. Semin Pediatr Neurol 2022; 43:101002. [PMID: 36344019 DOI: 10.1016/j.spen.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Moyamoya is a progressive cerebrovascular disorder that leads to stenosis of the arteries in the distal internal carotid, proximal middle cerebral and proximal anterior cerebral arteries of the circle of Willis. Typically a network of collaterals form to bypass the stenosis and maintain cerebral blood flow. As moyamoya progresses it affects the anterior circulation more commonly than posterior circulation, and cerebral blood flow becomes increasingly reliant on external carotid supply. Children with moyamoya are at increased risk for ischemic symptoms including stroke and transient ischemic attacks (TIA). In addition, cognitive decline may occur over time, even in the absence of clinical stroke. Standard of care for stroke prevention in children with symptomatic moyamoya is revascularization surgery. Treatment of children with asymptomatic moyamoya with revascularization surgery however remains more controversial. Therefore, biomarkers are needed to assist with not only diagnosis but also with determining ischemic risk and identifying best surgical candidates. In this review we will discuss the current knowledge as well as gaps in research in relation to pediatric moyamoya biomarkers including neurologic presentation, cognitive, neuroimaging, genetic and biologic biomarkers of disease severity and ischemic risk.
Collapse
Affiliation(s)
- Laura L Lehman
- Department of Neurology, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Matsanga Leyila Kaseka
- Department of Neurology, CHU Sainte-Justine, Montreal, Quebec, Canada; Université de Montréal, Montreal, Quebec, Canada
| | - Jeffery Stout
- Harvard Medical School, Boston, MA; Newborn Medicine, Boston Children's Hospital, Boston, MA
| | - Alfred P See
- Harvard Medical School, Boston, MA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA; Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Lisa Pabst
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| | - Lisa R Sun
- Division of Pediatric Neurology, Division of Cerebrovascular Neurology, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Sahar A Hassanein
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Michaela Waak
- Department of Paediatric Intensive Care, Queensland Children's Hospital; Centre for Child Health Research, The University of Queensland, Brisbane, Australia
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, University of Philadelphia, Philadelphia, Pennsylvania
| | - Edward R Smith
- Harvard Medical School, Boston, MA; Department of Neurosurgery, Boston Children's Hospital, Boston, MA
| | - Nomazulu Dlamini
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
2
|
Vallée A, Lecarpentier Y, Vallée JN. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers (Basel) 2021; 13:cancers13215557. [PMID: 34771718 PMCID: PMC8582658 DOI: 10.3390/cancers13215557] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Recent studies have shown that cancer processes are involved under normoxic conditions. These findings completely change the way of approaching the study of the cancer process. In this review, we focus on the fact that, under normoxic conditions, the overstimulation of the WNT/β-catenin pathway leads to modifications in the tumor micro-environment and the activation of the Warburg effect, i.e., aerobic glycolysis, autophagy and glutaminolysis, which in turn participate in tumor growth. Abstract The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 6-8 Rue Saint-Fiacre, 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR, CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
3
|
Vallée A, Lecarpentier Y, Vallée JN. Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classification. Biomedicines 2021; 9:biomedicines9060619. [PMID: 34070746 PMCID: PMC8229353 DOI: 10.3390/biomedicines9060619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Gliomas are the main common primary intraparenchymal brain tumor in the central nervous system (CNS), with approximately 7% of the death caused by cancers. In the WHO 2016 classification, molecular dysregulations are part of the definition of particular brain tumor entities for the first time. Nevertheless, the underlying molecular mechanisms remain unclear. Several studies have shown that 75% to 80% of secondary glioblastoma (GBM) showed IDH1 mutations, whereas only 5% of primary GBM have IDH1 mutations. IDH1 mutations lead to better overall survival in gliomas patients. IDH1 mutations are associated with lower stimulation of the HIF-1α a, aerobic glycolysis and angiogenesis. The stimulation of HIF-1α and the process of angiogenesis appears to be activated only when hypoxia occurs in IDH1-mutated gliomas. In contrast, the observed upregulation of the canonical WNT/β-catenin pathway in gliomas is associated with proliferation, invasion, aggressive-ness and angiogenesis.. Molecular pathways of the malignancy process are involved in early stages of WNT/β-catenin pathway-activated-gliomas, and this even under normoxic conditions. IDH1 mutations lead to decreased activity of the WNT/β-catenin pathway and its enzymatic targets. The opposed interplay between IDH1 mutations and the canonical WNT/β-catenin pathway in gliomas could participate in better understanding of the observed evolution of different tumors and could reinforce the glioma classification.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80000 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
4
|
MRI Dynamic Contrast Imaging of Oral Cavity and Oropharyngeal Tumors. Top Magn Reson Imaging 2021; 30:97-104. [PMID: 33828061 DOI: 10.1097/rmr.0000000000000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT In the past decade, dynamic contrast-enhanced magnetic resonance imaging has had an increasing role in assessing the microvascular characteristics of various tumors, including head and neck cancer. Dynamic contrast-enhanced magnetic resonance imaging allows noninvasive assessment of permeability and blood flow, both important parametric features of tumor hypoxia, which is in turn a marker for treatment resistance for head and neck cancer.In this article we will provide a comprehensive review technique in evaluating tumor proliferation and application of its parameters in differentiating between various tumor types of the oral cavity and how its parameters can correlate between epidermal growth factor receptor and human papillomavirus which can have an implication in patient's overall survival rates.We will also review how the parameters of this method can predict local tumor control after treatment and compare its efficacy with other imaging modalities. Lastly, we will review how its parameters can be used prospectively to identify early complications from treatment.
Collapse
|
5
|
Malla SR, Bhalla AS, Manchanda S, Kandasamy D, Kumar R, Agarwal S, Shamim SA, Kakkar A. Dynamic contrast-enhanced magnetic resonance imaging for differentiating head and neck paraganglioma and schwannoma. Head Neck 2021; 43:2611-2622. [PMID: 33938085 DOI: 10.1002/hed.26732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/27/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Morphological assessment with conventional magnetic resonance imaging (MRI) sequences has limited specificity to distinguish between paragangliomas and schwannomas. Assessing the differences in microvascular properties through pharmacokinetic parameters of dynamic contrast-enhanced (DCE)-MRI can provide additional information to aid in this differentiation. MATERIALS AND METHODS A prospective study on MR characterization of neck masses was performed between January 2017 and March 2019 in our department, out of which 40 patients with head and neck paragangliomas (HNPGLs) (33 lesions) and schwannomas (15 lesions) were included in this analysis. MR perfusion using dynamic axial T1WI fat suppressed fast spoiled gradient recalled sequence with parallel imaging was performed in all the patients, in addition to single-shot turbo spin-echo axial diffusion weighted imaging (DWI) and routine MRI. ROI-based method was used to obtain signal-time curves, permeability measurements, and mean apparent diffusion coefficient (ADC) to differentiate paragangliomas from schwannomas. Statistical analysis was done to assess the significance and establish a cutoff to distinguish between the two entities. The available images of DOTANOC PET/CT (34 lesions) were analyzed retrospectively. Correlations between the perfusion, diffusion, and molecular PET/CT parameters were done. RESULTS Paragangliomas had a higher wash-in rate, wash-out rate, Ktrans, Kep , and Vp (p < 0.001); while schwannomas had a higher relative enhancement (p < 0.012), time to peak, time of onset, brevity of enhancement, and Ve (p < 0.001). Among the perfusion parameters, Kep (area under curve (AUC) 0.994) and Vp (AUC 0.992) were found to have the highest diagnostic value. In diffusion-weighted imaging, paragangliomas had a lower mean ADC compared to schwannomas (p < 0.001). The SUVmax and SUVmean were significantly associated with Ktrans , Kep , and Vp in paragangliomas. CONCLUSION DCE-MRI in addition to DWI-MRI can accurately distinguish HNPGL from schwannoma and may replace the need for any additional imaging and preoperative biopsy in most cases.
Collapse
Affiliation(s)
- Soumya Ranjan Malla
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Ashu Seith Bhalla
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Manchanda
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rakesh Kumar
- Department of Otorhinolaryngology & Head-Neck Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Shamim Ahmed Shamim
- Department of Nuclear Medicine & PET, All India Institute of Medical Sciences, New Delhi, India
| | - Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Sesen J, Driscoll J, Moses-Gardner A, Orbach DB, Zurakowski D, Smith ER. Non-invasive Urinary Biomarkers in Moyamoya Disease. Front Neurol 2021; 12:661952. [PMID: 33868159 PMCID: PMC8047329 DOI: 10.3389/fneur.2021.661952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: A major difficulty in treating moyamoya disease is the lack of effective methods to detect novel or progressive disease prior to the onset of disabling stroke. More importantly, a tool to better stratify operative candidates and quantify response to therapy could substantively complement existing methods. Here, we present proof-of-principle data supporting the use of urinary biomarkers as diagnostic adjuncts in pediatric moyamoya patients. Methods: Urine and cerebrospinal fluid specimens were collected from pediatric patients with moyamoya disease and a cohort of age and sex-matched control patients. Clinical and radiographic data were paired with measurements of a previously validated panel of angiogenic proteins quantified by ELISA. Results were compared to age and sex-matched controls and subjected to statistical analyses. Results: Evaluation of a specific panel of urinary and cerebrospinal fluid biomarkers by ELISA demonstrated significant elevations of angiogenic proteins in samples from moyamoya patients compared to matched controls. ROC curves for individual urinary biomarkers, including MMP-2, MMP-9, MMP-9/NGAL, and VEGF, showed excellent discrimination. The optimal urinary biomarker was MMP-2, providing a sensitivity of 88%, specificity of 100%, and overall accuracy of 91%. Biomarker levels changed in response to therapy and correlated with radiographic evidence of revascularization. Conclusions: We report, for the first time, identification of a panel of urinary biomarkers that predicts the presence of moyamoya disease. These biomarkers correlate with presence of disease and can be tracked from the central nervous system to urine. These data support the hypothesis that urinary proteins are useful predictors of the presence of moyamoya disease and may provide a basis for a novel, non-invasive method to identify new disease and monitor known patients following treatment.
