1
|
Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as delivery systems at nano-/micro-scale. Adv Drug Deliv Rev 2021; 179:113910. [PMID: 34358539 PMCID: PMC8986465 DOI: 10.1016/j.addr.2021.113910] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have shown significant promises as nano-/micro-size carriers in drug delivery and bioimaging. With more characteristics of EVs explored through tremendous research efforts, their unmatched physicochemical properties, biological features, and mechanical aspects make them unique vehicles, owning exceptional pharmacokinetics, circulatory metabolism and biodistribution pattern when delivering theranostic cargoes. In this review we firstly analyzed pros and cons of the EVs as a delivery platform. Secondly, compared to engineered nanoparticle delivery systems, such as biocompatible di-block co-polymers, rational design to improve EVs (exosomes in particular) were elaborated. Lastly, different pharmaceutical loading approaches into EVs were compared, reaching a conclusion on how to construct a clinically available and effective nano-/micro-carrier for a satisfactory medical mission.
Collapse
Affiliation(s)
- Peiwen Fu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China
| | - Jianguo Zhang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Critical Care Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven 06520, USA.
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China.
| | - Zhimin Tao
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Rilla K. Diverse plasma membrane protrusions act as platforms for extracellular vesicle shedding. J Extracell Vesicles 2021; 10:e12148. [PMID: 34533887 PMCID: PMC8448080 DOI: 10.1002/jev2.12148] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane curvature is an important factor in the regulation of cellular phenotype and is critical for various cellular activities including the shedding of extracellular vesicles (EV). One of the most striking morphological features of cells is different plasma membrane-covered extensions supported by actin core such as filopodia and microvilli. Despite the various functions of these extensions are partially unexplained, they are known to facilitate many crucial cellular functions such as migration, adhesion, absorption, and secretion. Due to the rapid increase in the research activity of EVs, there is raising evidence that one of the general features of cellular plasma membrane protrusions is to act as specialized platforms for the budding of EVs. This review will focus on early observations and recent findings supporting this hypothesis, discuss the putative budding and shedding mechanisms of protrusion-derived EVs and their biological significance.
Collapse
Affiliation(s)
- Kirsi Rilla
- Institute of BiomedicineUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
3
|
Melwani PK, Balla MMS, S N, Padwal M, Chaurasia RK, Basu B, Ghosh A, Pandey BN. Integrated transcriptomic and proteomic analysis of microplasts derived from macrophage-conditioned medium-treated MCF-7 breast cancer cells. FEBS Lett 2021; 595:1844-1860. [PMID: 33993482 DOI: 10.1002/1873-3468.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022]
Abstract
Microplasts are large extracellular vesicles originating from migratory, invasive, and metastatic cancer cells. Here, to gain insight into the role of microplasts in cancer progression, we performed a proteomic and transcriptomic characterization of microplasts isolated from MCF-7 breast cancer cells treated with macrophage-conditioned medium. These cells were found to be viable, highly migratory, and metabolically active, indicating that microplasts derived from these cells are not apoptotic bodies. Transcriptomic/proteomic analyses identified 10273 mRNAs and 821 proteins in microplasts. Interestingly, 377 microplast mRNAs coded for corresponding microplast proteins. Microplast mRNAs and proteins were mainly associated with binding and catalytic activities. Microplasts showed enrichment of mRNAs involved in transcription regulation and proteins involved in processes such as cell-cell adhesion and translation. Pathway analysis showed enrichment of ribosomes and carbon metabolism. These results suggest a close resemblance between microplasts and parent cells, with mRNA and protein cargo relevant in intercellular signaling.
