1
|
Dong F, Yin H, Zheng Z. Hypoxia-Inducible Factor-1α Regulates BNIP3-Dependent Mitophagy and Mediates Metabolic Reprogramming Through Histone Lysine Lactylation Modification to Affect Glioma Proliferation and Invasion. J Biochem Mol Toxicol 2025; 39:e70069. [PMID: 39829390 DOI: 10.1002/jbt.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Gliomas are the predominant form of malignant brain tumors. We investigated the mechanism of hypoxia-inducible factor-1α (HIF-1α) affecting glioma metabolic reprogramming, proliferation and invasion. METHODS Human glioma cell U87 was cultured under hypoxia and treated with small interfering (si)HIF-1α, si-B cell lymphoma-2/adenovirus E1B 19-kDa interacting protein 3 (siBNIP3), si-YT521-B homology domain 2 (siYTHDF2), 3-methyladenine and 2-deoxyglucose, with exogenous sodium lactate-treated normally-cultured cells as a lactate-positive control. Cellular hexokinase 2, lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 enzyme activities, glucose uptake, and levels of lactic acid and adenosine triphosphate (ATP), and HIF-1α, glycolysis-related proteins, mitophagy-related proteins, histone H3 lysine 18 lactylation (H3K18la) and YTHDF2 were determined by ELISA, 2-NBDG, kits, and Western blot. Extracellular acidification rate (ECAR), and cell proliferation, invasion, apoptosis and mitophagy were evaluated by extracellular flux analysis, CCK-8, Transwell, flow cytometry, and immunofluorescence staining. H3K18la-YTHDF2 relationship and YTHDF2-BNIP3 interaction were assessed by ChIP and Co-IP assays. RESULTS Hypoxia-induced highly-expressed HIF-1α in glioma cells increased glycolysis-related protein levels, glycolytic enzyme activities, glucose uptake, lactic acid production, ATP level and ECAR, thereby promoting metabolic reprogramming, invasion and proliferation. HIF-1α mediated metabolic reprogramming, proliferation and invasion through BNIP3-dependent mitophagy, which were partly negated by mitophagy inhibition. HIF-1α induced histone Kla modification to upregulate YTHDF2. YTHDF2 downregulation impeded YTHDF2-BNIP3 interaction and inhibited HIF-1α-induced BNIP3-dependent mitophagy, curbing glioma cell metabolic reprogramming, proliferation and invasion. CONCLUSIONS Hypoxia-induced high HIF-1α expression upregulated YTHDF2 through hH3K18la modification, enhanced YTHDF2-BNIP3 interaction, and regulated BNIP3-dependent mitophagy-mediated metabolic reprogramming to affect glioma proliferation and invasion.
Collapse
Affiliation(s)
- Feng Dong
- Department of Clinical Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haichang Yin
- Laboratory of Animal Immunology, Qiqihar University, Qiqihar, China
| | - Zhixing Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Chen Z, Zeng Y, Ma P, Xu Q, Zeng L, Song X, Yu F. Integrated GMPS and RAMP3 as a signature to predict prognosis and immune heterogeneity in hepatocellular carcinoma. Gene 2025; 933:148958. [PMID: 39312983 DOI: 10.1016/j.gene.2024.148958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly fatal malignant worldwide. As different expression levels of specific genes can lead to different HCC outcomes, we aimed to develop a gene signature capable of predicting HCC prognosis. METHODS In this study, transcriptomic sequencing and relevant clinical data were extracted from public platforms. The guanine monophosphate synthase (GMPS)|receptor activity-modifying protein 3 (RAMP3) gene pair was developed based on the relative values of gene expression levels. Nomograms were developed using R software. Immune status was assessed through single-sample gene set enrichment analysis. GMPS knockdown was achieved through siRNA transfection. Quantitative reverse transcription PCR, apoptosis assays, and cell proliferation were performed to verify the function of GMPS|RAMP3 in HCC cells. RESULTS Here, a gene pair containing GMPS and RAMP3 was successfully constructed. We demonstrated that the GMPS|RAMP3 gene pair was an independent predictor with strong prognostic prediction power, based on which a nomogram was established. Functional analysis revealed that the enrichment of cell cycle-related pathways and immune status differed considerably between the two groups, with cell cycle-related genes highly expressed in the high GMPS|RAMP3 value group. Finally, cell experiments indicated that GMPS knockdown significantly repressed proliferation, promoted apoptosis, and enhanced the sensitivity of HCC cells to gemcitabine. CONCLUSIONS The gene pair GMPS|RAMP3 is a novel prognostic predictor of HCC, providing a promising approach to the treatment and assessment of immune heterogeneity in HCC.
Collapse
Affiliation(s)
- Zhuoyan Chen
- Department of Gastroenterology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peipei Ma
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuwei Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Song
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Wang F, Dong J, Xu Y, Jin J, Xu Y, Yan X, Liu Z, Zhao H, Zhang J, Wang N, Hu X, Gao X, Xu L, Yang C, Ma S, Du J, Hu Y, Ji H, Hu S. Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma. Nat Commun 2024; 15:10885. [PMID: 39738017 DOI: 10.1038/s41467-024-55243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques. Our data indicate there are one or more regions with higher cerebral blood flow in PBZ, which we collectively name the "higher cerebral blood flow interface" (HBI). The HBI exhibited more neovascularization than the "lower cerebral blood flow interfaces" (LBI). The HBI tend to have increased infiltration of macrophages and T lymphocytes infiltration compared with that in LBI. There are more tumor cells in the HBI than in LBI, with substantial differences in the gene expression profiles of these tumor cells. HBI may be the key area of PBZ-targeting therapy after surgical resection.
Collapse
Affiliation(s)
- Fang Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Jin
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Xu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xueyan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lei Xu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chengyun Yang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shuai Ma
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianyang Du
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ying Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China.
| | - Hang Ji
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Department of Neurosurgery, West China Hospital Sichuan University, Chengdu, Sichuan, China.
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Bae WH, Maraka S, Daher A. Challenges and advances in glioblastoma targeted therapy: the promise of drug repurposing and biomarker exploration. Front Oncol 2024; 14:1441460. [PMID: 39439947 PMCID: PMC11493774 DOI: 10.3389/fonc.2024.1441460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma remains the most prevalent and aggressive primary malignant brain tumor in adults, characterized by limited treatment options and a poor prognosis. Previous drug repurposing efforts have yielded only marginal survival benefits, particularly those involving inhibitors targeting receptor tyrosine kinase and cyclin-dependent kinase-retinoblastoma pathways. This limited efficacy is likely due to several critical challenges, including the tumor's molecular heterogeneity, the dynamic evolution of its genetic profile, and the restrictive nature of the blood-brain barrier that impedes effective drug delivery. Emerging diagnostic tools, such as circulating tumor DNA and extracellular vesicles, offer promising non-invasive methods for real-time tumor monitoring, potentially enabling the application of targeted therapies to more selected patient populations. Moreover, innovative drug delivery strategies, including focused ultrasound, implantable drug-delivery systems, and engineered nanoparticles, hold potential for enhancing the bioavailability and therapeutic efficacy of treatments.
Collapse
Affiliation(s)
- William Han Bae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Stefania Maraka
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| | - Ahmad Daher
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Si J, Guo J, Zhang X, Li W, Zhang S, Shang S, Zhang Q. Hypoxia-induced activation of HIF-1alpha/IL-1beta axis in microglia promotes glioma progression via NF-κB-mediated upregulation of heparanase expression. Biol Direct 2024; 19:45. [PMID: 38863009 PMCID: PMC11165725 DOI: 10.1186/s13062-024-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Glioma is a common tumor that occurs in the brain and spinal cord. Hypoxia is a crucial feature of the tumor microenvironment. Tumor-associated macrophages/microglia play a crucial role in the advancement of glioma. This study aims to illuminate the detailed mechanisms by which hypoxia regulates microglia and, consequently, influences the progression of glioma. METHODS The glioma cell viability and proliferation were analyzed by cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay. Wound healing assay and transwell assay were implemented to detect glioma cell migration and invasion, respectively. Enzyme-linked immunosorbent assay was conducted to detect protein levels in cell culture medium. The protein levels in glioma cells and tumor tissues were evaluated using western blot analysis. The histological morphology of tumor tissue was determined by hematoxylin-eosin staining. The protein expression in tumor tissues was determined using immunohistochemistry. Human glioma xenograft in nude mice was employed to test the influence of hypoxic microglia-derived interleukin-1beta (IL-1β) and heparanase (HPSE) on glioma growth in vivo. RESULTS Hypoxic HMC3 cells promoted proliferation, migration, and invasion abilities of U251 and U87 cells by secreting IL-1β, which was upregulated by hypoxia-induced activation of hypoxia inducible factor-1alpha (HIF-1α). Besides, IL-1β from HMC3 cells promoted glioma progression and caused activation of nuclear factor-κB (NF-κB) and upregulation of HPSE in vivo. We also confirmed that IL-1β facilitated HPSE expression in U251 and U87 cells by activating NF-κB. Hypoxic HMC3 cells-secreted IL-1β facilitated the proliferation, migration, and invasion of U251 and U87 cells via NF-κB-mediated upregulation of HPSE expression. Finally, we revealed that silencing HPSE curbed the proliferation and metastasis of glioma in mice. CONCLUSION Hypoxia-induced activation of HIF-1α/IL-1β axis in microglia promoted glioma progression via NF-κB-mediated upregulation of HPSE expression.
Collapse
Affiliation(s)
- Jinchao Si
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Jingya Guo
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Xu Zhang
- Department of General Practice, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Wei Li
- Department of Physiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, 450066, China
| | - Shen Zhang
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Shuyu Shang
- Department of Physiology, Medical College, HuangHe Science and Technology University, Zhengzhou, 450064, China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan Province, 450007, China.
| |
Collapse
|
6
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
7
|
Liu Y, Xin Z, Zhang K, Jin X, Wang D. LncRNA NEAT1 promotes angiogenesis of retinoblastoma cells through regulation of the miR-106a/HIF-1α axis. Heliyon 2024; 10:e27653. [PMID: 38524558 PMCID: PMC10958356 DOI: 10.1016/j.heliyon.2024.e27653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Objective To explore the role and mechanisms of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in angiogenesis of retinoblastoma (RB) cells. Methods This study investigated the roles of NEAT1 in RB progression. The RNA expression levels of NEAT1, miR-106a, and hypoxia-inducible factor-1alpha (HIF-1α) examined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) were compared between RB cells and normal retinal pigment epithelial (RPE) cells. The binding sites between NEAT1 and miR-106a, and between miR-106a and HIF-1α were predicted by the TargetScan database and verified using the dual-luciferase reporter assay. By transfection of overexpression plasmid or shRNA of NEAT1, and/or treatment of miR-106a inhibitor or mimics, proliferation, invasion, and angiogenesis of RB cells (measured by the MTT assay, the Transwell assay, and the tube formation assay, respectively) were compared between groups. Group comparisons were analyzed using one-way analysis of variance (ANOVA), and Tukey's post-hoc test was employed for further statistical assessment. P-value less than 0.05 was considered statistically significant. Results The RNA expression levels of NEAT1 and HIF-1α were upregulated in RB cells, whereas the expression level of miR-106a was downregulated compared with RPE cells. NEAT1 overexpression or miR-106a knockdown advanced proliferation, invasion, and tube formation of RB cells. As a target of NEAT1, miR-106a could sponge HIF-1α to downregulate HIF-1α expression level. Functional analyses indicated that miR-106a knockdown reversed the inhibitory effects of NEAT1 silencing on the proliferation, invasion, and tube formation of RB cells. Furthermore, miR-106a overexpression suppressed RB cell angiogenesis by downregulating HIF-1α expression level. Conclusion NEAT1 promoted proliferation, invasion, and angiogenesis of RB cells through upregulation of HIF-1α expression level by sponging miR-106a, demonstrating that NEAT1 may be a novel target for RB treatment.