Collapse
Affiliation(s)
- Julie Sesen
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jessica Driscoll
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alexander Moses-Gardner
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Darren B Orbach
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - David Zurakowski
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Departments of Surgery and Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A, Candolfi M. The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far? Expert Opin Ther Targets 2020; 24:1121-1133. [PMID: 32896197 DOI: 10.1080/14728222.2020.1821187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.
Collapse
Affiliation(s)
- Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Camila F Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina.,departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
8
|
Delgado‐Martín B, Medina MÁ. Advances in the Knowledge of the Molecular Biology of Glioblastoma and Its Impact in Patient Diagnosis, Stratification, and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902971. [PMID: 32382477 PMCID: PMC7201267 DOI: 10.1002/advs.201902971] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/24/2020] [Indexed: 05/07/2023]
Abstract
Gliomas are the most common primary brain tumors in adults. They arise in the glial tissue and primarily occur in the brain. Low-grade tumors of World Health Organization (WHO) grade II tend to progress to high-grade gliomas of WHO grade III and, eventually, glioblastoma of WHO grade IV, which is the most common and deadly glioma, with a median survival of 12-15 months after final diagnosis. Knowledge of the molecular biology and genetics of glioblastoma has increased significantly in the past few years, giving rise to classification methods that can help in management and stratification of glioblastoma patients. However, glioblastoma remains an incurable disease. Glioblastoma cells have acquired genetic and metabolic adaptations in order to sustain tumor growth and progression, including changes in energetic metabolism, invasive capacity, migration, and angiogenesis, that make it very difficult to find suitable therapeutic targets and to develop effective drugs. The current standard of care for glioblastoma patients is surgery followed by radiotherapy plus concomitant and adjuvant chemotherapy with temozolomide. Although progress in glioblastoma therapies in recent years has been more limited than in other tumors, numerous drugs and targets are being proposed and many clinical trials are underway to develop effective subtype-specific treatments.
Collapse
Affiliation(s)
- Belén Delgado‐Martín
- Department of Molecular Biology and BiochemistryFaculty of SciencesCampus de Teatinos s/nUniversity of MálagaMálagaE‐29071Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and BiochemistryFaculty of SciencesCampus de Teatinos s/nUniversity of MálagaMálagaE‐29071Spain
- IBIMA (Biomedical Research Institute of Málaga)MálagaE‐29071Spain
- CIBER de Enfermedades Raras (CIBERER)MálagaE‐29071Spain
| |
Collapse
|
9
|
Dynamic contrast-enhanced magnetic resonance imaging in locally advanced rectal cancer: role of perfusion parameters in the assessment of response to treatment. Radiol Med 2018; 124:331-338. [PMID: 30560501 DOI: 10.1007/s11547-018-0978-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To correlate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters to tumor grading and to assess their reliability in predicting pathological complete response (pCR) before neoadjuvant chemoradiotherapy (CRT) in patients with locally advanced rectal cancer (LARC). MATERIALS AND METHODS Forty patients (24 male; mean age, 67.3 ± 8.1 years) with histologically proven LARC who had undergone 3-Tesla DCE-MRI before (MRI_1) and after CRT (MRI_2) between August 2015 and February 2016 were included in this retrospective study. DCE-MRI parameters at MRI_1 and MRI_2 were extracted by two board certified radiologists in consensus reading with Olea Sphere 2.3 software using the extended Tofts model. Based on DCE-MRI results, patients were divided in complete responders (CR) and non-complete responders (nCR) and the perfusion parameters were correlated to tumor grading and pCR. RESULTS Wash-out and Kep at MRI_1 showed significant correlation with LARC grading (P = 0.004 and 0.01, respectively). Ve showed a significant increase between MRI_1 (0.47 ± 0.27) and MRI_2 (0.63 ± 0.23; P = 0.007). Ktrans measured at MRI_1 was significantly higher in CR (0.66 ± 0.48) compared to nCR (0.53 ± 0.34, P = 0.02). CONCLUSION Wash-out and Kep measured before CRT correlate with LARC grading. Ve changes during CRT, while Ktrans measured before CRT may predict the response to therapy. Therefore, DCE-MRI parameters can predict tumor aggressiveness and CRT efficacy, playing a role as imaging biomarkers in patients with LARC.
Collapse
|
10
|
Vallée A, Guillevin R, Vallée JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci 2018; 29:71-91. [PMID: 28822229 DOI: 10.1515/revneuro-2017-0032] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
The canonical Wnt/β-catenin pathway is up-regulated in gliomas and involved in proliferation, invasion, apoptosis, vasculogenesis and angiogenesis. Nuclear β-catenin accumulation correlates with malignancy. Hypoxia activates hypoxia-inducible factor (HIF)-1α by inhibiting HIF-1α prolyl hydroxylation, which promotes glycolytic energy metabolism, vasculogenesis and angiogenesis, whereas HIF-1α is degraded by the HIF prolyl hydroxylase under normoxic conditions. We focus this review on the links between the activated Wnt/β-catenin pathway and the mechanisms underlying vasculogenesis and angiogenesis through HIF-1α under normoxic conditions in gliomas. Wnt-induced epidermal growth factor receptor/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, Wnt-induced signal transducers and activators of transcription 3 (STAT3) signaling, and Wnt/β-catenin target gene transduction (c-Myc) can activate HIF-1α in a hypoxia-independent manner. The PI3K/Akt/mammalian target of rapamycin pathway activates HIF-1α through eukaryotic translation initiation factor 4E-binding protein 1 and STAT3. The β-catenin/T-cell factor 4 complex directly binds to STAT3 and activates HIF-1α, which up-regulates the Wnt/β-catenin target genes cyclin D1 and c-Myc in a positive feedback loop. Phosphorylated STAT3 by interleukin-6 or leukemia inhibitory factor activates HIF-1α even under normoxic conditions. The activation of the Wnt/β-catenin pathway induces, via the Wnt target genes c-Myc and cyclin D1 or via HIF-1α, gene transactivation encoding aerobic glycolysis enzymes, such as glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production, as the primary alternative of ATP, at all oxygen levels, even in normoxic conditions. Lactate released by glioma cells via the monocarboxylate lactate transporter-1 up-regulated by HIF-1α and lactate anion activates HIF-1α in normoxic endothelial cells by inhibiting HIF-1α prolyl hydroxylation and preventing HIF labeling by the von Hippel-Lindau protein. Increased lactate with acid environment and HIF-1α overexpression induce the vascular endothelial growth factor (VEGF) pathway of vasculogenesis and angiogenesis under normoxic conditions. Hypoxia and acidic pH have no synergistic effect on VEGF transcription.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, 11 Boulevard Marie et Pierre Curie, F-86000 Poitiers, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, Université de Poitiers et CHU de Poitiers, F-86000 Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, F-86000 Poitiers, France
| |
Collapse
|
11
|
Chiba R, Akiya M, Hashimura M, Oguri Y, Inukai M, Hara A, Saegusa M. ALK signaling cascade confers multiple advantages to glioblastoma cells through neovascularization and cell proliferation. PLoS One 2017; 12:e0183516. [PMID: 28837676 PMCID: PMC5570309 DOI: 10.1371/journal.pone.0183516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK), which is a receptor tyrosine kinase, is essentially and transiently expressed in the developing nervous system. Here we examined the functional role of the ALK gene in glioblastomas (GBMs). In clinical samples of GBMs, high ALK expression without gene rearrangements or mutations was frequently observed in perivascular lesions, in contrast to the relatively low expression in the perinecrotic areas, which was positively correlated with N-myc and phosphorylated (p) Stat3 scores and Ki-67 labeling indices. ALK immunoreactivity was also found to be associated with neovascular features including vascular co-option and vascular mimicry. In astrocytoma cell lines, cells stably overexpressing full-length ALK showed an increase in expression of pStat3 and pAkt proteins, as well as hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) mRNAs, in contrast to cells with knockdown of endogenous ALK which showed decreased expression of these molecules. Transfection of the constitutively active form of Stat3 induced an increase in HIF-1α promoter activity, and the overexpression of HIF-1α in turn resulted in enhancement of VEGF-A promoter activity. In addition, cells with overexpression or knockdown of ALK also showed a tendency toward increased and decreased proliferation, respectively, through changes in expression of pAkt and pStat3. Finally, ALK promoter was significantly activated by transfection of Sox4 and N-myc, which are known to contribute to neuronal properties. These findings therefore suggest that N-myc/Sox4-mediated ALK signaling cascades containing Stat3, Akt, HIF-1α, and VEGF-A confer multiple advantages to tumor growth through alterations in neovascularization and cell proliferation in GBMs.
