1
|
Miele E, Anghileri E, Calatozzolo C, Lazzarini E, Patrizi S, Ciolfi A, Pedace L, Patanè M, Abballe L, Paterra R, Maddaloni L, Barresi S, Mastronuzzi A, Petruzzi A, Tramacere I, Farinotti M, Gurrieri L, Pirola E, Scarpelli M, Lombardi G, Villani V, Simonelli M, Merli R, Salmaggi A, Tartaglia M, Silvani A, DiMeco F, Calistri D, Lamperti E, Locatelli F, Indraccolo S, Pollo B. Clinicopathological and molecular landscape of 5-year IDH-wild-type glioblastoma survivors: A multicentric retrospective study. Cancer Lett 2024; 588:216711. [PMID: 38423245 DOI: 10.1016/j.canlet.2024.216711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Five-year glioblastoma (GBM) survivors (LTS) are the minority of the isocitrate dehydrogenase (IDH)-wild-type GBM patients, and their molecular fingerprint is still largely unexplored. This multicenter retrospective study analyzed a large LTS-GBM cohort from nine Italian institutions and molecularly characterized a subgroup of patients by mutation, DNA methylation (DNAm) and copy number variation (CNV) profiling, comparing it to standard survival GBM. Mutation scan allowed the identification of pathogenic variants in most cases, showing a similar mutational spectrum in both groups, and highlighted TP53 as the most commonly mutated gene in the LTS group. We confirmed DNAm as a valuable tool for GBM classification with a diagnostic refinement by using brain tumor classifier v12.5. LTS were more heterogeneous with more cases classified as diffuse pediatric high-grade glioma subtypes and having peculiar CNVs. We observed a global higher methylation in CpG islands and in gene promoters of LTS with methylation levels of distinct gene promoters correlating with prognosis.
Collapse
Affiliation(s)
- Evelina Miele
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Anghileri
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta (FINCB), Milan, Italy.
| | - Chiara Calatozzolo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisabetta Lazzarini
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padua, Italy
| | - Sara Patrizi
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Pedace
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Monica Patanè
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luana Abballe
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rosina Paterra
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta (FINCB), Milan, Italy
| | - Luisa Maddaloni
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta (FINCB), Milan, Italy
| | - Sabina Barresi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandra Petruzzi
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta (FINCB), Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mariangela Farinotti
- Neuroepidemiology-Brain Cancer Registry, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorena Gurrieri
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | - Elena Pirola
- Department of Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Scarpelli
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Italy
| | - Giuseppe Lombardi
- Medical Oncology Unit 1, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy
| | - Veronica Villani
- Neuro-Oncology Unit, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Matteo Simonelli
- Department of Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Rossella Merli
- Neurosurgery Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Silvani
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta (FINCB), Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Neurological Surgery, John Hopkins Medical School, Baltimore, MD, USA
| | - Daniele Calistri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Elena Lamperti
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta (FINCB), Milan, Italy
| | - Franco Locatelli
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto (IOV)-IRCCS, Padua, Italy; Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
2
|
Yesudhas D, Dharshini SAP, Taguchi YH, Gromiha MM. Tumor Heterogeneity and Molecular Characteristics of Glioblastoma Revealed by Single-Cell RNA-Seq Data Analysis. Genes (Basel) 2022; 13:428. [PMID: 35327982 PMCID: PMC8955282 DOI: 10.3390/genes13030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common infiltrating lethal tumor of the brain. Tumor heterogeneity and the precise characterization of GBM remain challenging, and the disease-specific and effective biomarkers are not available at present. To understand GBM heterogeneity and the disease prognosis mechanism, we carried out a single-cell transcriptome data analysis of 3389 cells from four primary IDH-WT (isocitrate dehydrogenase wild type) glioblastoma patients and compared the characteristic features of the tumor and periphery cells. We observed that the marker gene expression profiles of different cell types and the copy number variations (CNVs) are heterogeneous in the GBM samples. Further, we have identified 94 differentially expressed genes (DEGs) between tumor and periphery cells. We constructed a tissue-specific co-expression network and protein-protein interaction network for the DEGs and identified several hub genes, including CX3CR1, GAPDH, FN1, PDGFRA, HTRA1, ANXA2 THBS1, GFAP, PTN, TNC, and VIM. The DEGs were significantly enriched with proliferation and migration pathways related to glioblastoma. Additionally, we were able to identify the differentiation state of microglia and changes in the transcriptome in the presence of glioblastoma that might support tumor growth. This study provides insights into GBM heterogeneity and suggests novel potential disease-specific biomarkers which could help to identify the therapeutic targets in GBM.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (D.Y.); (S.A.P.D.)