Collapse
Affiliation(s)
- Ying Liu
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zhiyuan Xin
- Department of Ophthalmology, Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100144, China
| | - Kun Zhang
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Xin Jin
- Department of Ophthalmology, Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100144, China
| | - Dajiang Wang
- Department of Ophthalmology, Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing 100144, China
| |
Collapse
|
8
|
Zhao C, Ding Y, Zhang Y, Chu M, Ning X, Ji J, Wang T, Zhang G, Yin S, Zhang K. Integrated analysis of transcriptome, translatome and proteome reveals insights into yellow catfish (Pelteobagrus fulvidraco) brain in response to hypoxia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106801. [PMID: 38096642 DOI: 10.1016/j.aquatox.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/11/2023] [Accepted: 12/10/2023] [Indexed: 01/02/2024]
Abstract
Brain plays a central role in adapting to environmental changes and is highly sensitive to the oxygen level. Although previous studies investigated the molecular response of brain exposure to acute hypoxia in fish, the lack of studies at the translational level hinders further understanding of the regulatory mechanism response to hypoxia from multi-omics levels. Yellow catfish (Pelteobagrus fulvidraco) is an important freshwater aquaculture species; however, hypoxia severely restricts the sustainable development of its breeding industry. In the present study, the transcriptome, translatome, and proteome were integrated to study the global landscapes of yellow catfish brain response to hypoxia. The evidently increased amount of cerebral cortical cells with oedema and pyknotic nuclei has been observed in hypoxia group of yellow catfish. A total of 2750 genes were significantly changed at the translational level. Comparative transcriptional and translational analysis suggested the HIF-1 signaling pathway, autophagy and glycolysis/gluconeogenesis were up-regulated after hypoxia exposure. KEGG enrichment of translational efficiency (TE) differential genes suggested that the lysosome and autophagy were highly enriched. Our result showed that yellow catfish tends to inhibit the TE of genes by increasing the translation of uORFs to adapt to hypoxia. Correlation analysis showed that transcriptome and translatome exhibit higher correlation. In summary, this study demonstrated that hypoxia dysregulated the cerebral function of yellow catfish at the transcriptome, translatome, and proteome, which provides a better understanding of hypoxia adaptation in teleost.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, Jiangsu, China
| | - Yubing Ding
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Yufei Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Mingxu Chu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, Jiangsu, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, Jiangsu, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, Jiangsu, China
| | - Guosong Zhang
- Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze 274015, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, Jiangsu, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, Jiangsu, China.
| |
Collapse
|
9
|
Ellingson BM, Hagiwara A, Morris CJ, Cho NS, Oshima S, Sanvito F, Oughourlian TC, Telesca D, Raymond C, Abrey LE, Garcia J, Aftab DT, Hessel C, Minei TR, Harats D, Nathanson DA, Wen PY, Cloughesy TF. Depth of Radiographic Response and Time to Tumor Regrowth Predicts Overall Survival Following Anti-VEGF Therapy in Recurrent Glioblastoma. Clin Cancer Res 2023; 29:4186-4195. [PMID: 37540556 PMCID: PMC10592195 DOI: 10.1158/1078-0432.ccr-23-1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/04/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE Antiangiogenic therapies are known to cause high radiographic response rates due to reduction in vascular permeability resulting in a lower degree of contrast extravasation. In this study, we investigate the prognostic ability for model-derived parameters describing enhancing tumor volumetric dynamics to predict survival in recurrent glioblastoma treated with antiangiogenic therapy. EXPERIMENTAL DESIGN N = 276 patients in two phase II trials were used as training data, including bevacizumab ± irinotecan (NCT00345163) and cabozantinib (NCT00704288), and N = 74 patients in the bevacizumab arm of a phase III trial (NCT02511405) were used for validation. Enhancing volumes were estimated using T1 subtraction maps, and a biexponential model was used to estimate regrowth (g) and regression (d) rates, time to tumor regrowth (TTG), and the depth of response (DpR). Response characteristics were compared to diffusion MR phenotypes previously shown to predict survival. RESULTS Optimized thresholds occurred at g = 0.07 months-1 (phase II: HR = 0.2579, P = 5 × 10-20; phase III: HR = 0.2197, P = 5 × 10-5); d = 0.11 months-1 (HR = 0.3365, P < 0.0001; HR = 0.3675, P = 0.0113); TTG = 3.8 months (HR = 0.2702, P = 6 × 10-17; HR = 0.2061, P = 2 × 10-5); and DpR = 11.3% (HR = 0.6326, P = 0.0028; HR = 0.4785, P = 0.0206). Multivariable Cox regression controlling for age and baseline tumor volume confirmed these factors as significant predictors of survival. Patients with a favorable pretreatment diffusion MRI phenotype had a significantly longer TTG and slower regrowth. CONCLUSIONS Recurrent glioblastoma patients with a large, durable radiographic response to antiangiogenic agents have significantly longer survival. This information is useful for interpreting activity of antiangiogenic agents in recurrent glioblastoma.
Collapse
Affiliation(s)
- Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental PhD Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Connor J. Morris
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas S. Cho
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sonoko Oshima
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Talia C. Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental PhD Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Donatello Telesca
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Eatmann AI, Hamouda E, Hamouda H, Farouk HK, Jobran AWM, Omar AA, Madeeh AK, Al-Dardery NM, Elnoamany S, Abd-Elnasser EG, Koraiem AM, Ahmed AA, Abouzid M, Karaźniewicz-Łada M. Potential Use of Thalidomide in Glioblastoma Treatment: An Updated Brief Overview. Metabolites 2023; 13:metabo13040543. [PMID: 37110201 PMCID: PMC10146416 DOI: 10.3390/metabo13040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. Thalidomide is a vascular endothelial growth factor inhibitor that demonstrates antiangiogenic activity, and may provide additive or synergistic anti-tumor effects when co-administered with other antiangiogenic medications. This study is a comprehensive review that highlights the potential benefits of using thalidomide, in combination with other medications, to treat glioblastoma and its associated inflammatory conditions. Additionally, the review examines the mechanism of action of thalidomide in different types of tumors, which may be beneficial in treating glioblastoma. To our knowledge, a similar study has not been conducted. We found that thalidomide, when used in combination with other medications, has been shown to produce better outcomes in several conditions or symptoms, such as myelodysplastic syndromes, multiple myeloma, Crohn's disease, colorectal cancer, renal failure carcinoma, breast cancer, glioblastoma, and hepatocellular carcinoma. However, challenges may persist for newly diagnosed or previously treated patients, with moderate side effects being reported, particularly with the various mechanisms of action observed for thalidomide. Therefore, thalidomide, used alone, may not receive significant attention for use in treating glioblastoma in the future. Conducting further research by replicating current studies that show improved outcomes when thalidomide is combined with other medications, using larger sample sizes, different demographic groups and ethnicities, and implementing enhanced therapeutic protocol management, may benefit these patients. A meta-analysis of the combinations of thalidomide with other medications in treating glioblastoma is also needed to investigate its potential benefits further.
Collapse
Affiliation(s)
- Ahmed Ismail Eatmann
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 31-007 Kraków, Poland
| | - Esraa Hamouda
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | - Heba Hamouda
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | | | - Afnan W M Jobran
- Faculty of Medicine, Al Quds University, Jerusalem P.O. Box 51000, Palestine
| | - Abdallah A Omar
- Department of Pharmaceutical Services and Sciences, Children's Cancer Hospital Egypt (CCHE-57357), Cairo 11617, Egypt
| | | | | | - Salma Elnoamany
- Faculty of Medicine, Menoufia University, Menoufia P.O. Box 5744, Egypt
| | | | | | - Alhassan Ali Ahmed
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Mohamed Abouzid
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| |
Collapse
|
11
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Zheng S, Mo J, Zhang J, Chen Y. HIF‑1α inhibits ferroptosis and promotes malignant progression in non‑small cell lung cancer by activating the Hippo‑YAP signalling pathway. Oncol Lett 2023; 25:90. [PMID: 36817050 PMCID: PMC9932041 DOI: 10.3892/ol.2023.13676] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Ferroptosis and hypoxia-inducible factor 1α (HIF-1α) have critical roles in human tumors. The aim of the present study was to investigate the associations between ferroptosis, HIF-1α and cell growth in non-small cell lung cancer (NSCLC) cells. The lung cancer cell lines SW900 and A549 were evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to detect the expression of HIF-1α. Cell Counting Kit-8, flow cytometry and Transwell migration assays were used to measure cell viability, apoptosis and invasion, respectively. The production of reactive oxygen species (ROS) and levels of malondialdehyde (MDA), glutathione (GSH) and ferrous ion (Fe2+) were determined using detection kits. The expression levels of glutathione peroxidase 4 (GPX4) and Yes-associated protein 1 (YAP1) were detected using RT-qPCR and western blotting. The results showed that the expression of HIF-1α was significantly upregulated in NSCLC cells compared with normal human bronchial epithelial cells. Small interfering RNA specific to HIF-1α (si-HIF-1α) significantly decreased the proliferation and invasion of NSCLC cells and increased their apoptosis. si-HIF-1α also increased the levels of ROS, MDA and Fe2+ but decreased GSH and GPX4 levels in A549 cells. Additionally, si-HIF-1α increased phosphorylated (p-)YAP1 levels, suppressed GPX4 and YAP1 expression, and attenuated the YAP1 overexpression-induced changes in YAP1, p-YAP1 and GPX4 levels and cell viability. The ferroptosis antagonist ferrostatin-1 partially attenuated the effects of si-HIF-1α on the NSCLC cells, while the ferroptosis agonist erastin further inhibited NSCLC growth by blocking HIF-1α expression. In conclusion, the silencing of HIF-1α induces ferroptosis by suppressing Hippo-YAP pathway activation in NSCLC cells. The present study provides novel insights into the malignant progression of NSCLC and suggests that HIF-1α is an effective target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Senzhong Zheng
- Department of Cardiothoracic Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Ji Mo
- Department of Respiratory Medicine, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Jing Zhang
- School of Medical and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, Zhejiang 318000, P.R. China
| | - Yang Chen
- Department of Cardiothoracic Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China,Correspondence to: Dr Yang Chen, Department of Cardiothoracic Surgery, Taizhou First People's Hospital, 218 Hengjie Road, Taizhou, Zhejiang 318020, P.R. China, E-mail:
| |
Collapse
|
13
|
Globig P, Madurawala R, Willumeit-Römer R, Martini F, Mazzoni E, Luthringer-Feyerabend BJ. Mg-based materials diminish tumor spreading and cancer metastases. Bioact Mater 2023; 19:594-610. [PMID: 35600975 PMCID: PMC9108521 DOI: 10.1016/j.bioactmat.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer metastases are the most common causes of cancer-related deaths. The formation of secondary tumors at different sites in the human body can impair multiple organ function and dramatically decrease the survival of the patients. In this stage, it is difficulty to treat tumor growth and spreading due to arising therapy resistances. Therefore, it is important to prevent cancer metastases and to increase subsequent cancer therapy success. Cancer metastases are conventionally treated with radiation or chemotherapy. However, these treatments elicit lots of side effects, wherefore novel local treatment approaches are currently discussed. Recent studies already showed anticancer activity of specially designed degradable magnesium (Mg) alloys by reducing the cancer cell proliferation. In this work, we investigated the impact of these Mg-based materials on different steps of the metastatic cascade including cancer cell migration, invasion, and cancer-induced angiogenesis. Both, Mg and Mg–6Ag reduced cell migration and invasion of osteosarcoma cells in coculture with fibroblasts. Furthermore, the Mg-based materials used in this study diminished the cancer-induced angiogenesis. Endothelial cells incubated with conditioned media obtained from these Mg and Mg–6Ag showed a reduced cell layer permeability, a reduced proliferation and inhibited cell migration. The tube formation as a last step of angiogenesis was stimulated with the presence of Mg under normoxia and diminished under hypoxia. Magnesium (Mg)-based material degradation decrease cell migration and invasion of an osteosarcoma coculture. Mg-based material degradation products reduce cancer-induced angiogenesis at an early stage. These materials may reduce secondary tumor formation and metastases.