Collapse
Affiliation(s)
- Risako Chiba
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Masashi Akiya
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Madoka Inukai
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Atsuko Hara
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
12
|
Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies - A review. J Adv Res 2017; 8:591-605. [PMID: 28808589 PMCID: PMC5544473 DOI: 10.1016/j.jare.2017.06.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023] Open
Abstract
Recent strategies for the treatment of cancer, other than just tumor cell killing have been under intensive development, such as anti-angiogenic therapeutic approach. Angiogenesis inhibition is an important strategy for the treatment of solid tumors, which basically depends on cutting off the blood supply to tumor micro-regions, resulting in pan-hypoxia and pan-necrosis within solid tumor tissues. The differential activation of angiogenesis between normal and tumor tissues makes this process an attractive strategic target for anti-tumor drug discovery. The principles of anti-angiogenic treatment for solid tumors were originally proposed in 1972, and ever since, it has become a putative target for therapies directed against solid tumors. In the early twenty first century, the FDA approved anti-angiogenic drugs, such as bevacizumab and sorafenib for the treatment of several solid tumors. Over the past two decades, researches have continued to improve the performance of anti-angiogenic drugs, describe their drug interaction potential, and uncover possible reasons for potential treatment resistance. Herein, we present an update to the pre-clinical and clinical situations of anti-angiogenic agents and discuss the most recent trends in this field.
Collapse
Affiliation(s)
- Ahmed M Al-Abd
- Pharmacology Department, Medical Division, National Research Centre, Dokki, Giza, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Biomedical Research Section, Nawah Scientific, Mokkatam, Cairo, Egypt
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Thikryat A Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
13
|
Qin Y, Takahashi M, Sheets K, Soto H, Tsui J, Pelargos P, Antonios JP, Kasahara N, Yang I, Prins RM, Braun J, Gordon LK, Wadehra M. Epithelial membrane protein-2 (EMP2) promotes angiogenesis in glioblastoma multiforme. J Neurooncol 2017; 134:29-40. [PMID: 28597184 DOI: 10.1007/s11060-017-2507-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/21/2017] [Indexed: 12/27/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and is associated with an extremely poor clinical prognosis. One pathologic hallmark of GBM is excessive vascularization with abnormal blood vessels. Extensive investigation of anti-angiogenic therapy as a treatment for recurrent GBM has been performed. Bevacizumab, a monoclonal anti-vascular endothelial growth factor A (VEGF-A), suggests a progression-free survival benefit but no overall survival benefit. Developing novel anti-angiogenic therapies are urgently needed in controlling GBM growth. In this study, we demonstrate tumor expression of epithelial membrane protein-2 (EMP2) promotes angiogenesis both in vitro and in vivo using cell lines from human GBM. Mechanistically, this pro-angiogenic effect of EMP2 was partially through upregulating tumor VEGF-A levels. A potential therapeutic effect of a systemic administration of anti-EMP2 IgG1 on intracranial xenografts was observed resulting in both significant reduction of tumor load and decreased tumor vasculature. These results suggest the potential for anti-EMP2 IgG1 as a promising novel anti-angiogenic therapy for GBM. Further investigation is needed to fully understand the molecular mechanisms how EMP2 modulates GBM pathogenesis and progression and to further characterize anti-EMP2 therapy in GBM.
Collapse
Affiliation(s)
- Yu Qin
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Kristopher Sheets
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Horacio Soto
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Panayiotis Pelargos
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph P Antonios
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Noriyuki Kasahara
- Department of Cell Biology and Pathology, University of Miami, Miami, FL, 33136, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Department of Radiation Oncology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert M Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Lynn K Gordon
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Vascular Transdifferentiation in the CNS: A Focus on Neural and Glioblastoma Stem-Like Cells. Stem Cells Int 2016; 2016:2759403. [PMID: 27738435 PMCID: PMC5055959 DOI: 10.1155/2016/2759403] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/05/2016] [Indexed: 01/12/2023] Open
Abstract
Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors. It was recently reported that GSCs could transdifferentiate into endothelial-like and pericyte-like cells both in vitro and in vivo, notably under the influence of Notch and TGFβ signaling pathways. Vascular cells derived from GBM cells were also observed directly in patient samples. These results could lead to new directions for designing original therapeutic approaches against GBM neovascularization but this specific reprogramming requires further molecular investigations. Transdifferentiation of nontumoral neural stem cells into vascular cells has also been described and conversely vascular cells may generate neural stem cells. In this review, we present and discuss these recent data. As some of them appear controversial, further validation will be needed using new technical approaches such as high throughput profiling and functional analyses to avoid experimental pitfalls and misinterpretations.
Collapse
|
15
|
Yang YR, Wei JL, Mo XF, Yuan ZW, Wang JL, Zhang C, Xie YY, You QD, Sun HP. Discovery and optimization of new benzofuran derivatives against p53-independent malignant cancer cells through inhibition of HIF-1 pathway. Bioorg Med Chem Lett 2016; 26:2713-8. [PMID: 27101893 DOI: 10.1016/j.bmcl.2016.03.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/27/2022]
Abstract
p53-independent malignant cancer is still severe health problem of human beings. HIF-1 pathway is believed to play an important role in the survival and developing progress of such cancers. In the present study, with the aim to inhibit the proliferation of p53-independent malignant cells, we disclose the optimization of 6a, the starting compound which is discovered in the screening of in-house compound collection. The structure-activity relationship (SAR) is summarized. The most potent derivative 8d, inhibits the proliferation of both p53-null and p53-mutated cells through inhibition of HIF-1 pathway. Our findings here provide a new chemotype in designing potent anticancer agent especially against those p53-independent malignant tumors.
Collapse
Affiliation(s)
- Ying-Rui Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jin-Lian Wei
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Fei Mo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Wei Yuan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Lin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Yue Xie
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Gaddikeri S, Gaddikeri RS, Tailor T, Anzai Y. Dynamic Contrast-Enhanced MR Imaging in Head and Neck Cancer: Techniques and Clinical Applications. AJNR Am J Neuroradiol 2015; 37:588-95. [PMID: 26427839 DOI: 10.3174/ajnr.a4458] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the past decade, dynamic contrast-enhanced MR imaging has had an increasing role in assessing the microvascular characteristics of various tumors, including head and neck cancer. Dynamic contrast-enhanced MR imaging allows noninvasive assessment of permeability and blood flow, both important features of tumor hypoxia, which is a marker for treatment resistance for head and neck cancer. Dynamic contrast-enhanced MR imaging has the potential to identify early locoregional recurrence, differentiate metastatic lymph nodes from normal nodes, and predict tumor response to treatment and treatment monitoring in patients with head and neck cancer. Quantitative analysis is in its early stage and standardization and refinement of technique are essential. In this article, we review the techniques of dynamic contrast-enhanced MR imaging data acquisition, analytic methods, current limitations, and clinical applications in head and neck cancer.
Collapse
Affiliation(s)
- S Gaddikeri
- From the Department of Radiology (S.G., T.T., Y.A.), University of Washington Medical Center, Seattle, Washington
| | - R S Gaddikeri
- Department of Neuroradiology (R.S.G.), Rush University, Chicago, Illinois
| | - T Tailor
- From the Department of Radiology (S.G., T.T., Y.A.), University of Washington Medical Center, Seattle, Washington
| | - Y Anzai
- From the Department of Radiology (S.G., T.T., Y.A.), University of Washington Medical Center, Seattle, Washington Department of Radiology (Y.A.), University of Utah Health Care, Salt Lake City, Utah.
| |
Collapse
|
17
|
Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays. Cells 2015; 4:427-51. [PMID: 26308058 PMCID: PMC4588044 DOI: 10.3390/cells4030427] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/10/2023] Open
Abstract
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.
Collapse
|
18
|
Kempf H, Bleicher M, Meyer-Hermann M. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy. PLoS One 2015; 10:e0133357. [PMID: 26273841 PMCID: PMC4537194 DOI: 10.1371/journal.pone.0133357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/26/2015] [Indexed: 12/27/2022] Open
Abstract
Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment.
Collapse
Affiliation(s)
- Harald Kempf
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Marcus Bleicher
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
19
|
Clarke JL. Bevacizumab and other targeted agents in the upfront treatment of glioblastoma. Semin Radiat Oncol 2015; 24:273-8. [PMID: 25219812 DOI: 10.1016/j.semradonc.2014.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The standard treatment for glioblastoma, the most common primary malignant brain tumor, has been maximal safe surgical resection followed by the combination of radiation and temozolomide. Bevacizumab has shown promise in the treatment of glioblastoma; it and a number of other new, targeted agents have been tested in combination with radiation and temozolomide. Results of recent studies of such agents are discussed. Although many of these agents show promise, none as yet has established a new standard of care for these difficult-to-treat tumors.