Collapse
Affiliation(s)
- Pooja Kamal Melwani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | | | - Nishad S
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Padwal
- Homi Bhabha National Institute, Mumbai, India.,Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rajesh Kumar Chaurasia
- Homi Bhabha National Institute, Mumbai, India.,Radiation Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhakti Basu
- Homi Bhabha National Institute, Mumbai, India.,Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Anu Ghosh
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Padhi A, Danielsson BE, Alabduljabbar DS, Wang J, Conway DE, Kapania RK, Nain AS. Cell Fragment Formation, Migration, and Force Exertion on Extracellular Mimicking Fiber Nanonets. Adv Biol (Weinh) 2021; 5:e2000592. [PMID: 33759402 DOI: 10.1002/adbi.202000592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Cell fragments devoid of the nucleus play an essential role in intercellular communication. Mostly studied on flat 2D substrates, their origins and behavior in native fibrous environments remain unknown. Here, cytoplasmic fragments' spontaneous formation and behavior in suspended extracellular matrices mimicking fiber architectures (parallel, crosshatch, and hexagonal) are described. After cleaving from the parent cell body, the fragments of diverse shapes on fibers migrate faster compared to 2D. Furthermore, while fragments in 2D are mostly circular, a higher number of rectangular and blob-like shapes are formed on fibers, and, interestingly, each shape is capable of forming protrusive structures. Absent in 2D, fibers' fragments display oscillatory migratory behavior with dramatic shape changes, sometimes remarkably sustained over long durations (>20 h). Immunostaining reveals paxillin distribution along fragment body-fiber length, while Forster Resonance Energy Transfer imaging of vinculin reveals mechanical loading of fragment adhesions comparable to whole cell adhesions. Using nanonet force microscopy, the forces exerted by fragments are estimated, and peculiarly small area fragments can exert forces similar to larger fragments in a Rho-associated kinase dependent manner. Overall, fragment dynamics on 2D substrates are insufficient to describe the mechanosensitivity of fragments to fibers, and the architecture of fiber networks can generate entirely new behaviors.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Deema S Alabduljabbar
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Ji Wang
- Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Rakesh K Kapania
- Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Gaertner F, Ahmad Z, Rosenberger G, Fan S, Nicolai L, Busch B, Yavuz G, Luckner M, Ishikawa-Ankerhold H, Hennel R, Benechet A, Lorenz M, Chandraratne S, Schubert I, Helmer S, Striednig B, Stark K, Janko M, Böttcher RT, Verschoor A, Leon C, Gachet C, Gudermann T, Mederos Y Schnitzler M, Pincus Z, Iannacone M, Haas R, Wanner G, Lauber K, Sixt M, Massberg S. Migrating Platelets Are Mechano-scavengers that Collect and Bundle Bacteria. Cell 2017; 171:1368-1382.e23. [PMID: 29195076 DOI: 10.1016/j.cell.2017.11.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/27/2017] [Accepted: 10/30/2017] [Indexed: 01/07/2023]
Abstract
Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.
Collapse
Affiliation(s)
- Florian Gaertner
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany.
| | - Zerkah Ahmad
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Gerhild Rosenberger
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Shuxia Fan
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Benjamin Busch
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU, 80336 Munich, Germany
| | - Gökce Yavuz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Manja Luckner
- Ultrastructural Research, Department Biology I, Biozentrum, Ludwig-Maximillians-Universität, 82152 Martinsried, Germany
| | | | - Roman Hennel
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexandre Benechet
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Sue Chandraratne
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Irene Schubert
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Sebastian Helmer
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Bianca Striednig
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany
| | - Marek Janko
- Department of Materials Science, Technische Universität, 64287 Darmstadt, Germany
| | - Ralph T Böttcher
- Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany
| | - Admar Verschoor
- Institute for Systemic Inflammation Research, Universität zu Lübeck, 23538 Lübeck, Germany
| | - Catherine Leon
- UMR S949, Inserm, Université de Strasbourgh, Etablissement Français du Sang-Alsace, 67065 Strasbourg, France
| | - Christian Gachet
- UMR S949, Inserm, Université de Strasbourgh, Etablissement Français du Sang-Alsace, 67065 Strasbourg, France
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität, 80336 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany
| | - Michael Mederos Y Schnitzler
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität, 80336 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany
| | - Zachary Pincus
- Department of Developmental Biology and Department of Genetics, Washington University, St. Louis, St. Louis, MO 63110, USA
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU, 80336 Munich, Germany; German Center for Infection Research (DZIF), Munich Site, 80336 Munich, Germany
| | - Gerhard Wanner
- Ultrastructural Research, Department Biology I, Biozentrum, Ludwig-Maximillians-Universität, 82152 Martinsried, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Sixt
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, 81377 Munich, Germany; Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), 13347 Berlin, Germany.