Collapse
|
14
|
Grzmil M, Wiesmann F, Schibli R, Behe M. Targeting mTORC1 Activity to Improve Efficacy of Radioligand Therapy in Cancer. Cancers (Basel) 2022; 15:cancers15010017. [PMID: 36612012 PMCID: PMC9817840 DOI: 10.3390/cancers15010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radioligand therapy (RLT) represents an effective strategy to treat malignancy by cancer-selective delivery of radioactivity following systemic application. Despite recent therapeutic successes, cancer radioresistance and insufficient delivery of the radioactive ligands, as well as cytotoxicity to healthy organs, significantly impairs clinical efficacy. To improve disease management while minimizing toxicity, in recent years, the combination of RLT with molecular targeted therapies against cancer signaling networks showed encouraging outcomes. Characterization of the key deregulated oncogenic signaling pathways revealed their convergence to activate the mammalian target of rapamycin (mTOR), in which signaling plays an essential role in the regulation of cancer growth and survival. Therapeutic interference with hyperactivated mTOR pathways was extensively studied and led to the development of mTOR inhibitors for clinical applications. In this review, we outline the regulation and oncogenic role of mTOR signaling, as well as recapitulate and discuss mTOR complex 1 (mTORC1) inhibition to improve the efficacy of RLT in cancer.
Collapse
Affiliation(s)
- Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence:
| | - Fabius Wiesmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
15
|
Fu Z, Yuan Y. The role of tumor neogenesis pipelines in tumor progression and their therapeutic potential. Cancer Med 2022; 12:1558-1571. [PMID: 35832030 PMCID: PMC9883577 DOI: 10.1002/cam4.4979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 02/02/2023] Open
Abstract
Pipeline formation between tumor cells and the tumor microenvironment (TME) is a key event leading to tumor progression. These pipelines include blood vessels, lymphatics, and membranous vessels (the former two can be collectively referred to as vasculature). Pipeline regeneration is a feature of all solid tumors; it delivers nutrients to tumors and promotes tumor invasion and metastasis such that cancer cells grow rapidly, escape unfavorable TME, spread to secondary sites, generate tumor drug resistance, and promote postoperative tumor recurrence. Novel tumor therapy strategies must exploit the molecular mechanisms underpinning these pipelines to facilitate more targeted drug therapies. In this review, pipeline generation, influencing factors, pipeline functions during tumor progression, and pipeline potential as drug targets are systematically summarized.
Collapse
Affiliation(s)
- Zhanqi Fu
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
16
|
Burgess ER, Crake RLI, Phillips E, Morrin HR, Royds JA, Slatter TL, Wiggins GAR, Vissers MCM, Robinson BA, Dachs GU. Increased Ascorbate Content of Glioblastoma Is Associated With a Suppressed Hypoxic Response and Improved Patient Survival. Front Oncol 2022; 12:829524. [PMID: 35419292 PMCID: PMC8995498 DOI: 10.3389/fonc.2022.829524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme is a challenging disease with limited treatment options and poor survival. Glioblastoma tumours are characterised by hypoxia that activates the hypoxia inducible factor (HIF) pathway and controls a myriad of genes that drive cancer progression. HIF transcription factors are regulated at the post-translation level via HIF-hydroxylases. These hydroxylases require oxygen and 2-oxoglutarate as substrates, and ferrous iron and ascorbate as cofactors. In this retrospective observational study, we aimed to determine whether ascorbate played a role in the hypoxic response of glioblastoma, and whether this affected patient outcome. We measured the ascorbate content and members of the HIF-pathway of clinical glioblastoma samples, and assessed their association with clinicopathological features and patient survival. In 37 samples (37 patients), median ascorbate content was 7.6 μg ascorbate/100 mg tissue, range 0.8 – 20.4 μg ascorbate/100 mg tissue. In tumours with above median ascorbate content, HIF-pathway activity as a whole was significantly suppressed (p = 0.005), and several members of the pathway showed decreased expression (carbonic anhydrase-9 and glucose transporter-1, both p < 0.01). Patients with either lower tumour HIF-pathway activity or higher tumour ascorbate content survived significantly longer than patients with higher HIF-pathway or lower ascorbate levels (p = 0.011, p = 0.043, respectively). Median survival for the low HIF-pathway score group was 362 days compared to 203 days for the high HIF-pathway score group, and median survival for the above median ascorbate group was 390 days, compared to the below median ascorbate group with 219 days. The apparent survival advantage associated with higher tumour ascorbate was more prominent for the first 8 months following surgery. These associations are promising, suggesting an important role for ascorbate-regulated HIF-pathway activity in glioblastoma that may impact on patient survival.
Collapse
Affiliation(s)
- Eleanor R Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Rebekah L I Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liege, Belgium
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Helen R Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Cancer Society Tissue Bank, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - George A R Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, and Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
17
|
Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M. Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int 2022; 22:71. [PMID: 35144601 PMCID: PMC8832734 DOI: 10.1186/s12935-022-02501-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer mortality and a major health challenge worldwide. Despite advances in therapeutic and diagnostic methods, there is still a poor prognosis in CRC patients. Tumor recurrence and metastasis are the main causes of high mortality rate in these patients, which are due to late diagnosis in advanced tumor stages. Epithelial-mesenchymal transition (EMT) is known to be the most important cause of CRC metastasis, during which tumor cells obtain metastasis ability by losing epithelial features and gaining mesenchymal features. Long non-coding RNAs (lncRNAs) are pivotal regulators of EMT process. Regarding the higher stability of lncRNAs compared with coding RNAs in body fluids, they can be used as non-invasive diagnostic markers for EMT process. In the present review, we summarized all of the lncRNAs involved in regulation of EMT process during CRC progression and metastasis. It was observed that lncRNAs mainly induced the EMT process in CRC cells by regulation of EMT-related transcription factors, Poly comb repressive complex (PRC), and also signaling pathways such as WNT, NOTCH, MAPK, and Hippo.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Nasrpour Navaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
An Evaluation of the Effect of Activation Methods on the Release of Growth Factors from Platelet-Rich Plasma. Plast Reconstr Surg 2022; 149:404-411. [PMID: 35077415 DOI: 10.1097/prs.0000000000008772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Activation of platelets in platelet-rich plasma may improve growth factor release, thus enhancing regenerative properties. The authors investigated whether different methods of platelet-rich plasma activation affected growth factor release kinetics over time. METHODS Platelet-rich plasma from 20 healthy volunteers was processed by six different methods: (1) control (nonactivated); (2) activation with calcium chloride; (3) activation with calcium chloride and ethanol; (4) activation with calcium chloride and ethanol at 4°C; (5) activation with calcium chloride and ethanol with vitamin C; (6) activation with calcium chloride and ethanol with vitamin C at 4°C. Concentration of secreted vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and insulin-like growth factor over 24 hours was measured by immunoassay. RESULTS Calcium chloride-activated platelet-rich plasma produced significantly more insulin-like growth factor at 1 hour compared to cold and vitamin C platelet-rich plasma, and calcium chloride plus ethanol produced significantly more at 24 hours compared to vitamin C platelet-rich plasma. The addition of vitamin C reduced release of PDGF over time. Activation with calcium chloride and ethanol with or without cold temperature produced a gradual PDGF release as opposed to calcium chloride alone, which caused higher PDGF within 4 hours. There were no significant differences between groups for VEGF, although calcium chloride and cooled platelet-rich plasma approached significance for producing more than vitamin C platelet-rich plasma. CONCLUSIONS Activation of platelet-rich plasma does not significantly improve growth factor secretion, which is made worse by the addition of vitamin C, a platelet inhibitor. Ethanol does not negatively impact growth factor production and may offer a more gradual release. CLINICAL RELEVANCE STATEMENT These findings will help guide platelet-rich plasma preparation methods where therapeutic growth factors are used. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
19
|
Targeting miRNAs with anesthetics in cancer: Current understanding and future perspectives. Biomed Pharmacother 2021; 144:112309. [PMID: 34653761 DOI: 10.1016/j.biopha.2021.112309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Anesthetics are extensively used during cancer surgeries. The progression of cancer can be influenced by perioperative events such as exposure to general or local anesthesia. However, whether they inhibit cancer or act as a causative factor for metastasis and exert deleterious effects on cancer growth differs based on the type of cancer and the therapy administration. Recent experimental data suggested that many of the most commonly used anesthetics in surgical oncology, whether general or local agents, can alter gene expression and cause epigenetic changes via modulating miRNAs. miRNAs are single-stranded non-coding RNAs that regulate gene expression at various levels, and their dysregulation contributes to the pathogenesis of cancers. However, anesthetics via regulating miRNAs can concurrently target several effectors of cellular signaling pathways involved in cell differentiation, proliferation, and viability. This review summarized the current research about the effects of different anesthetics in regulating cancer, with a particular emphasis on the role of miRNAs. A significant number of studies conducted in this area of research illuminate the effects of anesthetics on the regulation of miRNA expression; therefore, we hope that a thorough understanding of the underlying mechanisms involved in the regulation of miRNA in the context of anesthesia-induced cancer regulation could help to define optimal anesthetic regimens and provide better perspectives for further studies.
Collapse
|
20
|
Yin WJ, Chen DP, Wang MY, Zheng L, Dong EL, Liu JQ, Qi B. Prognostic value of hypertension in patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1313. [PMID: 34532450 PMCID: PMC8422106 DOI: 10.21037/atm-21-3130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
Background The prognostic value of hypertension remains unknown in nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). In this study, we aimed to develop hypertension as a prognostic signature for improving the clinical outcome of non-metastatic NPC patients treated with IMRT. Methods A clinical cohort, comprising 1,057 patients with non-metastatic, histologically proven, NPC who were treated with IMRT were retrospectively reviewed. Associations between hypertension and overall survival (OS), progression-free survival (PFS), locoregional relapse-free survival (LRRFS), and distant metastasis-free survival (DMFS) were estimated by Cox regression. A subgroup analysis of the relationship between hypertension grade and NPC prognosis was also conducted. Results Among the 1057 patients, 94 (8.9%) had hypertension. Significant differences were observed between patients with hypertension and patients without hypertension in relation to OS (66.6% vs. 85.4%; P<0.0001), PFS (60.8% vs. 76.3%; P=0.001), LRRFS (85.3% vs. 90.5%; P=0.024), and DMFS (77.4% vs. 85.1%; P=0.048), and patients without hypertension had greater treatment success rates. The Cox analysis showed that hypertension was an independent unfavorable prognostic factor for OS [hazards ratio (HR), 2.056; P=0.001], PFS (HR, 1.716; P=0.005), and DMFS (HR, 1.658; P=0.049). The patients with more severe levels of hypertension had worse OS and LRRFS. Specifically, the 5-year OS and LRRFS for grades 1, 2, and 3 were 70.6%, 64.3%, and 62.4% (P=0.712), and 89.5%, 86.4%, and 76.1% (P=0.376), respectively. Conclusions Hypertension is an independent adverse prognostic factor in NPC patients treated with IMRT. The question of whether the severity of hypertension affects prognosis needs to be further verified by large sample data.