Collapse
Affiliation(s)
- Jennifer L Clarke
- Department of Neurology, University of California, San Francisco, CA; Department of Neurological Surgery, University of California, San Francisco, CA.
| |
Collapse
|
20
|
Almenawer SA, Badhiwala JH, Alhazzani W, Greenspoon J, Farrokhyar F, Yarascavitch B, Algird A, Kachur E, Cenic A, Sharieff W, Klurfan P, Gunnarsson T, Ajani O, Reddy K, Singh SK, Murty NK. Biopsy versus partial versus gross total resection in older patients with high-grade glioma: a systematic review and meta-analysis. Neuro Oncol 2015; 17:868-81. [PMID: 25556920 DOI: 10.1093/neuonc/nou349] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/29/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Optimal extent of surgical resection (EOR) of high-grade gliomas (HGGs) remains uncertain in the elderly given the unclear benefits and potentially higher rates of mortality and morbidity associated with more extensive degrees of resection. METHODS We undertook a meta-analysis according to a predefined protocol and systematically searched literature databases for reports about HGG EOR. Elderly patients (≥60 y) undergoing biopsy, subtotal resection (STR), and gross total resection (GTR) were compared for the outcome measures of overall survival (OS), postoperative karnofsky performance status (KPS), progression-free survival (PFS), mortality, and morbidity. Treatment effects as pooled estimates, mean differences (MDs), or risk ratios (RRs) with corresponding 95% confidence intervals (CIs) were determined using random effects modeling. RESULTS A total of 12 607 participants from 34 studies met eligibility criteria, including our current cohort of 211 patients. When comparing overall resection (of any extent) with biopsy, in favor of the resection group were OS (MD 3.88 mo, 95% CI: 2.14-5.62, P < .001), postoperative KPS (MD 10.4, 95% CI: 6.58-14.22, P < .001), PFS (MD 2.44 mo, 95% CI: 1.45-3.43, P < .001), mortality (RR = 0.27, 95% CI: 0.12-0.61, P = .002), and morbidity (RR = 0.82, 95% CI: 0.46-1.46, P = .514) . GTR was significantly superior to STR in terms of OS (MD 3.77 mo, 95% CI: 2.26-5.29, P < .001), postoperative KPS (MD 4.91, 95% CI: 0.91-8.92, P = .016), and PFS (MD 2.21 mo, 95% CI: 1.13-3.3, P < .001) with no difference in mortality (RR = 0.53, 95% CI: 0.05-5.71, P = .600) or morbidity (RR = 0.52, 95% CI: 0.18-1.49, P = .223). CONCLUSIONS Our findings suggest an upward improvement in survival time, functional recovery, and tumor recurrence rate associated with increasing extents of safe resection. These benefits did not result in higher rates of mortality or morbidity if considered in conjunction with known established safety measures when managing elderly patients harboring HGGs.
Collapse
Affiliation(s)
- Saleh A Almenawer
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Jetan H Badhiwala
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Waleed Alhazzani
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Jeffrey Greenspoon
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Forough Farrokhyar
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Blake Yarascavitch
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Almunder Algird
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Edward Kachur
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Aleksa Cenic
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Waseem Sharieff
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Paula Klurfan
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Thorsteinn Gunnarsson
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Olufemi Ajani
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Kesava Reddy
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Sheila K Singh
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| | - Naresh K Murty
- Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada (S.A.A., A.A., E.K., A.C., P.K., T.G., O.A., K.R., S.K.S., N.K.M.); Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada (S.A.A., W.A., F.F.); Department of Medicine, McMaster University, Hamilton, Ontario, Canada (W.A.); Department of Oncology, McMaster University, Hamilton, Ontario, Canada (J.G.); Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada (S.K.S.); Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada (J.H.B.); Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada (W.S.); Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas (B.Y.)
| |
Collapse
|
21
|
Park DJ, Thomas NJ, Yoon C, Yoon SS. Vascular endothelial growth factor a inhibition in gastric cancer. Gastric Cancer 2015; 18:33-42. [PMID: 24993497 DOI: 10.1007/s10120-014-0397-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a vital process in the progression and metastasis of solids tumors including gastric adenocarcinoma. Tumors induce angiogenesis by secreting proangiogenic molecules such as vascular endothelial growth factor A (VEGF-A), and VEGF-A inhibition has become a common therapeutic strategy for many cancers. Several drugs targeting the VEGF-A pathway have been approved for clinical use in selected solid tumors, and several anti-VEGF-A strategies have been examined for gastric cancer. Phase II studies suggested that bevacizumab, an anti-VEGF antibody, can increase the efficacy of chemotherapy for advanced gastric cancer, but two international phase III trials failed to show an overall survival benefit. Two more recent international phase III trials have examined ramucirumab, an antibody targeting the primary receptor for VEGF-A, as second-line therapy for advanced gastric cancer and found a survival benefit both as single agent therapy and when combined with chemotherapy. Finally, correlative science studies suggest that the VEGF-A pathway may have varying importance in gastric cancer progression depending on ethnicity or race. This article will review the preclinical and clinical studies on the role of the VEGF-A pathway inhibition in gastric cancer.
Collapse
Affiliation(s)
- Do Joong Park
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | | | | | | |
Collapse
|
22
|
Mitsumori LM, Bhargava P, Essig M, Maki JH. Magnetic resonance imaging using gadolinium-based contrast agents. Top Magn Reson Imaging 2014; 23:51-69. [PMID: 24477166 DOI: 10.1097/rmr.0b013e31829c4686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose of this article was to review the basic properties of available gadolinium-based magnetic resonance contrast agents, discuss their fundamental differences, and explore common and evolving applications of gadolinium-based magnetic resonance contrast throughout the body excluding the central nervous system. A more specific aim of this article was to explore novel uses of these gadolinium-based contrast agents and applications where a particular agent has been demonstrated to behave differently or be better suited for certain applications than the other contrast agents in this class.
Collapse
|
23
|
Clarke JL, Molinaro AM, Phillips JJ, Butowski NA, Chang SM, Perry A, Costello JF, DeSilva AA, Rabbitt JE, Prados MD. A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro Oncol 2014; 16:984-90. [PMID: 24637230 PMCID: PMC4057142 DOI: 10.1093/neuonc/nou029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/14/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Both the epidermal growth factor receptor and vascular endothelial growth factor pathways are frequently overexpressed in glioblastoma multiforme. This study combined bevacizumab, a vascular endothelial growth factor inhibitor, and erlotinib, an epidermal growth factor receptor inhibitor, with standard radiation and temozolomide (TMZ), with the goal of improving overall survival (OS). METHODS Treatment consisted of fractionated radiotherapy to 60 Gy, with daily TMZ at 75 mg/m²/d and erlotinib 150-200 mg/d (or 500-600 mg/d for patients on enzyme-inducing antiepileptic drugs). Bevacizumab was given at 10 mg/kg every 2 weeks, starting ≥4 weeks after surgery. After radiotherapy, adjuvant TMZ was given at 200 mg/m²/d × 5d per 28-day cycle, with unchanged erlotinib and bevacizumab doses. Treatment continued until progression or for 12 months. Efficacy was compared against an institutional historical control. A sample of 55 patients was calculated to provide 85% power to detect a hazard ratio of 0.67 for OS. RESULTS Fifty-nine patients were enrolled for efficacy analysis after a 15-patient safety lead-in. For the efficacy group, median age was 54 years; median KPS was 90. Gross total and subtotal resections were achieved in 33% and 53%, respectively. The most frequent related grade 3/4 adverse effects were lymphopenia, thrombocytopenia, neutropenia, diarrhea, weight loss, and fatigue. One patient died of disseminated aspergillosis. Median OS was 19.8 months (vs 18 mo for HC, P = .33) and median progression-free survival was 13.5 months (vs 8.6 mo for HC, P = .03). CONCLUSIONS The combination of bevacizumab, erlotinib, TMZ, and radiotherapy appears to be well tolerated and improved progression-free survival but did not reach the primary endpoint of improved OS.
Collapse
|
24
|
Wang E, Zhang C, Polavaram N, Liu F, Wu G, Schroeder MA, Lau JS, Mukhopadhyay D, Jiang SW, O'Neill BP, Datta K, Li J. The role of factor inhibiting HIF (FIH-1) in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme. PLoS One 2014; 9:e86102. [PMID: 24465898 PMCID: PMC3900478 DOI: 10.1371/journal.pone.0086102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/04/2013] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1), which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.