| | - S. Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (D.Y.); (S.A.P.D.)
| | - Y-h. Taguchi
- Department of Physics, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan;
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (D.Y.); (S.A.P.D.)
| |
Collapse
|
3
|
Kalita O, Sporikova Z, Hajduch M, Megova Houdova M, Slavkovsky R, Hrabalek L, Halaj M, Klementova Y, Dolezel M, Drabek J, Tuckova L, Ehrmann J, Vrbkova J, Trojanec R, Vaverka M. The Influence of Gene Aberrations on Survival in Resected IDH Wildtype Glioblastoma Patients: A Single-Institution Study. ACTA ACUST UNITED AC 2021; 28:1280-1293. [PMID: 33801093 PMCID: PMC8025822 DOI: 10.3390/curroncol28020122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
This prospective population-based study on a group of 132 resected IDH-wildtype (IDH-wt) glioblastoma (GBM) patients assesses the prognostic and predictive value of selected genetic biomarkers and clinical factors for GBM as well as the dependence of these values on the applied therapeutic modalities. The patients were treated in our hospital between June 2006 and June 2015. Clinical data and tumor samples were analyzed to determine the frequencies of TP53, MDM2, EGFR, RB1, BCR, and CCND1 gene aberrations and the duplication/deletion statuses of the 9p21.3, 1p36.3, 19q13.32, and 10p11.1 chromosome regions. Cut-off values distinguishing low (LCN) and high (HCN) copy number status for each marker were defined. Additionally, MGMT promoter methylation and IDH1/2 mutation status were investigated retrospectively. Young age, female gender, Karnofsky scores (KS) above 80, chemoradiotherapy, TP53 HCN, and CCND1 HCN were identified as positive prognostic factors, and smoking was identified as a negative prognostic factor. Cox proportional regression models of the chemoradiotherapy patient group revealed TP53 HCN and CCND1 HCN to be positive prognostic factors for both progression-free survival and overall survival. These results confirmed the influence of key clinical factors (age, KS, adjuvant oncotherapy, and smoking) on survival in GBM IDH-wt patients and demonstrated the prognostic and/or predictive importance of CCND1, MDM2, and 22q12.2 aberrations.