Collapse
Affiliation(s)
- Wen-Jing Yin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Dong-Ping Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Meng-Yao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Lu Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - En-Lai Dong
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jin-Quan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Bin Qi
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Cloughesy TF, Brenner A, de Groot JF, Butowski NA, Zach L, Campian JL, Ellingson BM, Freedman LS, Cohen YC, Lowenton-Spier N, Rachmilewitz Minei T, Fain Shmueli S, Wen PY. A randomized controlled phase III study of VB-111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro Oncol 2021; 22:705-717. [PMID: 31844890 PMCID: PMC7229248 DOI: 10.1093/neuonc/noz232] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Ofranergene obadenovec (VB-111) is an anticancer viral therapy that demonstrated in a phase II study a survival benefit for patients with recurrent glioblastoma (rGBM) who were primed with VB-111 monotherapy that was continued after progression with concomitant bevacizumab. Methods This pivotal phase III randomized, controlled trial compared the efficacy and safety of upfront combination of VB-111 and bevacizumab versus bevacizumab monotherapy. Patients were randomized 1:1 to receive VB-111 1013 viral particles every 8 weeks in combination with bevacizumab 10 mg/kg every 2 weeks (combination arm) or bevacizumab monotherapy (control arm). The primary endpoint was overall survival (OS), and secondary endpoints were objective response rate (ORR) by Response Assessment in Neuro-Oncology (RANO) criteria and progression-free survival (PFS). Results Enrolled were 256 patients at 57 sites. Median exposure to VB-111 was 4 months. The study did not meet its primary or secondary goals. Median OS was 6.8 versus 7.9 months in the combination versus control arm (hazard ratio, 1.20; 95% CI: 0.91–1.59; P = 0.19) and ORR was 27.3% versus 21.9% (P = 0.26). A higher rate of grades 3–5 adverse events was reported in the combination arm (67% vs 40%), mainly attributed to a higher rate of CNS and flu-like/fever events. Trends for improved survival with combination treatment were seen in the subgroup of patients with smaller tumors and in patients who had a posttreatment febrile reaction. Conclusions In this study, upfront concomitant administration of VB-111 and bevacizumab failed to improve outcomes in rGBM. Change of treatment regimen, with the lack of VB-111 monotherapy priming, may explain the differences from the favorable phase II results. Clinical trials registration NCT02511405
Collapse
Affiliation(s)
- Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Andrew Brenner
- University of Texas Health San Antonio Cancer Center, San Antonio, Texas, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Leor Zach
- Oncology Institute, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Jian L Campian
- Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Laurence S Freedman
- Biostatistics and Biomathematics Unit, Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | | | | | | | | | | | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
22
|
β-glucan from Lentinus edodes inhibits breast cancer progression via the Nur77/HIF-1α axis. Biosci Rep 2021; 40:227063. [PMID: 33245358 PMCID: PMC7736624 DOI: 10.1042/bsr20201006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background: β-glucan from Lentinus edodes (LNT) is a plant-derived medicinal fungus possessing significant bioactivities on anti-tumor. Both hypoxia-induced factor-1α (HIF)-1α and Nur77 have been shown to be involved in the development of breast cancer. However, there is yet no proof of Nur77/HIF-1α involvement in the process of LNT-mediated tumor-inhibition effect. Methods: Immunohistochemistry, immunofluorescence and Hematoxylin–Eosin staining were used to investigate tumor growth and metastasis in MMTV-PyMT transgenic mice. Proliferation and metastasis-associated molecules were determined by Western blotting and reverse transcription-quantitative PCR. Hypoxic cellular model was established under the exposure of CoCl2. Small interference RNA was transfected using Lipofectamine reagent. The ubiquitin proteasome pathway was blunted by adding the proteasome inhibitor MG132. Results: LNT inhibited the growth of breast tumors and the development of lung metastases from breast cancer, accompanied by a decreased expression of HIF-1α in the tumor tissues. In in vitro experiments, hypoxia induced the expression of HIF-1α and Nur77 in breast cancer cells, while LNT addition down-regulated HIF-1α expression in an oxygen-free environment, and this process was in a manner of Nur77 dependent. Mechanistically, LNT evoked the down-regulation of HIF-1α involved the Nur77-mediated ubiquitin proteasome pathway. A strong positive correlation between Nur77 and HIF-1α expression in human breast cancer specimens was also confirmed. Conclusion: Therefore, LNT appears to inhibit the progression of breast cancer partly through the Nur77/HIF-1α signaling axis. The findings of the present study may provide a theoretical basis for targeting HIFs in the treatment of breast cancer.
Collapse
|
23
|
Crake RLI, Burgess ER, Royds JA, Phillips E, Vissers MCM, Dachs GU. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front Oncol 2021; 11:619300. [PMID: 33842321 PMCID: PMC8027507 DOI: 10.3389/fonc.2021.619300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Rebekah L. I. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
24
|
Li X, Hattori A, Takahashi S, Goto Y, Harada H, Kakeya H. Ubiquitin carboxyl-terminal hydrolase L1 promotes hypoxia-inducible factor 1-dependent tumor cell malignancy in spheroid models. Cancer Sci 2019; 111:239-252. [PMID: 31729096 PMCID: PMC6942421 DOI: 10.1111/cas.14236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a critical heterodimeric transcription factor for tumor malignancy. Recently, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) has been reported to function as a deubiquitinating enzyme for the stabilization of its α subunit (HIF-1α). In the present study, we showed that UCHL1 inhibition can be an effective therapeutic strategy against HIF-1-dependent tumor malignancy. In 2D monolayer culture, a UCHL1 inhibitor suppressed HIF activity and decreased the transcription of HIF downstream genes by inhibiting the UCHL1-mediated accumulation of HIF-1α. Phenotypically, UCHL1 inhibition remarkably blocked cell migration. In 3D spheroid culture models, ectopic expression of UCHL1 significantly upregulated malignancy-related factors such as solidity, volume, as well as viable cell number in an HIF-1α-dependent manner. Conversely, inhibition of the UCHL1-HIF-1 pathway downregulated these malignancy-related factors and also abolished UCHL1-mediated cell proliferation and invasiveness. Finally, inhibition of UCHL1 promoted HIF-1α degradation and lowered the expression of HIF-1 target genes in the 3D model, as also observed in 2D monolayer culture. Our research indicates that the UCHL1-HIF-1 pathway plays a crucial role in tumor malignancy, making it a promising therapeutic target for cancer chemotherapy.
Collapse
Affiliation(s)
- Xuebing Li
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akira Hattori
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Senye Takahashi
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoko Goto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hideaki Kakeya
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Ellingson BM, Aftab DT, Schwab GM, Hessel C, Harris RJ, Woodworth DC, Leu K, Chakhoyan A, Raymond C, Drappatz J, de Groot J, Prados MD, Reardon DA, Schiff D, Chamberlain M, Mikkelsen T, Desjardins A, Holland J, Ping J, Weitzman R, Wen PY, Cloughesy TF. Volumetric response quantified using T1 subtraction predicts long-term survival benefit from cabozantinib monotherapy in recurrent glioblastoma. Neuro Oncol 2019; 20:1411-1418. [PMID: 29660005 DOI: 10.1093/neuonc/noy054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background To overcome challenges with traditional response assessment in anti-angiogenic agents, the current study uses T1 subtraction maps to quantify volumetric radiographic response in monotherapy with cabozantinib, an orally bioavailable tyrosine kinase inhibitor with activity against vascular endothelial growth factor receptor 2 (VEGFR2), hepatocyte growth factor receptor (MET), and AXL, in an open-label, phase II trial in patients with recurrent glioblastoma (GBM) (NCT00704288). Methods A total of 108 patients with adequate imaging data and confirmed recurrent GBM were included in this retrospective study from a phase II multicenter trial of cabozantinib monotherapy (XL184-201) at either 100 mg (N = 87) or 140 mg (N = 21) per day. Contrast enhanced T1-weighted digital subtraction maps were used to define volume of contrast-enhancing tumor at baseline and subsequent follow-up time points. Volumetric radiographic response (>65% reduction in contrast-enhancing tumor volume from pretreatment baseline tumor volume sustained for more than 4 wk) was tested as an independent predictor of overall survival (OS). Results Volumetric response rate for all therapeutic doses was 38.9% (41.4% and 28.6% for 100 mg and 140 mg doses, respectively). A log-linear association between baseline tumor volume and OS (P = 0.0006) and a linear correlation between initial change in tumor volume and OS (P = 0.0256) were observed. A significant difference in OS was observed between responders (median OS = 20.6 mo) and nonresponders (median OS = 8.0 mo) (hazard ratio [HR] = 0.3050, P < 0.0001). Multivariable analyses showed that continuous measures of baseline tumor volume (HR = 1.0233, P < 0.0001) and volumetric response (HR = 0.2240, P < 0.0001) were independent predictors of OS. Conclusions T1 subtraction maps provide value in determining response in recurrent GBM treated with cabozantinib and correlated with survival benefit.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | | | | | - Robert J Harris
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Davis C Woodworth
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kevin Leu
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jan Drappatz
- Department of Neurology and Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael D Prados
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, California
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Schiff
- Neuro-Oncology Center, University of Virginia Health System, Charlottesville, Virginia
| | - Marc Chamberlain
- Department of Neurology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | | | - Jerry Ping
- Exelixis, South San Francisco, California
| | | | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
26
|
Do Selected Blood Inflammatory Markers Combined with Radiological Features Predict Proliferation Index in Glioma Patients? World Neurosurg 2018; 118:e137-e146. [DOI: 10.1016/j.wneu.2018.06.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
|
27
|
Mathivet T, Bouleti C, Van Woensel M, Stanchi F, Verschuere T, Phng LK, Dejaegher J, Balcer M, Matsumoto K, Georgieva PB, Belmans J, Sciot R, Stockmann C, Mazzone M, De Vleeschouwer S, Gerhardt H. Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth. EMBO Mol Med 2018; 9:1629-1645. [PMID: 29038312 PMCID: PMC5709745 DOI: 10.15252/emmm.201607445] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro‐inflammatory M1‐like macrophages in the early stages, followed by in situ repolarization to M2‐like macrophages, which produced VEGF‐A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti‐CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences.