Collapse
Affiliation(s)
- Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Chunyang Zhang
- Department of Neuro-Surgery, the First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Navatha Polavaram
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fengming Liu
- Department of Research and Development, Guangxi Medicinal Botanical Institute, Nanning, Guangxi, China
| | - Gang Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Mark A. Schroeder
- Department of Radiation Oncology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Julie S. Lau
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
- Department of Obstetrics and Gynecology, Memorial Health Hospital, Savannah, Georgia, United States of America
| | - Brian Patrick O'Neill
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (KD); (JL)
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
- Department of Obstetrics and Gynecology, Memorial Health Hospital, Savannah, Georgia, United States of America
- * E-mail: (KD); (JL)
| |
Collapse
|
25
|
Abstract
Malignant gliomas are challenging tumors that are often treated with a multimodality approach. This article focuses on the role of radiotherapy in the management of these tumors. The role of radiotherapy in low-grade gliomas remains controversial and this review focuses on the importance of prognostic factors, recent randomized trials involving radiotherapy, and toxicity from radiotherapy. In terms of high-grade gliomas, radiotherapy has a more established role and this review will address methods that have been evaluated in order to improve radiotherapy outcome. Improvements in radiotherapy delivery, tumor imaging and biologic modifiers may ultimately lead to improved outcome in the treatment of these difficult tumors.
Collapse
Affiliation(s)
- Neil Mehta
- Department of Radiation & Cellular Oncology, University of Chicago, 5758 South Maryland Avenue, MC 9006, Chicago, IL, USA.
| | | |
Collapse
|
26
|
Chamberlain MC. Antiangiogenesis: biology and utility in the treatment of gliomas. Expert Rev Neurother 2014; 8:1419-23. [DOI: 10.1586/14737175.8.10.1419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Solinas M, Massi P, Cinquina V, Valenti M, Bolognini D, Gariboldi M, Monti E, Rubino T, Parolaro D. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS One 2013; 8:e76918. [PMID: 24204703 PMCID: PMC3804588 DOI: 10.1371/journal.pone.0076918] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
In the present study, we found that CBD inhibited U87-MG and T98G cell proliferation and invasiveness in vitro and caused a decrease in the expression of a set of proteins specifically involved in growth, invasion and angiogenesis. In addition, CBD treatment caused a dose-related down-regulation of ERK and Akt prosurvival signaling pathways in U87-MG and T98G cells and decreased hypoxia inducible factor HIF-1α expression in U87-MG cells. Taken together, these results provide new insights into the antitumor action of CBD, showing that this cannabinoid affects multiple tumoral features and molecular pathways. As CBD is a non-psychoactive phytocannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anti-cancer drug in the management of gliomas.
Collapse
Affiliation(s)
- Marta Solinas
- Department of Theoretical and Applied Sciences, Biomedical Research Division, Centre of Neuroscience, University of Insubria, Busto Arsizio, Varese, Italy
| | - Paola Massi
- Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Milan, Italy
| | - Valentina Cinquina
- Department of Theoretical and Applied Sciences, Biomedical Research Division, Centre of Neuroscience, University of Insubria, Busto Arsizio, Varese, Italy
| | - Marta Valenti
- Department of Theoretical and Applied Sciences, Biomedical Research Division, Centre of Neuroscience, University of Insubria, Busto Arsizio, Varese, Italy
| | - Daniele Bolognini
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Marzia Gariboldi
- Department of Theoretical and Applied Sciences, Biomedical Research Division, Centre of Neuroscience, University of Insubria, Busto Arsizio, Varese, Italy
| | - Elena Monti
- Department of Theoretical and Applied Sciences, Biomedical Research Division, Centre of Neuroscience, University of Insubria, Busto Arsizio, Varese, Italy
| | - Tiziana Rubino
- Department of Theoretical and Applied Sciences, Biomedical Research Division, Centre of Neuroscience, University of Insubria, Busto Arsizio, Varese, Italy
| | - Daniela Parolaro
- Department of Theoretical and Applied Sciences, Biomedical Research Division, Centre of Neuroscience, University of Insubria, Busto Arsizio, Varese, Italy
- * E-mail:
| |
Collapse
|
28
|
Wang Y, Tang H, Zhang Y, Li J, Li B, Gao Z, Wang X, Cheng G, Fei Z. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line. Int J Mol Med 2013; 32:1077-84. [PMID: 24048272 DOI: 10.3892/ijmm.2013.1500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.
Collapse
Affiliation(s)
- Yuangang Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bozdag S, Li A, Riddick G, Kotliarov Y, Baysan M, Iwamoto FM, Cam MC, Kotliarova S, Fine HA. Age-specific signatures of glioblastoma at the genomic, genetic, and epigenetic levels. PLoS One 2013; 8:e62982. [PMID: 23658659 PMCID: PMC3639162 DOI: 10.1371/journal.pone.0062982] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 04/01/2013] [Indexed: 11/18/2022] Open
Abstract
Age is a powerful predictor of survival in glioblastoma multiforme (GBM) yet the biological basis for the difference in clinical outcome is mostly unknown. Discovering genes and pathways that would explain age-specific survival difference could generate opportunities for novel therapeutics for GBM. Here we have integrated gene expression, exon expression, microRNA expression, copy number alteration, SNP, whole exome sequence, and DNA methylation data sets of a cohort of GBM patients in The Cancer Genome Atlas (TCGA) project to discover age-specific signatures at the transcriptional, genetic, and epigenetic levels and validated our findings on the REMBRANDT data set. We found major age-specific signatures at all levels including age-specific hypermethylation in polycomb group protein target genes and the upregulation of angiogenesis-related genes in older GBMs. These age-specific differences in GBM, which are independent of molecular subtypes, may in part explain the preferential effects of anti-angiogenic agents in older GBM and pave the way to a better understanding of the unique biology and clinical behavior of older versus younger GBMs.
Collapse
Affiliation(s)
- Serdar Bozdag
- Neuro-Oncology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
18F-fluorothymidine-pet imaging of glioblastoma multiforme: effects of radiation therapy on radiotracer uptake and molecular biomarker patterns. ScientificWorldJournal 2013; 2013:796029. [PMID: 23690748 PMCID: PMC3649687 DOI: 10.1155/2013/796029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/25/2013] [Indexed: 02/04/2023] Open
Abstract
Introduction. PET imaging is a useful clinical tool for studying tumor progression and treatment effects. Conventional (18)F-FDG-PET imaging is of limited usefulness for imaging Glioblastoma Multiforme (GBM) due to high levels of glucose uptake by normal brain and the resultant signal-to-noise intensity. (18)F-Fluorothymidine (FLT) in contrast has shown promise for imaging GBM, as thymidine is taken up preferentially by proliferating cells. These studies were undertaken to investigate the effectiveness of (18)F-FLT-PET in a GBM mouse model, especially after radiation therapy (RT), and its correlation with useful biomarkers, including proliferation and DNA damage. Methods. Nude/athymic mice with human GBM orthografts were assessed by microPET imaging with (18)F-FDG and (18)F-FLT. Patterns of tumor PET imaging were then compared to immunohistochemistry and immunofluorescence for markers of proliferation (Ki-67), DNA damage and repair (γH2AX), hypoxia (HIF-1α), and angiogenesis (VEGF). Results. We confirmed that (18)F-FLT-PET uptake is limited in healthy mice but enhanced in the intracranial tumors. Our data further demonstrate that (18)F-FLT-PET imaging usefully reflects the inhibition of tumor by RT and correlates with changes in biomarker expression. Conclusions. (18)F-FLT-PET imaging is a promising tumor imaging modality for GBM, including assessing RT effects and biologically relevant biomarkers.
Collapse
|
31
|
The Bmi-1/NF-κB/VEGF story: another hint for proteasome involvement in glioma angiogenesis? J Cell Commun Signal 2013; 7:235-7. [PMID: 23494769 DOI: 10.1007/s12079-013-0198-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022] Open
Abstract
Angiogenesis is an essential process for sustaining tumor growth, particularly in cancer cell types with rapid proliferation, including malignant glioma. Bmi-1 is a transcriptional regulator of the polycomb group involved in repression of gene expression by altering the state of chromatin at specific promoters. Bmi-1 overexpression was previously implicated in glioma tumorigenesis, proliferation, self-renewal, apoptotic resistance and invasiveness. In a recent study, Jiang et al. (PLoS One 8:e55527, 2013) have revealed the involvement of Bmi-1/NF-κB/VEGF pathway in promoting glioma cell-mediated tubule formation and migration of endothelial cells and neovascularization both in vitro and in vivo. NF-κB inhibition reversed these effects, supporting a role for Bmi-1 in glioma angiogenesis. Given the intimate association of Bmi-1 and NF-κB with the ubiquitin-proteasome system, a better understanding of protein turnover in angiogenic signaling, discussed here, provides novel implications for anti-angiogenic treatment strategies in gliomas.
Collapse
|
32
|
Waerzeggers Y, Monfared P, Viel T, Faust A, Kopka K, Schäfers M, Tavitian B, Winkeler A, Jacobs A. Specific biomarkers of receptors, pathways of inhibition and targeted therapies: pre-clinical developments. Br J Radiol 2012; 84 Spec No 2:S168-78. [PMID: 22433827 DOI: 10.1259/bjr/66405626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. Especially the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. In our other review we focused on imaging biomarkers of general biochemical and physiological processes related with tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. In this part of the review, we will discuss the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways and their application in targeted therapies.