Collapse
Affiliation(s)
- Ondrej Kalita
- Department of Neurosurgery, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Zuzana Sporikova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Magdalena Megova Houdova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Rastislav Slavkovsky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Lumir Hrabalek
- Department of Neurosurgery, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Matej Halaj
- Department of Neurosurgery, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Yvona Klementova
- Department of Oncology, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Martin Dolezel
- Department of Oncology, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Jiri Drabek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Lucie Tuckova
- Department of Pathology and Laboratory of Molecular Pathology, University Hospital Olomouc, Hnevotinska 3, 779 00 Olomouc, Czech Republic
| | - Jiri Ehrmann
- Department of Pathology and Laboratory of Molecular Pathology, University Hospital Olomouc, Hnevotinska 3, 779 00 Olomouc, Czech Republic
| | - Jana Vrbkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Radek Trojanec
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00 Olomouc, Czech Republic
| | - Miroslav Vaverka
- Department of Neurosurgery, University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| |
Collapse
|
4
|
Ülgen E, Can Ö, Bilguvar K, Akyerli Boylu C, Kılıçturgay Yüksel Ş, Erşen Danyeli A, Sezerman OU, Yakıcıer MC, Pamir MN, Özduman K. Sequential filtering for clinically relevant variants as a method for clinical interpretation of whole exome sequencing findings in glioma. BMC Med Genomics 2021; 14:54. [PMID: 33622343 PMCID: PMC7903763 DOI: 10.1186/s12920-021-00904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the clinical setting, workflows for analyzing individual genomics data should be both comprehensive and convenient for clinical interpretation. In an effort for comprehensiveness and practicality, we attempted to create a clinical individual whole exome sequencing (WES) analysis workflow, allowing identification of genomic alterations and presentation of neurooncologically-relevant findings. METHODS The analysis workflow detects germline and somatic variants and presents: (1) germline variants, (2) somatic short variants, (3) tumor mutational burden (TMB), (4) microsatellite instability (MSI), (5) somatic copy number alterations (SCNA), (6) SCNA burden, (7) loss of heterozygosity, (8) genes with double-hit, (9) mutational signatures, and (10) pathway enrichment analyses. Using the workflow, 58 WES analyses from matched blood and tumor samples of 52 patients were analyzed: 47 primary and 11 recurrent diffuse gliomas. RESULTS The median mean read depths were 199.88 for tumor and 110.955 for normal samples. For germline variants, a median of 22 (14-33) variants per patient was reported. There was a median of 6 (0-590) reported somatic short variants per tumor. A median of 19 (0-94) broad SCNAs and a median of 6 (0-12) gene-level SCNAs were reported per tumor. The gene with the most frequent somatic short variants was TP53 (41.38%). The most frequent chromosome-/arm-level SCNA events were chr7 amplification, chr22q loss, and chr10 loss. TMB in primary gliomas were significantly lower than in recurrent tumors (p = 0.002). MSI incidence was low (6.9%). CONCLUSIONS We demonstrate that WES can be practically and efficiently utilized for clinical analysis of individual brain tumors. The results display that NOTATES produces clinically relevant results in a concise but exhaustive manner.
Collapse
Affiliation(s)
- Ege Ülgen
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Özge Can
- Department of Medical Engineering, Faculty of Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Kaya Bilguvar
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
- Yale Center for Genome Analysis, West Haven, CT, USA
| | - Cemaliye Akyerli Boylu
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Şirin Kılıçturgay Yüksel
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayça Erşen Danyeli
- Department of Pathology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - O Uğur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - M Cengiz Yakıcıer
- Department of Molecular Biology, School of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University Istanbul, Istanbul, Turkey
| | - M Necmettin Pamir
- Department of Neurosurgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Altunizade Mahallesi, Yurtcan Sok. No:1, Üsküdar, Istanbul, 34662, Turkey
| | - Koray Özduman
- Department of Neurosurgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Altunizade Mahallesi, Yurtcan Sok. No:1, Üsküdar, Istanbul, 34662, Turkey.