Collapse
Affiliation(s)
- Thomas Mathivet
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium .,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Claire Bouleti
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Matthias Van Woensel
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Fabio Stanchi
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tina Verschuere
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Li-Kun Phng
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory for Vascular Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Joost Dejaegher
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Marly Balcer
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ken Matsumoto
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Petya B Georgieva
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jochen Belmans
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Christian Stockmann
- UMR 970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Massimiliano Mazzone
- Lab of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium.,Lab of Molecular Oncology and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Holger Gerhardt
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium .,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium.,Integrative Vascular Biology Laboratory, Max-Delbrück-Center for Molecular Medicine, Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
28
|
Lo Dico A, Martelli C, Diceglie C, Lucignani G, Ottobrini L. Hypoxia-Inducible Factor-1α Activity as a Switch for Glioblastoma Responsiveness to Temozolomide. Front Oncol 2018; 8:249. [PMID: 30013951 PMCID: PMC6036118 DOI: 10.3389/fonc.2018.00249] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
Rationale The activity of the transcription factor, hypoxia-inducible factor (HIF)-1α, is a common driver of a number of the pathways involved in the aggressiveness of glioblastomas (GBMs), and it has been suggested that the reduction in this activity observed, soon after the administration of temozolomide (TMZ), can be a biomarker of an early response in GBM models. As HIF-1α is a tightly regulated protein, studying the processes involved in its downregulation could shed new light on the mechanisms underlying GBM sensitivity or resistance to TMZ. Methods The effect of HIF-1α silencing on cell responsiveness to TMZ was assessed in four genetically different human GBM cell lines by evaluating cell viability and apoptosis-related gene balance. LAMP-2A silencing was used to evaluate the contribution of chaperone-mediated autophagy (CMA) to the modulation of HIF-1α activity in TMZ-sensitive and TMZ-resistant cells. Results The results showed that HIF-1α but not HIF-2α activity is associated with GBM responsiveness to TMZ: its downregulation improves the response of TMZ-resistant cells, while blocking CMA-mediated HIF-1α degradation induces resistance to TMZ in TMZ-sensitive cells. These findings are in line with the modulation of crucial apoptosis-related genes. Conclusion Our results demonstrate the central role played by HIF-1α activity in determining the sensitivity or resistance of GBMs to TMZ, and we suggest that CMA is the cellular mechanism responsible for modulating this activity after TMZ treatment.
Collapse
Affiliation(s)
- Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giovanni Lucignani
- Department of Health Sciences, University of Milan, Milan, Italy.,Department of Diagnostic Services, Unit of Nuclear Medicine, San Paolo Hospital, Milan, Italy
| | - Luisa Ottobrini
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
29
|
Tao Y, Zhu L, Zhao Y, Yi X, Zhu L, Ge F, Mou X, Chen L, Sun L, Yang K. Nano-graphene oxide-manganese dioxide nanocomposites for overcoming tumor hypoxia and enhancing cancer radioisotope therapy. NANOSCALE 2018; 10:5114-5123. [PMID: 29487939 DOI: 10.1039/c7nr08747k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While radiotherapy (RT) is commonly used in clinics for cancer treatment, the therapeutic efficiency is not satisfactory owing to the existence of the hypoxic tumor microenvironment which seriously affects the efficiency of RT. Herein, we design polyethylene glycol (PEG)-modified reduced nano-graphene oxide-manganese dioxide (rGO-MnO2-PEG) nanocomposites to trigger oxygen generation from H2O2 to reduce the tumor hypoxic microenvironments. We use the radioisotope, 131I labeled rGO-MnO2-PEG nanocomposites as therapeutic agents for in vivo tumor radioisotope therapy (RIT), achieving excellent tumor killing and further enhancing the therapeutic efficiency of RIT. More importantly, the dissolution of MnO2 under acidic conditions and the redox process during the catalytic pathway of H2O2 decomposition in the cellular microenvironment direct to the production of an enormous amount of Mn2+ which has been used as a contrast agent for magnetic resonance imaging (MRI). Our proposed work provides a strategy to trigger oxygen formation via an internal stimulus to enhance imaging-guided RIT efficiency.
Collapse
Affiliation(s)
- Yugui Tao
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma. Oncotarget 2018; 7:77457-77467. [PMID: 27764809 PMCID: PMC5340227 DOI: 10.18632/oncotarget.12681] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/29/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of cancer biology. Tumor mitochondrial metabolism is characterized by an abnormal ability to function in scarce oxygen conditions through glycolysis (the Warburg effect), and accumulation of mitochondrial DNA defects are present in both hereditary neoplasia and sporadic cancers. Mitochondrial Lon is a major regulator of mitochondrial metabolism and the mitochondrial response to free radical damage, and plays an essential role in the maintenance and repair of mitochondrial DNA. Despite these critical cellular functions of Lon, very little has been reported regarding its role in glioma. Lon expression in gliomas and its relevance with patient survival was examined using published databases and human tissue sections. The effect of Lon in glioma biology was investigated through siRNA targeting Lon. We also tested the in vitro antitumor activity of Lon inhibitor, CC4, in the glioma cell lines D-54 and U-251. High Lon expression was associated with high glioma tumor grade and poor patient survival. While Lon expression was elevated in response to a variety of stimuli, Lon knockdown in glioma cell lines decreased cell viability under normal conditions, and dramatically impaired glioma cell survival under hypoxic conditions. Furthermore, the Lon inhibitor, CC4, efficiently prohibited glioma cell proliferation and synergistically enhanced the therapeutic efficacy of the chemotherapeutic agents, temozolomide (TMZ) and cisplatin. We demonstrate that Lon plays a key role in glioma cell hypoxic survival and mitochondrial respiration, and propose Lon as a promising therapeutic target in the treatment of malignant gliomas.
Collapse
|
31
|
Yang XS, Xu ZW, Yi TL, Xu RC, Li J, Zhang WB, Zhang S, Sun HT, Yu ZQ, Xu HX, Tu Y, Cheng SX. Ouabain suppresses the growth and migration abilities of glioma U‑87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF‑1α. Mol Med Rep 2018; 17:5595-5600. [PMID: 29436645 PMCID: PMC5865999 DOI: 10.3892/mmr.2018.8587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/05/2017] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most malignant forms of brain tumor, and has been of persistent concern due to its high recurrence and mortality rates, and limited therapeutic options. As a cardiac glycoside, ouabain has widespread applications in congestive heart diseases due to its positive cardiac inotropic effect by inhibiting Na+/K+-ATPase. Previous studies have demonstrated that ouabain has antitumor activity in several types of human tumor, including glioma. However, the exact underlying mechanism remains to be elucidated. The purpose of present study was to elucidate the effect of ouabain on human glioma cell apoptosis and investigate the exact mechanism. U-87MG cells were treated with various concentrations of ouabain for 24 h, following which cell viability and survival rate were assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The dynamic changes and cell motility were observed using digital holographic microscopy. Additionally, western blot analysis and high-content screening assays were used to detect the protein expression levels of phosphorylated (p-)Akt, mammalian target of rapamycin (mTOR), p-mTOR and hypoxia-inducible factor (HIF)-1α, respectively. Compared with the control group, ouabain suppressed U-87MG cell survival, and attenuated cell motility in a dose-dependent manner (P<0.01). The downregulation of p-Akt, mTOR, p-mTOR and HIF-1α were observed following treatment with 2.5 and 25 µmol/l of ouabain. These results suggested that ouabain exerted suppressive effects on tumor cell growth and motility, leading to cell death via regulating the intracellular Akt/mTOR signaling pathway and inhibiting the expression of HIF-1α in glioma cells. The present study examined the mechanism underlying the antitumor property of ouabain, providing a novel potential therapeutic agent for glioma treatment.
Collapse
Affiliation(s)
- Xiao-Sa Yang
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Zhong-Wei Xu
- Central Laboratory of Logistics University of PAP, Tianjin 300309, P.R. China
| | - Tai-Long Yi
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Rui-Cheng Xu
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, Logistics University of PAP, Tianjin 300309, P.R. China
| | - Jie Li
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Wen-Bin Zhang
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Sai Zhang
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Hong-Tao Sun
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Ze-Qi Yu
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Hao-Xiang Xu
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Yue Tu
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| | - Shi-Xiang Cheng
- Institute of TBI and Neuroscience of Chinese People's Armed Police Force, Tianjin Key Laboratory of Neurotrauma Repair, Center for Neurology and Neurosurgery of Affiliated Hospital of Logistics University of PAP, Tianjin 300162, P.R. China
| |
Collapse
|
32
|
Ren Y, Sagers JE, Landegger LD, Bhatia SN, Stankovic KM. Tumor-Penetrating Delivery of siRNA against TNFα to Human Vestibular Schwannomas. Sci Rep 2017; 7:12922. [PMID: 29018206 PMCID: PMC5635039 DOI: 10.1038/s41598-017-13032-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/12/2017] [Indexed: 01/13/2023] Open
Abstract
Vestibular schwannoma (VS) is the most common tumor of the cerebellopontine angle, and it typically presents with sensorineural hearing loss. The genomic landscape of schwannoma is complex and many of the molecules implicated in VS pathogenesis represent targets not amenable to antibody-based or small molecule therapeutics. Tumor-targeted delivery of small interfering RNA (siRNA) therapeutics provides a direct and effective means to interrogate targets while minimizing off-target effects. To establish a preclinical model for therapeutic inhibition of putative targets in VS, archived tumor specimens, fresh tumor cells derived from patients with sporadic VS, and an established schwannoma cell line were screened. Nanoparticles directed by the tumor-homing peptide iRGD were selectively taken up by primary VS cultures in vitro via interactions with αvβ3/β5 integrins and neuropilin-1 (NRP-1). Cellular uptake was inhibited by a neutralizing antibody against αv integrin in a dose-dependent manner. When applied to primary VS cultures, iRGD-targeted nanoparticles delivered siRNA directed against TNFα in a receptor-specific fashion to potently silence gene expression and protein secretion. Taken together, our results provide a proof of principle for tumor-targeted, nanoparticle-mediated delivery of siRNA to VS and establish a novel platform for the development and pre-clinical screening of molecular therapeutics against VS.