Collapse
Affiliation(s)
- Y Waerzeggers
- European Institute for Molecular Imaging, Westfaelische Wilhelms-University, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nagy JD, Armbruster D. Evolution of uncontrolled proliferation and the angiogenic switch in cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2012; 9:843-876. [PMID: 23311425 DOI: 10.3934/mbe.2012.9.843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The major goal of evolutionary oncology is to explain how malignant traits evolve to become cancer ``hallmarks." One such hallmark---the angiogenic switch---is difficult to explain for the same reason altruism is difficult to explain. An angiogenic clone is vulnerable to ``cheater" lineages that shunt energy from angiogenesis to proliferation, allowing the cheater to outcompete cooperative phenotypes in the environment built by the cooperators. Here we show that cell- or clone-level selection is sufficient to explain the angiogenic switch, but not because of direct selection on angiogenesis factor secretion---angiogenic potential evolves only as a pleiotropic afterthought. We study a multiscale mathematical model that includes an energy management system in an evolving angiogenic tumor. The energy management model makes the counterintuitive prediction that ATP concentration in resting cells increases with increasing ATP hydrolysis, as seen in other theoretical and empirical studies. As a result, increasing ATP hydrolysis for angiogenesis can increase proliferative potential, which is the trait directly under selection. Intriguingly, this energy dynamic allows an evolutionary stable angiogenesis strategy, but this strategy is an evolutionary repeller, leading to runaway selection for extreme vascular hypo- or hyperplasia. The former case yields a tumor-on-a-tumor, or hypertumor, as predicted in other studies, and the latter case may explain vascular hyperplasia evident in certain tumor types.
Collapse
Affiliation(s)
- John D Nagy
- Department of Life Sciences, Scottsdale Community College, 9000 E. Chaparral Rd., Scottsdale, AZ 85256, United States.
| | | |
Collapse
|
34
|
Bottsford-Miller JN, Coleman RL, Sood AK. Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J Clin Oncol 2012; 30:4026-34. [PMID: 23008289 DOI: 10.1200/jco.2012.41.9242] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis has long been considered an important target for cancer therapy. Initial efforts have primarily focused on targeting of endothelial and tumor-derived vascular endothelial growth factor signaling. As evidence emerges that angiogenesis has significant mechanistic complexity, therapeutic resistance and escape have become practical limitations to drug development. Here, we review the mechanisms by which dynamic changes occur in the tumor microenvironment in response to antiangiogenic therapy, leading to drug resistance. These mechanisms include direct selection of clonal cell populations with the capacity to rapidly upregulate alternative proangiogenic pathways, increased invasive capacity, and intrinsic resistance to hypoxia. The implications of normalization of vasculature with subsequently improved vascular function as a result of antiangiogenic therapy are explored, as are the implications of the ability to incorporate and co-opt otherwise normal vasculature. Finally, we consider the extent to which a better understanding of the biology of hypoxia and reoxygenation, as well as the depth and breadth of systems invested in angiogenesis, may offer putative biomarkers and novel therapeutic targets. Insights gained through this work may offer solutions for personalizing antiangiogenesis approaches and improving the outcome of patients with cancer.
Collapse
Affiliation(s)
- Justin N Bottsford-Miller
- Departments of Gynecologic Oncology and Cancer Biology, University of Texas MD Anderson Cancer Center, Unit 1362, PO Box 301439, Houston, TX 77230-1439, USA
| | | | | |
Collapse
|
35
|
Wang W, Ao L, Rayburn ER, Xu H, Zhang X, Zhang X, Nag SA, Wu X, Wang MH, Wang H, Van Meir EG, Zhang R. KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology. PLoS One 2012; 7:e44883. [PMID: 23028659 PMCID: PMC3441526 DOI: 10.1371/journal.pone.0044883] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/15/2012] [Indexed: 12/24/2022] Open
Abstract
The purpose of the present study was to determine the in vitro and in vivo anti-cancer activity and pharmacological properties of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1. In the present study, we investigated the in vitro activity of KCN1 on cell proliferation and cell cycle distribution of pancreatic cancer cells, using the MTT and BrdUrd assays, and flow cytometry. The in vivo anti-cancer effects of KCN1 were evaluated in two distinct xenograft models of pancreatic cancer. We also developed an HPLC method for the quantitation of the compound, and examined its stability in mouse plasma, plasma protein binding, and degradation by mouse S9 microsomal enzymes. Furthermore, we examined the pharmacokinetics of KCN1 following intravenous or intraperitoneal injection in mice. Results showed that, in a dose-dependent manner, KCN1 inhibited cell growth and induced cell cycle arrest in human pancreatic cancer cells in vitro, and showed in vivo anticancer efficacy in mice bearing Panc-1 or Mia Paca-2 tumor xenografts. The HPLC method provided linear detection of KCN1 in all of the matrices in the range from 0.1 to 100 µM, and had a lower limit of detection of 0.085 µM in mouse plasma. KCN1 was very stable in mouse plasma, extensively plasma bound, and metabolized by S9 microsomal enzymes. The pharmacokinetic studies indicated that KCN1 could be detected in all of the tissues examined, most for at least 24 h. In conclusion, our preclinical data indicate that KCN1 is a potential therapeutic agent for pancreatic cancer, providing a basis for its future development.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lin Ao
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth R. Rayburn
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hongxia Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiangrong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xu Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Subhasree Ashok Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Xuming Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Nantong Cancer Hospital, Nantong University, Nantong, China
| | - Ming-Hai Wang
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
| | - Hui Wang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Erwin G. Van Meir
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (EGVM); (RZ)
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States of America
- Division of Clinical Pharmacology, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (EGVM); (RZ)
| |
Collapse
|
36
|
Semaphorin-3D and semaphorin-3E inhibit the development of tumors from glioblastoma cells implanted in the cortex of the brain. PLoS One 2012; 7:e42912. [PMID: 22936999 PMCID: PMC3427296 DOI: 10.1371/journal.pone.0042912] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/16/2012] [Indexed: 01/13/2023] Open
Abstract
Class-3 semaphorins are secreted axon guidance factors. Some of these semaphorins have recently been characterized as suppressors of tumor progression. To determine if class-3 semaphorins can be used to inhibit the development of glioblastoma-multiforme tumors, we expressed recombinant sema-3A, 3B, 3D, 3E, 3F or 3G in U87MG glioblastoma cells. Sema3A and sema3B expressing cells contracted and changed shape persistently while cells expressing other semaphorins did not. Sema3A and sema3F differed from other semaphorins including sema3B as they also inhibited the proliferation of the cells and the formation of soft agar colonies. With the exception of sema3G and sema3B, expression of these semaphorins in U87MG cells inhibited significantly tumor development from subcutaneously implanted cells. Strong inhibition of tumor development was also observed following implantation of U87MG cells expressing each of the class-3 semaphorins in the cortex of mouse brains. Sema3D and sema3E displayed the strongest inhibitory effects and their expression in U373MG or in U87MG glioblastoma cells implanted in the brains of mice prolonged the survival of the mice by more then two folds. Furthermore, most of the mice that died prior to the end of the experiment did not develop detectable tumors and many of the mice survived to the end of the experiment. Most of the semaphorins that we have used here with the exception of sema3D were characterized previously as inhibitors of angiogenesis. Our results indicate that sema3D also functions as an inhibitor of angiogenesis and suggest that the anti-tumorigenic effects are due primarily to inhibition of tumor angiogenesis. These results indicate that class-3 semaphorins such as sema3D and sema3E could perhaps be used to treat glioblastoma patients.
Collapse
|
37
|
Shi Q, Yin S, Kaluz S, Ni N, Devi NS, Mun J, Wang D, Damera K, Chen W, Burroughs S, Mooring SR, Goodman MM, Van Meir EG, Wang B, Snyder JP. Binding Model for the Interaction of Anticancer Arylsulfonamides with the p300 Transcription Cofactor. ACS Med Chem Lett 2012; 3:620-5. [PMID: 24936238 DOI: 10.1021/ml300042k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/21/2012] [Indexed: 02/02/2023] Open
Abstract
Hypoxia inducible factors (HIFs) are transcription factors that activate expression of multiple gene products and promote tumor adaptation to a hypoxic environment. To become transcriptionally active, HIFs associate with cofactors p300 or CBP. Previously, we found that arylsulfonamides can antagonize HIF transcription in a bioassay, block the p300/HIF-1α interaction, and exert potent anticancer activity in several animal models. In the present work, KCN1-bead affinity pull down, (14)C-labeled KCN1 binding, and KCN1-surface plasmon resonance measurements provide initial support for a mechanism in which KCN1 can bind to the CH1 domain of p300 and likely prevent the p300/HIF-1α assembly. Using a previously reported NMR structure of the p300/HIF-1α complex, we have identified potential binding sites in the p300-CH1 domain. A two-site binding model coupled with IC50 values has allowed establishment of a modest ROC-based enrichment and creation of a guide for future analogue synthesis.