| |
Collapse
|
6
|
Patheja P, Sahu K. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments. Exp Cell Res 2017; 355:182-193. [DOI: 10.1016/j.yexcr.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/08/2017] [Indexed: 01/23/2023]
|
7
|
Luther E, Mendes LP, Pan J, Costa DF, Torchilin VP. Applications of label-free, quantitative phase holographic imaging cytometry to the development of multi-specific nanoscale pharmaceutical formulations. Cytometry A 2017; 91:412-423. [PMID: 28371272 PMCID: PMC5540155 DOI: 10.1002/cyto.a.23102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/14/2016] [Accepted: 03/01/2017] [Indexed: 11/09/2022]
Abstract
A label-free, high content, time-lapse holographic imaging system was applied to studies in pharmaceutical compound development. Multiple fields of cellular images are obtained over typically several day evaluations within standard CO2 incubators. Events are segmented to obtain population data of cellular features, which are displayed in scattergrams and histograms. Cell tracking is accomplished, accompanied by Cartesian plots of cell movement, as well as plots of cell features vs. time in novel 4-D displays of X position, Y position, time, and cell thickness. Our review of the instrument validation data includes 1) tracking of Giant HeLa cells, which may be undergoing neosis, a process of tumor stem cell generation; 2) tracking the effects of cell cycle related toxic agents on cell lines; 3) using MicroRNAs to reverse the polarization state in macrophages to induce tumor cell killing; 4) development of liposomal nanoformulations to overcome Multi-Drug Resistance (MDR) in ovarian cancer cells; and 5) development of dual sensitive micelles to specifically target matrix metalloproteinase 2 (MMP2) over-expressing cell lines. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Livia P. Mendes
- The Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Jiyai Pan
- The Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| | - Daniel F. Costa
- The Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Vladimir P. Torchilin
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
- The Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| |
Collapse
|
8
|
Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21:28. [PMID: 28536630 PMCID: PMC5415767 DOI: 10.1186/s11658-016-0028-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Mechanobiology has shifted our understanding of fundamental cellular and physiological functions. Changes to the stiffness of the extracellular matrix, cell rigidity, or shape of the cell environment were considered in the past to be a consequence of aging or pathological processes. We now understand that these factors can actually be causative biological mediators of cell growth to control organ size. Mechanical cues are known to trigger a relatively fast translocation of specific transcriptional co-factors such as MRTFs, YAP and TAZ from the cytoplasm to the cell nucleus to initiate discrete transcriptional programs. The focus of this review is the molecular mechanisms by which biophysical stimuli that induce changes in cytoplasmic actin dynamics are communicated within cells to elicit gene-specific transcription via nuclear localisation or activation of specialized transcription factors, namely MRTFs and the Hippo pathway effectors YAP and TAZ. We propose here that MRTFs, YAP and TAZ closely collaborate as mechano-effectors.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| |
Collapse
|
9
|
Sun YH, Sun Y, Zhu K, Draper BW, Zeng Q, Mogilner A, Zhao M. An Experimental Model for Simultaneous Study of Migration of Cell Fragments, Single Cells, and Cell Sheets. Methods Mol Biol 2016; 1407:251-272. [PMID: 27271908 PMCID: PMC5470548 DOI: 10.1007/978-1-4939-3480-5_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent studies have demonstrated distinctive motility and responses to extracellular cues of cells in isolation, cells collectively in groups, and cell fragments. Here we provide a protocol for generating cell sheets, isolated cells, and cell fragments of keratocytes from zebrafish scales. The protocol starts with a comprehensive fish preparation, followed by critical steps for scale processing and subsequent cell sheet generation, single cell isolation, and cell fragment induction, which can be accomplished in just 3 days including a 36-48 h incubation time. Compared to other approaches that usually produce single cells only or together with either fragments or cell groups, this facile and reliable methodology allows generation of all three motile forms simultaneously. With the powerful genetics in zebrafish our model system offers a useful tool for comparison of the mechanisms by which cell sheets, single cells, and cell fragments respond to extracellular stimuli.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA, USA
| | - Yuxin Sun
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA, USA
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA, USA
| | - Kan Zhu
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA, USA
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, School of Medicine, University of California-Davis, Sacramento, CA, USA
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Min Zhao
- Department of Dermatology, School of Medicine, University of California-Davis, Sacramento, CA, USA.
- Department of Ophthalmology, School of Medicine, University of California-Davis, Sacramento, CA, USA.