| |
Collapse
|
5
|
Toma M, Witusik-Perkowska M, Szwed M, Stawski R, Szemraj J, Drzewiecka M, Nieborowska-Skorska M, Radek M, Kolasa P, Matlawska-Wasowska K, Sliwinski T, Skorski T. Eradication of LIG4-deficient glioblastoma cells by the combination of PARP inhibitor and alkylating agent. Oncotarget 2018; 9:36867-36877. [PMID: 30627327 PMCID: PMC6305145 DOI: 10.18632/oncotarget.26409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer cells often accumulate spontaneous and treatment-induced DNA damage i.e. potentially lethal DNA double strand breaks (DSBs). Targeting DSB repair mechanisms with specific inhibitors could potentially sensitize cancer cells to the toxic effect of DSBs. Current treatment for glioblastoma includes tumor resection followed by radiotherapy and/or temozolomide (TMZ) - an alkylating agent inducing DNA damage. We hypothesize that combination of PARP inhibitor (PARPi) with TMZ in glioblastoma cells displaying downregulation of DSB repair genes could trigger synthetic lethality. In our study, we observed that PARP inhibitor (BMN673) was able to specifically sensitize DNA ligase 4 (LIG4)-deprived glioblastoma cells to TMZ while normal astrocytes were not affected. LIG4 downregulation resulting in low effectiveness of DNA-PK-mediated non-homologous end-joining (D-NHEJ), which in combination with BMN673 and TMZ resulted in accumulation of lethal DSBs and specific eradication of glioblastoma cells. Restoration of the LIG4 expression caused loss of sensitivity to BMN673+TMZ. In conclusion, PARP inhibitor combined with DNA damage inducing agents can be utilized in patients with glioblastoma displaying defects in D-NHEJ.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Marzena Szwed
- Department of Medical Biophysics, University of Lodz, Lodz, Poland
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Margaret Nieborowska-Skorska
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, Lodz, Poland
| | - Pawel Kolasa
- Department of Neurosurgery, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
- Social Sciences Academy in Lodz, Lodz, Poland
| | - Ksenia Matlawska-Wasowska
- Division of Pediatric Research, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Skała E, Sitarek P, Toma M, Szemraj J, Radek M, Nieborowska-Skorska M, Skorski T, Wysokińska H, Śliwiński T. Inhibition of human glioma cell proliferation by altered Bax/Bcl-2-p53 expression and apoptosis induction by Rhaponticum carthamoides extracts from transformed and normal roots. ACTA ACUST UNITED AC 2016; 68:1454-1464. [PMID: 27696406 DOI: 10.1111/jphp.12619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective of this study was to determine the cytotoxic effect and apoptotic activity of Rhaponticum carthamoides transformed root (TR) and root of soil-grown plant (NR) extracts in a human glioma primary cells. The effect of these root extracts on cell cycle arrest, mitochondrial membrane potential (ΔΨm) and expression levels of apoptosis-related genes (Bcl-2, Bax and p53) were also examined. METHODS Cytotoxic activity of root extracts was evaluated by MTT assay. Apoptosis and cell cycle were determined by flow cytometry. Expression levels of apoptosis-related gene were analysed by RT-PCR and Western blotting. ΔΨm was examined by the use of JC-1 reagent. KEY FINDINGS Rhaponticum carthamoides root extracts inhibit cell growth and induce apoptosis in a dose-dependent manner in human glioma cells. The root extracts were found to up-regulate the pro-apoptotic Bax protein and down-regulate the anti-apoptotic Bcl-2 protein, consequently increasing the ratios of Bax/Bcl-2 protein levels. Moreover, an increase of the p53 protein level and reduction of ΔΨm in glioma cells were observed after treatment with NR and TR extracts. CONCLUSION The results of this study may offer a new insight into the potential anticancer activity of R. carthamoides root extracts.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Poland.