Collapse
Affiliation(s)
- Qi Shi
- Department
of Chemistry, Emory University, Atlanta,
Georgia 30322, United States
| | - Shaoman Yin
- Laboratory of Molecular Neuro-Oncology,
Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Stefan Kaluz
- Laboratory of Molecular Neuro-Oncology,
Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Nanting Ni
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Narra Sarojini Devi
- Laboratory of Molecular Neuro-Oncology,
Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jiyoung Mun
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Danzhu Wang
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Krishna Damera
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Weixuan Chen
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Sarah Burroughs
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Suazette Reid Mooring
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Mark M. Goodman
- Department of Hematology and
Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Erwin G. Van Meir
- Laboratory of Molecular Neuro-Oncology,
Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Hematology and
Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Binghe Wang
- Department of Chemistry and Center
for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - James P. Snyder
- Department
of Chemistry, Emory University, Atlanta,
Georgia 30322, United States
- Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
38
|
Mechanisms of glioma-associated neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1126-41. [PMID: 22858156 DOI: 10.1016/j.ajpath.2012.06.030] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 06/09/2012] [Accepted: 06/18/2012] [Indexed: 01/10/2023]
Abstract
Glioblastomas (GBMs), the most common primary brain tumor in adults, are characterized by resistance to chemotherapy and radiotherapy. One of the defining characteristics of GBM is an abundant and aberrant vasculature. The processes of vascular co-option, angiogenesis, and vasculogenesis in gliomas have been extensively described. Recently, however, it has become clear that these three processes are not the only mechanisms by which neovascularization occurs in gliomas. Furthermore, it seems that these processes interact extensively, with potential overlap among them. At least five mechanisms by which gliomas achieve neovascularization have been described: vascular co-option, angiogenesis, vasculogenesis, vascular mimicry, and (the most recently described) glioblastoma-endothelial cell transdifferentiation. We review these mechanisms in glioma neovascularization, with a particular emphasis on the roles of hypoxia and glioma stem cells in each process. Although some of these processes are well established, others have been identified only recently and will need to be further investigated for complete validation. We also review strategies to target glioma neovascularization and the development of resistance to these therapeutic strategies. Finally, we describe how these complex processes interlink and overlap. A thorough understanding of the contributing molecular processes that control the five modalities reviewed here should help resolve the treatment resistance that characterizes GBMs.
Collapse
|
39
|
Rodriguez FJ, Orr BA, Ligon KL, Eberhart CG. Neoplastic cells are a rare component in human glioblastoma microvasculature. Oncotarget 2012; 3:98-106. [PMID: 22298889 PMCID: PMC3292896 DOI: 10.18632/oncotarget.427] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microvascular proliferation is a key biological and diagnostic hallmark of human glioblastoma, one of the most aggressive forms of human cancer. It has recently been suggested that stem-like glioblastoma cells have the capacity to differentiate into functional endothelial cells, and that a significant proportion of the vascular lining in tumors has a neoplastic origin. In principle, this finding could significantly impact the efficacy and development of antiangiogenic therapies targeting the vasculature. While the potential of stem-like cancer cells to form endothelium in culture seems clear, in our clinical experience using a variety of molecular markers, neoplastic cells do not contribute significantly to the endothelial-lined vasculature of primary human glioblastoma. We sought to confirm this impression by analyzing vessels in glioblastoma previously examined using chromogenic in situ hybridization (CISH) for EGFR and immunohistochemistry for mutant IDH1. Vessels containing cells expressing these definitive neoplastic markers were identified in a small fraction of tumors, but only 10% of vessel profiles examined contained such cells and when identified these cells comprised less than 10% of the vascular cellularity in the cross section. Interestingly, these rare intravascular cells showing EGFR amplification by CISH or mutant IDH1 protein by immunohistochemistry were located in the middle or outer portions of vessel walls, but not amongst the morphologic boundaries of the endothelial lining. To more directly address the capacity of glioblastoma cells to contribute to the vascular endothelium, we performed double labeling (Immunofluorescence/FISH) for the endothelial marker CD34 and EGFR gene locus. Although rare CD34 positive neoplastic cells unassociated with vessels were identified (<1%), this analysis did not identify EGFR amplified cells within vascular linings, and further supports our observations that incorporation of glioblastoma cells into the tumor vessels is at best extremely rare, and therefore of questionable clinical or therapeutic significance.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Pathology, Division of Neuropathology, Johns Hopkins University, MD, USA.
| | | | | | | |
Collapse
|
40
|
Schmidt B, Lee HJ, Ryeom S, Yoon SS. Combining Bevacizumab with Radiation or Chemoradiation for Solid Tumors: A Review of the Scientific Rationale, and Clinical Trials. ACTA ACUST UNITED AC 2012; 1:169-179. [PMID: 24977113 DOI: 10.2174/2211552811201030169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radiation therapy or the combination of radiation and chemotherapy is an important component in the local control of many tumor types including glioblastoma, rectal cancer, and pancreatic cancer. The addition of anti-angiogenic agents to chemotherapy is now standard treatment for a variety of metastatic cancers including colorectal cancer and non-squamous cell lung cancer. Anti-angiogenic agents can increase the efficacy of radiation or chemoradiation for primary tumors through mechanisms such as vascular normalization and augmentation of endothelial cell injury. The most commonly used anti-angiogenic drug, bevacizumab, is a humanized monoclonal antibody that binds and neutralizes vascular endothelial growth factor A (VEGF-A). Dozens of preclinical studies nearly uniformly demonstrate that inhibition of VEGF-A or its receptors potentiates the effects of radiation therapy against solid tumors, and this potentiation is generally independent of the type or schedule of radiation and timing of VEGF-A inhibitor delivery. There are now several clinical trials combining bevacizumab with radiation or chemoradiation for the local control of various primary, recurrent, and metastatic tumors, and many of these early trials show encouraging results. Some added toxicities occur with the delivery of bevacizumab but common toxicities such as hypertension and proteinuria are generally easily managed while severe toxicities are rare. In the future, bevacizumab and other anti-angiogenic agents may become common additions to radiation and chemoradiation regimens for tumors that are difficult to locally control.
Collapse
Affiliation(s)
- Benjamin Schmidt
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hae-June Lee
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandra Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sam S Yoon
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA ; Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
41
|
Jackson C, Ruzevick J, Amin AG, Lim M. Potential role for STAT3 inhibitors in glioblastoma. Neurosurg Clin N Am 2012; 23:379-89. [PMID: 22748651 DOI: 10.1016/j.nec.2012.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Signal transducers and activators of transcription 3 (STAT3) is a transcription factor that translocates to the nucleus to modulate the expression of a variety of genes associated with cell survival, differentiation, proliferation, angiogenesis, and immune function. Several cancers induce constitutive STAT3 activation. Most studies have reported that STAT3 inhibition has antineoplastic activity; however, emerging evidence suggests that the role of STAT3 activity in GBM may be more nuanced than initially appreciated. The authors review the roles of STAT3 in GBM and discuss potential strategies for targeting STAT3.
Collapse
Affiliation(s)
- Christopher Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
42
|
Cooper LA, Gutman DA, Chisolm C, Appin C, Kong J, Rong Y, Kurc T, Van Meir EG, Saltz JH, Moreno CS, Brat DJ. The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2108-19. [PMID: 22440258 PMCID: PMC3354586 DOI: 10.1016/j.ajpath.2012.01.040] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/12/2012] [Accepted: 01/19/2012] [Indexed: 01/05/2023]
Abstract
The Cancer Genome Atlas (TCGA) project has generated gene expression data that divides glioblastoma (GBM) into four transcriptional classes: proneural, neural, classical, and mesenchymal. Because transcriptional class is only partially explained by underlying genomic alterations, we hypothesize that the tumor microenvironment may also have an impact. In this study, we focused on necrosis and angiogenesis because their presence is both prognostically and biologically significant. These features were quantified in digitized histological images of TCGA GBM frozen section slides that were immediately adjacent to samples used for molecular analysis. Correlating these features with transcriptional data, we found that the mesenchymal transcriptional class was significantly enriched with GBM samples that contained a high degree of necrosis. Furthermore, among 2422 genes that correlated with the degree of necrosis in GBMs, transcription factors known to drive the mesenchymal expression class were most closely related, including C/EBP-β, C/EBP-δ, STAT3, FOSL2, bHLHE40, and RUNX1. Non-mesenchymal GBMs in the TCGA data set were found to become more transcriptionally similar to the mesenchymal class with increasing levels of necrosis. In addition, high expression levels of the master mesenchymal factors C/EBP-β, C/EBP-δ, and STAT3 were associated with a poor prognosis. Strong, specific expression of C/EBP-β and C/EBP-δ by hypoxic, perinecrotic cells in GBM likely account for their tight association with necrosis and may be related to their poor prognosis.