Collapse
Affiliation(s)
- Yin Ren
- Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.,Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jessica E Sagers
- Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.,Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.,Harvard Program in Speech and Hearing Bioscience and Technology, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Lukas D Landegger
- Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.,Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.,Department of Otolaryngology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Institute for Medical Engineering and Science, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Department of Electrical Engineering and Computer Science, MIT, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.,Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD, 20815, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA. .,Department of Otolaryngology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA. .,Department of Otolaryngology, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA. .,Harvard Program in Speech and Hearing Bioscience and Technology, 25 Shattuck Street, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
Ellingson BM, Gerstner ER, Smits M, Huang RY, Colen R, Abrey LE, Aftab DT, Schwab GM, Hessel C, Harris RJ, Chakhoyan A, Gahrmann R, Pope WB, Leu K, Raymond C, Woodworth DC, de Groot J, Wen PY, Batchelor TT, van den Bent MJ, Cloughesy TF. Diffusion MRI Phenotypes Predict Overall Survival Benefit from Anti-VEGF Monotherapy in Recurrent Glioblastoma: Converging Evidence from Phase II Trials. Clin Cancer Res 2017; 23:5745-5756. [PMID: 28655794 PMCID: PMC5626594 DOI: 10.1158/1078-0432.ccr-16-2844] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 05/16/2017] [Accepted: 06/21/2017] [Indexed: 01/25/2023]
Abstract
Purpose: Anti-VEGF therapies remain controversial in the treatment of recurrent glioblastoma (GBM). In the current study, we demonstrate that recurrent GBM patients with a specific diffusion MR imaging signature have an overall survival (OS) advantage when treated with cediranib, bevacizumab, cabozantinib, or aflibercept monotherapy at first or second recurrence. These findings were validated using a separate trial comparing bevacizumab with lomustine.Experimental Design: Patients with recurrent GBM and diffusion MRI from the monotherapy arms of 5 separate phase II clinical trials were included: (i) cediranib (NCT00035656); (ii) bevacizumab (BRAIN Trial, AVF3708g; NCT00345163); (iii) cabozantinib (XL184-201; NCT00704288); (iv) aflibercept (VEGF Trap; NCT00369590); and (v) bevacizumab or lomustine (BELOB; NTR1929). Apparent diffusion coefficient (ADC) histogram analysis was performed prior to therapy to estimate "ADCL," the mean of the lower ADC distribution. Pretreatment ADCL, enhancing volume, and clinical variables were tested as independent prognostic factors for OS.Results: The coefficient of variance (COV) in double baseline ADCL measurements was 2.5% and did not significantly differ (P = 0.4537). An ADCL threshold of 1.24 μm2/ms produced the largest OS differences between patients (HR ∼ 0.5), and patients with an ADCL > 1.24 μm2/ms had close to double the OS in all anti-VEGF therapeutic scenarios tested. Training and validation data confirmed that baseline ADCL was an independent predictive biomarker for OS in anti-VEGF therapies, but not in lomustine, after accounting for age and baseline enhancing tumor volume.Conclusions: Pretreatment diffusion MRI is a predictive imaging biomarker for OS in patients with recurrent GBM treated with anti-VEGF monotherapy at first or second relapse. Clin Cancer Res; 23(19); 5745-56. ©2017 AACR.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- UCLA Neuro Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rivka Colen
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | - Robert J Harris
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Renske Gahrmann
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kevin Leu
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Davis C Woodworth
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - John de Groot
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| | | | - Martin J van den Bent
- Department of Neuro-Oncology, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | - Timothy F Cloughesy
- UCLA Neuro Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
34
|
Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY. Hypoxia-Inducible Factors and Cancer. CURRENT SLEEP MEDICINE REPORTS 2017. [PMID: 28944164 DOI: 10.1007/s40675-017-0062-7.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
PURPOSE OF REVIEW Hypoxia inducible factors (HIFs) mediate the transcription of hundreds of genes that allow cells to adapt to hypoxic environments. In this review, we summarize the current state of knowledge about mechanisms of HIF activation in cancer, as well as downstream cancer-promoting consequences such as altered substrate metabolism, angiogenesis, and cell differentiation. In addition, we examine the proposed relationship between respiratory-related hypoxia, HIFs, and cancer. RECENT FINDINGS HIFs are increased in many forms of cancer, and portend a poor prognosis and response to therapy. CONCLUSION HIFs play a critical role in various stages of carcinogenesis. HIF and its transcription targets may be useful as biomarkers of disease and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Jonathan C Jun
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Aman Rathore
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Haris Younas
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Daniele Gilkes
- Division of Breast Cancer, Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
35
|
Zheng HL, Wang LH, Sun BS, Li Y, Yang JY, Wu CF. Oligomer procyanidins (F2) repress HIF-1α expression in human U87 glioma cells by inhibiting the EGFR/ AKT/mTOR and MAPK/ERK1/2 signaling pathways in vitro and in vivo. Oncotarget 2017; 8:85252-85262. [PMID: 29156717 PMCID: PMC5689607 DOI: 10.18632/oncotarget.19654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/31/2017] [Indexed: 01/16/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is over-expressed in gliomas and has become one of the most compelling tumor targets. In this study, we found that oligomer procyanidins (F2) can suppress the expressions of HIF-1α and its target genes in U87 cells, and also down-regulate the EGFR/PI3K/AKT/mTOR and MAPK/ERK1/2 pathways in vitro and in vivo. Furthermore, hypoxia-induced formation of tubular structures by human umbilical vascular endothelial cells and the migration and invasion of U87 cells could be inhibited by F2 in a HIF-1 dependent manner. Moreover, in a U87 xenograft tumor model, F2 significantly reduced intra-tumor vessel density and cell proliferation and finally retarded tumor growth, indicating that F2 may be a potential HIF-1 inhibitor and serve as one of candidates for glioma therapy.
Collapse
Affiliation(s)
- Hong-Li Zheng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Li-Hui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Bao-Shan Sun
- Department of Enology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Viticultural and Enological Research Unit-National Institute for Agricultural and Veterinary Research, Dois Portos, Portugal
| | - Yi Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| |
Collapse
|
36
|
Fischer AP, Miles SL. Silencing HIF-1α induces TET2 expression and augments ascorbic acid induced 5-hydroxymethylation of DNA in human metastatic melanoma cells. Biochem Biophys Res Commun 2017; 490:176-181. [PMID: 28601635 DOI: 10.1016/j.bbrc.2017.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
Abstract
Expression and function of Ten-eleven translocation (TET) enzymes, which initiate DNA demethylation by catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine (5 hmC) on methylated DNA, are frequently lost in malignant tissue. This ultimately results in lost expression of methylated tumor suppressor genes. Many malignancies, including melanoma, also aberrantly overexpress the oncogenic hypoxia inducible factor-1α (HIF-1α) transcription factor, however the association between HIF-1α and TET enzyme expression is largely uninvestigated. Interestingly, ascorbic acid, a critical cofactor for optimal TET enzyme function and normoxic regulation of HIF-1α protein stability, is frequently depleted in malignant tissue, and may further contribute to the malignant phenotype. In our studies, we found supplementation of WM9 human metastatic melanoma cells with ascorbic acid significantly increased 5 hmC content, which was abrogated by TET2 knockdown. Moreover, knockdown of HIF-1α increased TET2 gene and protein expression, and further augmented ascorbic acid-induced TET2 dependent 5-hydroxymethylation in both WM9 and T98G glioblastoma cells. Our data provides novel evidence that HIF-1α is involved in regulating TET expression and 5 hmC status of malignant cells. Furthermore, therapeutic intervention to inhibit HIF-1α in conjunction with adjuvant ascorbic acid may promote DNA demethylation and reexpression of critical tumor suppressor genes in malignant cells and warrants further investigation.
Collapse
Affiliation(s)
- Adam P Fischer
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA.
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
37
|
Manresa MC, Taylor CT. Hypoxia Inducible Factor (HIF) Hydroxylases as Regulators of Intestinal Epithelial Barrier Function. Cell Mol Gastroenterol Hepatol 2017; 3:303-315. [PMID: 28462372 PMCID: PMC5404106 DOI: 10.1016/j.jcmgh.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Human health is dependent on the ability of the body to extract nutrients, fluids, and oxygen from the external environment while at the same time maintaining a state of internal sterility. Therefore, the cell layers that cover the surface areas of the body such as the lung, skin, and gastrointestinal mucosa provide vital semipermeable barriers that allow the transport of essential nutrients, fluid, and waste products, while at the same time keeping the internal compartments free of microbial organisms. These epithelial surfaces are highly specialized and differ in their anatomic structure depending on their location to provide appropriate and effective site-specific barrier function. Given this important role, it is not surprising that significant disease often is associated with alterations in epithelial barrier function. Examples of such diseases include inflammatory bowel disease, chronic obstructive pulmonary disease, and atopic dermatitis. These chronic inflammatory disorders often are characterized by diminished tissue oxygen levels (hypoxia). Hypoxia triggers an adaptive transcriptional response governed by hypoxia-inducible factors (HIFs), which are repressed by a family of oxygen-sensing HIF hydroxylases. Here, we review recent evidence suggesting that pharmacologic hydroxylase inhibition may be of therapeutic benefit in inflammatory bowel disease through the promotion of intestinal epithelial barrier function through both HIF-dependent and HIF-independent mechanisms.
Collapse
Key Words
- CD, Crohn’s disease
- DMOG, dimethyloxalylglycine
- DSS, dextran sodium sulfate
- Epithelial Barrier
- FIH, factor inhibiting hypoxia-inducible factor
- HIF, hypoxia-inducible factor
- Hypoxia
- Hypoxia-Inducible Factor (HIF) Hydroxylases
- IBD, inflammatory bowel disease
- IL, interleukin
- Inflammatory Bowel Disease
- NF-κB, nuclear factor-κB
- PHD, hypoxia-inducible factor–prolyl hydroxylases
- TFF, trefoil factor
- TJ, tight junction
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor α
- UC, ulcerative colitis
- ZO, zonula occludens
Collapse
Affiliation(s)
- Mario C. Manresa
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin, Ireland
- Charles Institute of Dermatology, Belfield, Dublin, Ireland
- Systems Biology Ireland, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
38
|
Jun JC, Rathore A, Younas H, Gilkes D, Polotsky VY. Hypoxia-Inducible Factors and Cancer. CURRENT SLEEP MEDICINE REPORTS 2017; 3:1-10. [PMID: 28944164 DOI: 10.1007/s40675-017-0062-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Hypoxia inducible factors (HIFs) mediate the transcription of hundreds of genes that allow cells to adapt to hypoxic environments. In this review, we summarize the current state of knowledge about mechanisms of HIF activation in cancer, as well as downstream cancer-promoting consequences such as altered substrate metabolism, angiogenesis, and cell differentiation. In addition, we examine the proposed relationship between respiratory-related hypoxia, HIFs, and cancer. RECENT FINDINGS HIFs are increased in many forms of cancer, and portend a poor prognosis and response to therapy. CONCLUSION HIFs play a critical role in various stages of carcinogenesis. HIF and its transcription targets may be useful as biomarkers of disease and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Jonathan C Jun
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Aman Rathore
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Haris Younas
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Daniele Gilkes
- Division of Breast Cancer, Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
39
|
RNAi Knockdown of Hypoxia-Inducible Factor-1α Decreased the Proliferation, Migration, and Invasion of Hypoxic Hepatocellular Carcinoma Cells. Cell Biochem Biophys 2016; 71:1677-84. [PMID: 25388848 DOI: 10.1007/s12013-014-0390-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The obstruction of hepatic arterial blood flow results in tumor tissue hypoxia and elevated expression of hypoxia-inducible factor-1alpha (HIF-1α). Our study evaluated whether lentivirus-mediated short interference RNA against HIF-1α inhibits proliferation, invasion, and migration of hepatocellular carcinoma (HCC) cells under hypoxia. RNA interference knockdown of HIF-1α was achieved by HIF-1α-directed lentiviral shRNA, in a rat HCC cell line cultured under hypoxia condition for varying length of times. The expression levels of HIF-1α and vascular endothelial growth factor were examined using reverse transcription polymerase chain reaction and western blot analyses. Cell proliferation, migration, and invasion were measured by cell viability, transwell migration, and invasion assays, respectively. Inhibition of HIF-1α expression by shRNA suppressed vascular endothelial growth factor mRNA and protein levels under both normoxia and hypoxia. It also suppressed cell migration and invasion, which were enhanced under hypoxic conditions. RNAi knockdown of HIF-1α further suppressed hypoxia-mediated inhibition of the cell proliferation. These data suggest that shRNA of HIF-1α could antagonize the hypoxia-mediated increase in hepatic cancer cell migration and invasion, and synergize with hypoxia to inhibit the cell proliferation in HCC cells.