| |
Collapse
|
10
|
Zhu K, Sun Y, Miu A, Yen M, Liu B, Zeng Q, Mogilner A, Zhao M. cAMP and cGMP Play an Essential Role in Galvanotaxis of Cell Fragments. J Cell Physiol 2015; 231:1291-300. [PMID: 26517849 DOI: 10.1002/jcp.25229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
Abstract
Cell fragments devoid of the nucleus and major organelles are found in physiology and pathology, for example platelets derived from megakaryocytes, and cell fragments from white blood cells and glioma cells. Platelets exhibit active chemotaxis. Fragments from white blood cells display chemotaxis, phagocytosis, and bactericidal functions. Signaling mechanisms underlying migration of cell fragments are poorly understood. Here we used fish keratocyte fragments and demonstrated striking differences in signal transduction in migration of cell fragments and parental cells in a weak electric field. cAMP or cGMP agonists completely abolished directional migration of fragments, but had no effect on parental cells. The inhibition effects were prevented by pre-incubating with cAMP and cGMP antagonists. Blocking cAMP and cGMP downstream signaling by inhibition of PKA and PKG also recovered fragment galvanotaxis. Both perturbations confirmed that the inhibitory effect was mediated by cAMP or cGMP signaling. Inhibition of cathode signaling with PI3K inhibitor LY294002 also prevented the effects of cAMP or cGMP agonists. Our results suggest that cAMP and cGMP are essential for galvanotaxis of cell fragments, in contrast to the signaling mechanisms in parental cells.
Collapse
Affiliation(s)
- Kan Zhu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California.,Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaohui Sun
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Anh Miu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Michael Yen
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Bowei Liu
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York
| | - Min Zhao
- Departments of Dermatology and Ophthalmology, Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
11
|
Li C, Li Y, Lv H, Li S, Tang K, Zhou W, Yu S, Chen X. The novel anti-neuroblastoma agent PF403, inhibits proliferation and invasion in vitro and in brain xenografts. Int J Oncol 2015; 47:179-87. [PMID: 25936609 DOI: 10.3892/ijo.2015.2977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/20/2014] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is the most common cancer in infants and the fourth most common cancer in children. Our previous study showed that PF403 had a potent antitumor ability. In the present study, we evaluated the anti-neuroblastoma property of PF403 and investigated the underlying mechanisms. MTT assay, colony formation assay and flow cytometry assay were used to assess cytotoxicity of PF403 on SH-SY5Y cells. Transwell assay was chosen to estimate the anti-invasion ability of PF403 on neuroblastoma cells. The protein expression was detected by western blot analysis. The SH-SY5Y brain xenograft model was used to assess in vivo antitumor activity of PF403. PF403-mediated SH-SY5Y cell death was found to be dose- and time-dependent, and PF403 was able to limit invasion and metastasis of neuroblastoma cells. MRI and pathology analysis proved that the pro-drug of PF403, CAT3, inhibited SH-SY5Y cells in vivo. PF403 decreased expression of phosphorylated FAK, MMP-2 and MMP-9 proteins, and downregulated the activity of PI3K/AKT and Raf/ERK pathways, followed by regulation of the proteins expression of Bcl-2 family, activated caspase-3, -9 and PARP and initiation of apoptosis of neuroblastoma cells. PF403 exerted cytotoxicity against SH-SY5Y neuroblastoma cell both in vitro and in vivo, and inhibited its invasion ability, suggesting PF403 has potential as a new anticancer drug for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Chao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yan Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Haining Lv
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Shaowu Li
- Department of Neurosurgery, Capital Medical University Affiliated Beijing Tiantan Hospital; Beijing Neurosurgical Institute, Beijing 100050, P.R. China
| | - Ke Tang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Wanqi Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Shishan Yu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Xiaoguang Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
12
|
Schwartz MP, Rogers RE, Singh SP, Lee JY, Loveland SG, Koepsel JT, Witze ES, Montanez-Sauri SI, Sung KE, Tokuda EY, Sharma Y, Everhart LM, Nguyen EH, Zaman MH, Beebe DJ, Ahn NG, Murphy WL, Anseth KS. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype. PLoS One 2013; 8:e81689. [PMID: 24349113 PMCID: PMC3857815 DOI: 10.1371/journal.pone.0081689] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 10/25/2013] [Indexed: 01/09/2023] Open
Abstract
Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we propose that HT-1080s migrate in synthetic ECM with functional properties that are a direct consequence of their transformed phenotype.
Collapse
Affiliation(s)
- Michael P. Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MPS); (KSA)
| | - Robert E. Rogers
- College of Medicine, Texas A&M Health Science Center, Bryan, Texas, United States of America
| | - Samir P. Singh
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Justin Y. Lee
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Samuel G. Loveland
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Justin T. Koepsel
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric S. Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, , United States of America
| | - Sara I. Montanez-Sauri
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyung E. Sung
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emi Y. Tokuda
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Yasha Sharma
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Lydia M. Everhart
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio, United States of America
| | - Eric H. Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natalie G. Ahn
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * E-mail: (MPS); (KSA)
| |
Collapse
|