Collapse
Affiliation(s)
- Lee A.D. Cooper
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia
- Center for Comprehensive Informatics, Emory University, Atlanta, Georgia
| | - David A. Gutman
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia
- Center for Comprehensive Informatics, Emory University, Atlanta, Georgia
| | - Candace Chisolm
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Christina Appin
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Jun Kong
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia
- Center for Comprehensive Informatics, Emory University, Atlanta, Georgia
| | - Yuan Rong
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Tahsin Kurc
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia
- Center for Comprehensive Informatics, Emory University, Atlanta, Georgia
| | - Erwin G. Van Meir
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia
- Department of Neurosurgery, Emory University, Atlanta, Georgia
- School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Joel H. Saltz
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
- Center for Comprehensive Informatics, Emory University, Atlanta, Georgia
- School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Carlos S. Moreno
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
- Center for Comprehensive Informatics, Emory University, Atlanta, Georgia
- School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Daniel J. Brat
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
- Center for Comprehensive Informatics, Emory University, Atlanta, Georgia
- School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
43
|
Affiliation(s)
- Andrew S Chi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
44
|
Mooring SR, Jin H, Devi NS, Jabbar AA, Kaluz S, Liu Y, Van Meir EG, Wang B. Design and synthesis of novel small-molecule inhibitors of the hypoxia inducible factor pathway. J Med Chem 2011; 54:8471-89. [PMID: 22032632 DOI: 10.1021/jm201018g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia, a reduction in partial oxygen pressure, is a salient property of solid tumors. Hypoxia drives malignant progression and metastasis in tumors and participates in tumor resistance to radio- and chemotherapies. Hypoxia activates the hypoxia-inducible factor (HIF) family of transcription factors, which induce target genes that regulate adaptive biological processes such as anaerobic metabolism, cell motility, and angiogenesis. Clinical evidence has demonstrated that expression of HIF-1 is strongly associated with poor patient prognosis and activation of HIF-1 contributes to malignant behavior and therapeutic resistance. Consequently, HIF-1 has become an important therapeutic target for inhibition by small molecules. Herein, we describe the design and synthesis of small molecules that inhibit the HIF-1 signaling pathway. Many of these compounds exhibit inhibitory activity in the nanomolar range. Separate mechanistic studies indicate that these inhibitors do not alter HIF-1 levels but interfere with the ability of HIF-1α/HIF-1β to interact with cofactors p300/CBP to form an active transcriptional complex.
Collapse
Affiliation(s)
- Suazette Reid Mooring
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Denbo JW, Williams RF, Orr WS, Sims TL, Ng CY, Zhou J, Spence Y, Morton CL, Nathwani AC, Duntsch C, Pfeffer LM, Davidoff AM. Continuous local delivery of interferon-β stabilizes tumor vasculature in an orthotopic glioblastoma xenograft resection model. Surgery 2011; 150:497-504. [PMID: 21878236 DOI: 10.1016/j.surg.2011.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND High-grade glioblastomas have immature, leaky tumor blood vessels that impede the efficacy of adjuvant therapy. We assessed the ability of human interferon (hIFN)-β delivered locally via gene transfer to effect vascular stabilization in an orthotopic model of glioblastoma xenograft resection. METHODS Xenografts were established by injecting 3 grade IV glioblastoma cell lines (GBM6-luc, MT330-luc, and SJG2-luc) into the cerebral cortex of nude rats. Tumors underwent subtotal resection, and then had gel foam containing an adeno-associated virus vector encoding either hIFN-β or green fluorescence protein (control) placed in the resection cavity. The primary endpoint was stabilization of tumor vasculature, as evidenced by CD34, α-SMA, and CA IX staining. Overall survival was a secondary endpoint. RESULTS hIFN-β treatment altered the tumor vasculature of GBM6-luc and SJG2-luc xenografts, decreasing the density of endothelial cells, stabilizing vessels with pericytes, and decreasing tumor hypoxia. The mean survival for rats with these neoplasms was not improved, however. In rats with MT330-luc xenografts, hIFN-β resulted in tumor regression with a 6-month survival of 55% (INF-β group) and 9% (control group). CONCLUSION The use of AAV hIFN-β in our orthotopic model of glioblastoma resection stabilized tumor vasculature and improved survival in rats with MT330 xenografts.
Collapse
Affiliation(s)
- Jason W Denbo
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN; Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System. Clin Med Insights Oncol 2011; 5:265-314. [PMID: 22084619 PMCID: PMC3201112 DOI: 10.4137/cmo.s7685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 μM or higher.At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.
Collapse
Affiliation(s)
- Manuel Nieto-Sampedro
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Beatriz Valle-Argos
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Diego Gómez-Nicola
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | | |
Collapse
|
47
|
Abstract
Multiple vascular patterns are presented in tumors of the central nervous system (CNS), including microvascular hyperplasia, branching capillaries, numerous capillaries without definite pattern, hyalinized vessels, and angiomatous area. These vascular patterns play important roles in pathological diagnosis of brain tumors. Because of insufficient recognition of the significance of the various vascular patterns, only a few of them have been applied in pathological diagnosis, leading to missed diagnosis and diagnostic errors. Microvascular hyperplasia can present in multiple brain tumors but display different diagnostic values. Otherwise, varied brain tumors characterized by branching capillaries or vascular pattern mimicking branching capillaries should be given careful consideration. Therefore, a familiarity of these tumors and their vascular pattern is essential for general pathologists. This study reviews the value of various kinds of vascular patterns for pathological diagnosis of brain tumors, constructs a framework for better understanding, and provides a novel perspective for general pathologists.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Pathology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
| | | | | | | |
Collapse
|
48
|
Wachsberger PR, Lawrence RY, Liu Y, Xia X, Andersen B, Dicker AP. Cediranib enhances control of wild type EGFR and EGFRvIII-expressing gliomas through potentiating temozolomide, but not through radiosensitization: implications for the clinic. J Neurooncol 2011; 105:181-90. [PMID: 21516367 DOI: 10.1007/s11060-011-0580-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/08/2011] [Indexed: 12/25/2022]
Abstract
Glioblastomas (GBM) frequently overexpress the epidermal growth factor receptor (wtEGFR) or its mutant, EGFRvIII, contributing to chemo- and radioresistance. The current standard of care is surgery followed by radiation therapy with concurrent temozolomide (TMZ) followed by adjuvant TMZ. New treatment strategies for GBM include blockade of EGFR signaling and angiogenesis. Cediranib is a highly potent receptor tyrosine kinase inhibitor that inhibits all three VEGF receptors. This study investigated the radiosensitizing potential of cediranib in combination with TMZ in U87 GBM xenografts expressing wtEGFR or EGFRvIII. U87 GBM cells stably transfected with either wtEGFR or EGFRvIII were injected into the hind limbs of nude mice. Cediranib was dosed at 3 mg/kg daily five times a week orally for 2 weeks. TMZ was dosed at 10 mg/kg once only on day 0. Radiotherapy (RT) consisted of 3 fractions of 5 Gy (days 0-2). Cediranib did not radiosensitize either tumor type; however, cediranib did enhance the effectiveness of TMZ in both transfectants. Our results suggest that combining cediranib with temozolomide in the clinic will lead to improved tumor control.
Collapse
Affiliation(s)
- Phyllis R Wachsberger
- Department of Radiation Oncology, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Nakabayashi H, Shimizu K. HA1077, a Rho kinase inhibitor, suppresses glioma-induced angiogenesis by targeting the Rho-ROCK and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signal pathways. Cancer Sci 2010; 102:393-9. [DOI: 10.1111/j.1349-7006.2010.01794.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
50
|
Zhu X, Fujita M, Snyder LA, Okada H. Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J Neurooncol 2010; 104:83-92. [PMID: 21116835 DOI: 10.1007/s11060-010-0473-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/12/2010] [Indexed: 01/04/2023]
Abstract
Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) inhibit anti-tumor immune responses and facilitate tumor growth. Precursors for these immune cell populations migrate to the tumor site in response to tumor secretion of chemokines, such as monocyte chemoattractant protein-1 (MCP-1/CCL2), which was originally purified and identified from human gliomas. In syngeneic mouse GL261 glioma and human U87 glioma xenograft models, we evaluated the efficacy of systemic CCL2 blockade by monoclonal antibodies (mAb) targeting mouse and/or human CCL2. Intraperitoneal (i.p.) administration of anti-mouse CCL2 mAb as monotherapy (2 mg/kg/dose, twice a week) significantly, albeit modestly, prolonged the survival of C57BL/6 mice bearing intracranial GL261 glioma (P = 0.0033), which was concomitant with a decrease in TAMs and MDSCs in the tumor microenvironment. Similarly, survival was modestly prolonged in severe combined immunodeficiency mice bearing intracranial human U87 glioma xenografts treated with both anti-human CCL2 mAb and anti-mouse CCL2 antibodies (2 mg/kg/dose for each, twice a week) compared to mice treated with control IgG (P = 0.0159). Furthermore, i.p. administration of anti-mouse CCL2 antibody in combination with temozolomide (TMZ) significantly prolonged the survival of C57BL/6 mice bearing GL261 glioma with 8 of 10 treated mice surviving longer than 70 days, while only 3 of 10 mice treated with TMZ and isotype IgG survived longer than 70 days (P = 0.0359). These observations provide support for development of mAb-based CCL2 blockade strategies in combination with the current standard TMZ-based chemotherapy for treatment of malignant gliomas.
Collapse
Affiliation(s)
- Xinmei Zhu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|