Collapse
|
40
|
Ding ZY, Huang YJ, Tang JD, Li G, Jiang PQ, Wu HT. Silencing of hypoxia-inducible factor-1α promotes thyroid cancer cell apoptosis and inhibits invasion by downregulating WWP2, WWP9, VEGF and VEGFR2. Exp Ther Med 2016; 12:3735-3741. [PMID: 28105105 DOI: 10.3892/etm.2016.3826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Adaptation to hypoxia is an important process physiologically and pathologically. Hypoxia-inducible factor-1α (HIF-1α) participates in the cancer biology of numerous endocrine tumors, including their proliferation and differentiation. In the present study, the hypothesis that HIF-1α promotes tumorigenesis in thyroid cancer via upregulating angiogenesis-associated markers is investigated. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to examine the expression of HIF-1α in thyroid cancer cell lines, and to detect the expression of WW domain containing E3 ubiquitin protein ligase (WWP)2, WWP9, vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) in MZ-CRC-1 and TT thyroid cancer cells. Cell proliferation was measured using a Cell Count Kit-8. Cell apoptosis and cell cycle was assessed by flow cytometry. Cell invasive ability was examined by Matrigel transwell analysis. RT-qPCR and western blot analyses demonstrated that the mRNA and protein expression levels of HIF-1α were significant higher in MZ-CRC-1 and TT thyroid cancer cells than in another three thyroid cancer cells (P<0.01). HIF-1α knockdown cells demonstrated inhibition of cell proliferation and invasion, arrested cell cycle at the G1 phase, and induction of cell apoptosis. The protein expression levels of WWP2, WWP9, VEGF and VEGFR2 were decreased in HIF-1α knockdown MZ-CRC-1 and TT cells. In conclusion, HIF-1α may be important in cell apoptosis and invasion of thyroid cancer cells, likely through regulating WWP2, WWP9, VEGF and VEGFR2 expression.
Collapse
Affiliation(s)
- Zhong-Yang Ding
- Department of General Surgery, Wuxi Chinese Medicine Hospital Affiliated by Nanjing, Chinese Medicine University, Wuxi, Jiangsu 214023, P.R. China
| | - Yun-Juan Huang
- Department of Nursery, Wuxi People's Hospital, Wuxi, Jiangsu 214023, P.R. China
| | - Jian-Dong Tang
- Department of General Surgery, Wuxi Chinese Medicine Hospital Affiliated by Nanjing, Chinese Medicine University, Wuxi, Jiangsu 214023, P.R. China
| | - Gan Li
- Department of General Surgery, Wuxi Chinese Medicine Hospital Affiliated by Nanjing, Chinese Medicine University, Wuxi, Jiangsu 214023, P.R. China
| | - Pan-Qiang Jiang
- Department of General Surgery, Wuxi Chinese Medicine Hospital Affiliated by Nanjing, Chinese Medicine University, Wuxi, Jiangsu 214023, P.R. China
| | - Hao-Tian Wu
- Department of General Surgery, Wuxi Chinese Medicine Hospital Affiliated by Nanjing, Chinese Medicine University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
41
|
Horvathova L, Padova A, Tillinger A, Osacka J, Bizik J, Mravec B. Sympathectomy reduces tumor weight and affects expression of tumor-related genes in melanoma tissue in the mouse. Stress 2016; 19:528-34. [PMID: 27416924 DOI: 10.1080/10253890.2016.1213808] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Accumulated evidence indicates that sympathetic nerves may potentiate tumor growth, including melanoma. To elucidate possible mechanisms for this effect, we performed chemical sympathectomy by intraperitoneal (i.p.) injection of the neurotoxin 6-hydroxydopamine hydrobromide (100 mg/kg of body weight); in nine adult male C57BL/6J mice; nine control mice received i.p. vehicle (VEH). Seven days later, all mice were injected subcutaneously with 3 × 10(3) B16-F10 melanoma cells. Mice were euthanized 20 d after injection of melanoma cells, for measurement of tumor weight and expression of genes related to sympathetic signaling, apoptosis, hypoxia and angiogenesis in tumor tissue. To assess potential involvement of the hypothalamo-pituitary-adrenocortical axis in the effect of sympathectomy on melanoma growth, concentrations of plasma corticosterone and level of glucocorticoid receptor mRNA in tumor tissue were determined. We found that sympathectomy significantly attenuated melanoma growth (tumor weight 0.29 ± 0.16 g versus 1.02 ± 0.30 g in controls; p < 0.05). In tumor tissue from sympathectomized mice, we found significantly increased gene expression (measured by real-time PCR), relative to VEH-injected controls, of tyrosine hydroxylase, neuropeptide Y and glucocorticoid receptor (all p < 0.05), and alpha1, beta1 and beta3 adrenergic receptors (all p < 0.025), and factors related to apoptosis (Bcl-2 and caspase-3; p < 0.05) and hypoxia (hypoxia inducible factor 1 alpha) (p = 0.005). Plasma corticosterone concentrations were significantly elevated (p < 0.05) in these mice. Our findings indicate that sympathectomy induces complex changes in the tumor microenvironment reducing melanoma growth. Such complex changes should be considered in the prediction of responses of cancer patients to interventions affecting sympathetic signaling in tumor tissue and its environment.
Collapse
Affiliation(s)
- Lubica Horvathova
- a Institute of Experimental Endocrinology , Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Alexandra Padova
- b Institute of Physiology, Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
| | - Andrej Tillinger
- a Institute of Experimental Endocrinology , Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Jana Osacka
- a Institute of Experimental Endocrinology , Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Jozef Bizik
- c Cancer Research Institute , Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Boris Mravec
- a Institute of Experimental Endocrinology , Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
- b Institute of Physiology, Faculty of Medicine , Comenius University in Bratislava , Bratislava , Slovakia
| |
Collapse
|
42
|
Park KJ, Yu MO, Park DH, Park JY, Chung YG, Kang SH. Role of vincristine in the inhibition of angiogenesis in glioblastoma. Neurol Res 2016; 38:871-9. [PMID: 27472259 DOI: 10.1080/01616412.2016.1211231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Vincristine, a microtubule-destabilizing drug, was found to exhibit anti-angiogenic effects and anti-tumoral activity. However, the precise mechanism by which vincristine inhibits angiogenesis in glioblastomas is not well understood. Our aim was to investigate whether vincristine affects vascular endothelial growth factor (VEGF) expression in glioblastoma cells and determine whether it is mediated by the downregulation of hypoxia-inducible factor-1α (HIF-1α). METHODS We investigated the expression of HIF-1α in glioblastoma tissues resected from patients and in human glioblastoma cell lines using immunohistochemistry, Western blot analysis, and immunocytochemistry. In addition to an MTT assay assessing the effect of vincristine on cell proliferation and viability, the effects of vincristine on VEGF mRNA expression and HIF-1α protein were examined using real-time RT-PCR and Western blot analysis under 1% O2 (hypoxia). RESULTS HIF-1α was expressed in the majority of glioblastoma tissues and was detected mainly in the nucleus. Strong immunoreactivity for HIF- 1 α was found often in the hypercellular zones. Under hypoxic conditions, HIF-1α protein levels in the glioblastoma cell lines increased, primarily localizing into the nucleus similar to glioblastoma tissues. Exposure of glioblastoma cells to vincristine resulted in enrichment of the G2-M fraction of the cell cycle, which suggests that vincristine-mediated growth inhibition of glioblastoma is correlated with mitotic inhibition. Using doses lower than those found to reduce the viability and proliferation of cells by 50% (IC50), vincristine decreased both the expression of VEGF mRNA and the level of HIF-1α protein in hypoxic glioblastoma cells. In addition, following exposure to vincristine, the expression of VEGF mRNA was correlated with HIF-1α protein levels. CONCLUSIONS Our results suggest that the mechanism by which vincristine elicits an anti-angiogenic effect in glioblastomas under hypoxic conditions might be mediated, in part, by HIF-1α inhibition.
Collapse
Affiliation(s)
- Kyung-Jae Park
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Mi Ok Yu
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Dong-Hyuk Park
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Jung-Yul Park
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Yong-Gu Chung
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| | - Shin-Hyuk Kang
- a Department of Neurosurgery, College of Medicine , Korea University Medical Center, Korea University , Seoul , Korea
| |
Collapse
|
43
|
Zhang X, Li S, Li M, Huang H, Li J, Zhou C. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions. Oncol Lett 2016; 12:1034-1040. [PMID: 27446390 DOI: 10.3892/ol.2016.4705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic conditions in HepG2 cells via the TLR4 mediated pathway, suggesting that the HIF-1α/TLR4 signaling cohort may act as a novel therapeutic target for the treatment of hepatocellular cancer.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Infectious Diseases, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shuchen Li
- Department of Infectious Diseases, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mingrong Li
- Department of Infectious Diseases, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haiying Huang
- Department of Infectious Diseases, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jingyuan Li
- Department of Infectious Diseases, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Changwei Zhou
- Department of Orthopedics, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
44
|
Wang Y, Xing D, Zhao M, Wang J, Yang Y. The Role of a Single Angiogenesis Inhibitor in the Treatment of Recurrent Glioblastoma Multiforme: A Meta-Analysis and Systematic Review. PLoS One 2016; 11:e0152170. [PMID: 27007828 PMCID: PMC4805294 DOI: 10.1371/journal.pone.0152170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Currently, the standard treatment for newly diagnosed glioblastoma multiforme (GBM) is maximal safe surgical resection followed by radiation therapy with concurrent and adjuvant temozolomide. However, disease recurs in almost all patients, and the optimal salvage treatment for recurrent GBM remains unclear. We conducted a systematic review and meta-analysis of published clinical trials to assess the efficacy and toxicities of angiogenesis inhibitors alone as salvage treatment in these patients. METHODS Trials published between 1994 and 2015 were identified by an electronic search of public databases (MEDLINE, EMBASE, Cochrane library). Demographic data, treatment regimens, objective response rate (ORR), median progression-free survival (PFS), median overall survival (OS), 6-months PFS rate, 1-year OS and grade 3/4 toxicities were extracted. We also compared the main outcomes of interest between bevacizumab and other angiogenesis inhibitors. All analyses were performed using Comprehensive Meta Analysis software (Version 2.0). RESULTS A total of 842 patients were included for analysis: 343 patients were treated with bevacizumab, 386 with other angiogenesis inhibitors and 81 with thalidomide. The pooled ORR, 6-months PFS, and 1-year OS for recurrent GBM patients receiving angiogenesis inhibitors was 20.1%, 19.5% and 29.3%, respectively. The use of single agent bevacizumab in recurrent GBM significantly improved ORR and 6-months PFS when compared to other angiogenesis inhibitors [relative risk (RR) 2.93, 95% CI 1.38-6.21; p = 0.025; and RR 2.36 95% CI 1.46-3.82; p<0.001, respectively], while no significant difference in 1-year OS was found between the two groups (p = 0.07). when compared to thalidomide, bevacizumab treatment in recurrent GBM significantly improved ORR (RR 6.8, 95%CI: 2.64-17.6, p<0.001), but not for 6-months PFS (p = 0.07) and 1-year OS (p = 0.31). As for grade 3/4 toxicities, the common toxicity was hypertension with pooled incidence of 12.1%, while high-grade thromboembolic events (2.2%), hemorrhage (5.1%) and GI perforation (2.8%) associated with angiogenesis inhibitors were relatively low. CONCLUSIONS In comparison with other angiogenesis inhibitors and thalidomide, the use of single agent bevacizumab as salvage treatment for recurrent GBM patients improve ORR and 6-months PFS, but not for 1-year OS.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Electromyography, Tianjin Hospital, Tianjin, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Meng Zhao
- Clinical laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jie Wang
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
- * E-mail:
| |
Collapse
|
45
|
Cheng CC, Guan SS, Yang HJ, Chang CC, Luo TY, Chang J, Ho AS. Blocking heme oxygenase-1 by zinc protoporphyrin reduces tumor hypoxia-mediated VEGF release and inhibits tumor angiogenesis as a potential therapeutic agent against colorectal cancer. J Biomed Sci 2016; 23:18. [PMID: 26822586 PMCID: PMC4730655 DOI: 10.1186/s12929-016-0219-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/11/2016] [Indexed: 01/30/2023] Open
Abstract
Background Hypoxia in tumor niche is one of important factors to start regeneration of blood vessels, leading to increase survival, proliferation, and invasion in cancer cells. Under hypoxia microenvironment, furthermore, steadily increased hypoxia-inducible factor-1α (HIF-1α) is observed, and can increase vascular endothelial growth factor (VEGF) expression and promote angiogenesis. Zinc protoporphyrin (ZnPP), a heme oxygenase-1 (HO-1) inhibitor, is potential to inhibit tumor proliferation and progression. However, the mechanism of ZnPP in inhibition of tumor is not completely clear. We hypothesize that ZnPP may modulate HIF-1α through inhibiting HO-1, and then inhibit angiogenesis and tumor progression. This study aimed to dissect the mechanism of ZnPP in tumor suppression. Results We observed the amount of VEGF was increased in the sera of the colorectal cancer (CRC) patients (n = 34, p < 0.05). Furthermore, increased VEGF expression was also measured in colorectal cancer cells, HCT-15, culturing under mimicking hypoxic condition. It suggested that hypoxia induced VEGF production from cancer cells. VEGF production was significantly reduced from HCT-15 cells after exposure to HIF-1α inhibitor KC7F2, suggesting that HIF-1α regulated VEGF production. Moreover, we observed that the HO-1inhibitor ZnPP inhibited the expressions of HIF-1α and VEGF coupled with cell proliferations of HCT-15 cells, suggesting that ZnPP blocked HIF-1α expression, and then inhibited the consequent VEGF production. In the xenograft model, we also observed that the animals exposed to ZnPP displayed much smaller tumor nodules and less degree of angiogenesis with decreased expression of the angiogenesis marker, αvβ3 integrin, compared to that in normal control. Conclusions This study demonstrated that VEGF level in serum was elevated in the patients with CRC. The HO-1 inhibitor, ZnPP, possessed the properties of anti-tumor agent by decreasing HIF-1α levels, blocking VEGF production, impairing tumor angiogenesis, and inhibiting tumor growth.