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Poland
| | - Monika Toma
- Department of Molecular Genetics, University of Łódź, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Poland
| | - Maciej Radek
- Department of Neurosurgery and Peripheral Nerve Surgery, Medical University of Łódź, University Hospital WAM-CSW, Łódź, Poland
| | - Malgorzata Nieborowska-Skorska
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, School of Medicine, Philadelphia, PA, USA
| | - Tomasz Skorski
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University, School of Medicine, Philadelphia, PA, USA
| | - Halina Wysokińska
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Poland
| | | |
Collapse
|
7
|
A preliminary study of apoptosis induction in glioma cells via alteration of the Bax/Bcl-2-p53 axis by transformed and non-transformed root extracts of Leonurus sibiricus L. Tumour Biol 2016; 37:8753-64. [PMID: 26743778 DOI: 10.1007/s13277-015-4714-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/20/2015] [Indexed: 12/15/2022] Open
Abstract
Leonurus sibiricus L. is a traditional medicinal plant which occurs in southern Siberia, China, Korea, Japan, and Vietnam. The plant shows several pharmacological effects, but the most interesting is its anti-cancer activity. The aim of our study was to examine the induction of apoptosis in malignant glioma cells, the most aggressive primary brain tumors of the central nervous system, following treatment with transformed root (TR) or non-transformed root (NR) L. sibiricus extracts. Both the NR and TR extracts were found to have cytotoxic activity in the glioma primary cells. The human glioblastoma cell lines obtained from patients were confirmed to be tumorogenic by the following three markers: D10S1709, D10S1172, and D22S283. HPLC and MS analysis revealed the presence of polyphenolic compounds (chlorogenic acid, ferulic acid, caffeic acid, p-coumaric acid, ellagic acid, and verbascoside) in both sets of root extracts. In summary, our findings demonstrate that treatment of the glioma cells with NR and TR extracts resulted (a) in significant cell growth inhibition, (b) S- and G2/M-phase cell cycle arrest, and (c) apoptosis in a dose-dependent fashion by changing Bax/Bcl-2 ratio (about 4-fold increase) and p53 (5-fold increase) activation. These findings indicate that NR and TR extracts exhibit anti-cancer activity through the regulation of genes involved in apoptosis. This is the first report to demonstrate the cytotoxic effect of polyphenolic extracts from L. sibiricus roots against glioma cells, but further studies are required to understand the complete mechanism of its apoptosic activity.
Collapse
|
8
|
Yen CC, Liang SC, Jong YJ, Chen YJ, Lin CH, Chen YM, Wu YC, Su WC, Huang CYF, Tseng SW, Whang-Peng J. Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer 2007; 57:292-301. [PMID: 17553591 DOI: 10.1016/j.lungcan.2007.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/30/2007] [Accepted: 04/06/2007] [Indexed: 11/26/2022]
Abstract
Chromosomal aberrations of malignant cells from pleural effusions of 31 cases of lung adenocarcinoma were analyzed. Pooled CGH results showed frequent amplifications on chromosome arms 1p (22.6%), 1q (35.5%), 2q (25.8%), 3q (38.7%), 4q (41.9%), 5p (41.9%), 5q (51.6%), 6p (19.4%), 6q (25.8%), 7p (41.9%), 7q (35.5%), 8q (32.3%), 12q (38.7%), 13q (22.6%), 14q (35.5%), 17q (19.4%), Xp (22.6%), and Xq (38.7%). Frequent deletions were found on 1p (19.4%), 3p (16.1%), 4q (16.1%), 8p (25.8%), 9p (22.6%), 9q (29.0%), 10q (22.6%), 13q (22.6%), 16p (19.4%), 16q (22.6%), 17p (29.0%), 18q (16.1%), 19p (41.9%), 19q (32.3%), 20p (19.4%) and 22q (29%). These genomic changes were generally found consistent with previous reports of CGH analysis of primary tumors of lung adenocarcinoma. Loss of 19q and 22q were more frequently found in our studies (32.3% and 29.0%, respectively) than studies of primary tumors (less than 7% for both genetic changes). Gain of 11p, although not a frequent finding, was relatively more common in this (16%) than other studies (range, 2.9-11.8%). Interestingly, occurrences of 3p loss and 11p gain were higher in smokers than non-smokers, and deletion of 3p and increased copy number of 11p and Xp appeared more often in male than female patients. Among 17 male patients, gain of chromosomal 11p was a frequent aberration in tumors of smokers, while gain of Xp was more easily found in tumors of non-smokers. One candidate gene located within 11p15, lactate dehydrogenase C (LDHC), was selected for further study. Three cases with 11p gain had amplified FISH signals of LDHC. Also tumors from smokers or male had significantly higher transcript level of LDHC than non-smokers or female, respectively. The results demonstrate that different cytogenetic changes of malignant pleural effusions from lung adenocarcinoma are correlated with genders and smoking habits. The role of LDHC in the carcinogenesis of smoking-related lung adenocarcinoma, especially in male patients with pleural effusions, deserves further investigations.
Collapse
Affiliation(s)
- Chueh-Chuan Yen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|