Collapse
Affiliation(s)
- Chun-Chia Cheng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Hao-Jhih Yang
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Yueh Luo
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan. .,Nursing Department, Kang-Ning University, Taipei, Taiwan.
| |
Collapse
|
46
|
Jain A, Lai JCK, Bhushan A. Biochanin A inhibits endothelial cell functions and proangiogenic pathways: implications in glioma therapy. Anticancer Drugs 2015; 26:323-30. [PMID: 25501542 DOI: 10.1097/cad.0000000000000189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Malignant gliomas, such as glioblastoma multiforme, are highly vascularized tumors of the central nervous system. A rich network of angiogenic vessels supporting glioma growth is an important therapeutic target in glioma therapy. In the past few years, small molecules have gained interest as multitargeting therapies for cancer. Biochanin A is a small, natural dietary isoflavone known for its anticancer potential. Previously, we have found that biochanin A inhibits invasion in human glioblastoma cells. In this study, we elucidated the antiangiogenic mechanisms of biochanin A using rat brain tumor (C6) and murine brain endothelial (bEnd.3) cells and an ex-vivo chick chorioallantoic membrane model. Biochanin A inhibited endothelial cell functions such as cell viability, migration, and invasion, as analyzed using MTT, scratch wound, and gelatin zymography assays. Activation of proangiogenic proteins (ERK/AKT/mTOR) was inhibited. Biochanin A also inhibited chemical hypoxia-inducible factor-1α and vascular endothelial growth factor in C6 cells. Results of chick chorioallantoic membrane assay showed that biochanin A inhibited blood vessel formation ex vivo. As these results suggest that biochanin A directly targets different facets of angiogenesis in vitro and ex vivo, this study provides a rationale for future preclinical evaluation of its efficacy against angiogenic gliomas.
Collapse
Affiliation(s)
- Aditi Jain
- aDepartment of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky bDepartment of Biomedical and Pharmaceutical Sciences, Division of Health Sciences, College of Pharmacy, ISU Biomedical Research Institute, Idaho State University, Pocatello, Idaho cDepartment of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
47
|
Abstract
Glioblastoma is the most prevalent malignant primary brain tumor in adults and to date effective durable treatments are lacking. Preclinical studies underscore the importance of neovascularization for tumor survival, making angiogenesis an important treatment target. Early clinical experience in recurrent glioblastoma suggested that antiangiogenic agents may provide clinical benefit by prolonging progression-free survival, improving quality of life and decreasing peritumoral edema. Two recent Phase III randomized trials of antiangiogenic therapy at initial diagnosis suggested improvement in progression-free survival, but failed to show an overall survival benefit. Ongoing preclinical research focuses on mechanisms of resistance and potential predictive biomarkers. Identification of targets to resistance pathways and of predictive biomarkers will hopefully improve efficacy of antiangiogenic therapies.
Collapse
Affiliation(s)
- Isabel Arrillaga-Romany
- Stephen E & Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
48
|
Lin KW, Liao A, Qutub AA. Simulation predicts IGFBP2-HIF1α interaction drives glioblastoma growth. PLoS Comput Biol 2015; 11:e1004169. [PMID: 25884993 PMCID: PMC4401766 DOI: 10.1371/journal.pcbi.1004169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022] Open
Abstract
Tremendous strides have been made in improving patients’ survival from cancer with one glaring exception: brain cancer. Glioblastoma is the most common, aggressive and highly malignant type of primary brain tumor. The average overall survival remains less than 1 year. Notably, cancer patients with obesity and diabetes have worse outcomes and accelerated progression of glioblastoma. The root cause of this accelerated progression has been hypothesized to involve the insulin signaling pathway. However, while the process of invasive glioblastoma progression has been extensively studied macroscopically, it has not yet been well characterized with regards to intracellular insulin signaling. In this study we connect for the first time microscale insulin signaling activity with macroscale glioblastoma growth through the use of computational modeling. Results of the model suggest a novel observation: feedback from IGFBP2 to HIF1α is integral to the sustained growth of glioblastoma. Our study suggests that downstream signaling from IGFI to HIF1α, which has been the target of many insulin signaling drugs in clinical trials, plays a smaller role in overall tumor growth. These predictions strongly suggest redirecting the focus of glioma drug candidates on controlling the feedback between IGFBP2 and HIF1α. Current treatment for glioblastoma patients is limited to nonspecific methods: surgery followed by a combination of radio- and chemotherapy. With these methods, glioma patient survival is less than one year post-diagnosis. Targeting specific protein signaling pathways offers potentially more potent therapies. One promising potential target is the insulin signaling pathway, which is known to contribute to glioblastoma progression. However, drugs targeting this pathway have shown mixed results in clinical trials, and the detailed mechanisms of how the insulin signaling pathway promotes glioblastoma growth remain to be elucidated. Here, we developed a computational model of insulin signaling in glioblastoma in order to study this pathway’s role in tumor progression. Using the model, we systematically test contributions of different insulin signaling protein interactions on glioblastoma growth. Our model highlights a key driver for the growth of glioblastoma: IGFBP2-HIF1α feedback. This interaction provides a target that could open the door for new therapies in glioma and other solid tumors.
Collapse
Affiliation(s)
- Ka Wai Lin
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Angela Liao
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Amina A. Qutub
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bürgi S, Seuwen A, Keist R, Vom Berg J, Grandjean J, Rudin M. In vivo imaging of hypoxia-inducible factor regulation in a subcutaneous and orthotopic GL261 glioma tumor model using a reporter gene assay. Mol Imaging 2015; 13. [PMID: 25248521 DOI: 10.2310/7290.2014.00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intratumoral hypoxia changes the metabolism of gliomas, leading to a more aggressive phenotype with increased resistance to radio- and chemotherapy. Hypoxia triggers a signaling cascade with hypoxia-inducible factor (HIF) as a key regulator. We monitored activation of the HIF pathway longitudinally in murine glioma tumors. GL261 cells, stably transfected with a luciferase reporter driven under the control of a promoter comprising the HIF target gene motive hypoxia response element, were implanted either subcutaneously or orthotopically. In vivo experiments were carried out using bioluminescence imaging. Tumors were subsequently analyzed using immunofluorescence staining for hypoxia, endothelial cells, tumor perfusion, and glucose transporter expression. Transient upregulation of the HIF signaling was observed in both subcutaneous and orthotopic gliomas. Immunofluorescence staining confirmed hypoxic regions in subcutaneous and, to a lesser extent, intracranial tumors. Subcutaneous tumors showed substantial necrosis, which might contribute to the decreased bioluminescence output observed toward the end of the experiment. Orthotopic tumors were less hypoxic than subcutaneous ones and did not develop extensive necrotic areas. Although this may be the result of the overall smaller size of orthotopic tumors, it might also reflect differences in the local environment, such as the better intrinsic vascularization of brain tissue compared to the subcutaneous tissue compartment.
Collapse
|
50
|
Paul-Samojedny M, Pudełko A, Suchanek-Raif R, Kowalczyk M, Fila-Daniłow A, Borkowska P, Kowalski J. Knockdown of the AKT3 (PKBγ), PI3KCA, and VEGFR2 genes by RNA interference suppresses glioblastoma multiforme T98G cells invasiveness in vitro. Tumour Biol 2014; 36:3263-77. [PMID: 25501707 DOI: 10.1007/s13277-014-2955-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain malignancy, having a very poor prognosis and is characterized by extensive brain invasion as well as resistance to the therapy. The phosphoinositide 3-kinase (PI3K)/Akt/PTEN signaling pathway is deregulated in GBM. Besides, florid vascularization and aberrantly elevated vascular endothelial growth factor (VEGF) occur very often. The present study was designed to examine the inhibitory effect of AKT3, PI3KCA, and VEGFR2 small interfering RNAs (siRNAs) on GBM cell invasiveness. T98G cells were transfected with AKT3, PI3KCA, and/or VEGFR2 siRNAs. VEGFR2 protein-positive cells were identified by flow cytometry using specific monoclonal anti-VEGFR2 antibodies. Alterations in messenger RNA (mRNA) expression of VEGF, VEGFR2, matrix metalloproteinases (MMPs) (MMP-2, MMP-9, MMP-13, MMP-14), tissue inhibitors of metalloproteinases (TIMPs) (TIMP-1, TIMP-3), c-Fos, c-Jun, hypoxia-inducible factor-1α (HIF-1α), ObRa, and cathepsin D genes were analyzed by qRT-PCR. Cells treated with specific siRNA were also analyzed for invasion using the Matrigel invasion assay. We have found significantly lower mRNA levels of MMPs, cathepsin D, VEGF, VEGFR2, HIF-1α, and c-Fos/c-Jun ratio, as well as significantly higher mRNA level of TIMPs in AKT3 and PI3KCA siRNA transfected cells compared to untransfected cells, while significantly lower mRNA levels of MMPs (MMP-2, MMP-9, MMP-14) and TIMP-1, as well as significantly higher mRNA level of TIMP-3, were shown only in cells transfected with VEGFR2 siRNA. The positive correlation between MMP-13 and ObRa mRNA copy number has been found. Summarizing, transfection of T98G cells with AKT3, PI3KCA, or VEGFR2 siRNAs leads to a significant reduction in cell invasiveness. The siRNA-induced AKT3, PI3KCA, and VEGFR2 mRNA knockdown may offer a novel therapeutic strategy to reduce the invasiveness of GBM cells.
Collapse
Affiliation(s)
- Monika Paul-Samojedny
- Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8 Street, 41-200, Katowice, Sosnowiec, Poland,
| | | | | | | | | | | | | |
Collapse
|