1
|
Xanthopoulou E, Lamprou I, Mitrakas AG, Michos GD, Zois CE, Giatromanolaki A, Harris AL, Koukourakis MI. Autophagy Blockage Up-Regulates HLA-Class-I Molecule Expression in Lung Cancer and Enhances Anti-PD-L1 Immunotherapy Efficacy. Cancers (Basel) 2024; 16:3272. [PMID: 39409895 PMCID: PMC11476265 DOI: 10.3390/cancers16193272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Immune checkpoint inhibitors have an established role in non-small cell lung cancer (NSCLC) therapy. The loss of HLA-class-I expression allows cancer cell evasion from immune surveillance, disease progression, and failure of immunotherapy. The restoration of HLA-class-I expression may prove to be a game-changer in current immunotherapy strategies. Autophagic activity has been recently postulated to repress HLA-class-I expression in cancer cells. METHODS NSCLC cell lines (A549 and H1299) underwent late-stage (chloroquine and bafilomycin) and early-stage autophagy blockage (ULK1 inhibitors and MAP1LC3A silencing). The HLA-class-I expression was assessed with flow cytometry, a Western blot, and RT-PCR. NSCLC tissues were examined for MAP1LC3A and HLA-class-I expression using double immunohistochemistry. CD8+ T-cell cytotoxicity was examined in cancer cells pre-incubated with chloroquine and anti-PD-L1 monoclonal antibodies (Moabs); Results: A striking increase in HLA-class-I expression following incubation with chloroquine, bafilomycin, and IFNγ was noted in A549 and H1299 cancer cells, respectively. This effect was further confirmed in CD133+ cancer stem cells. HLA-class-I, β2-microglobulin, and TAP1 mRNA levels remained stable. Prolonged exposure to chloroquine further enhanced HLA-class-I expression. Similar results were noted following exposure to a ULK1 and a PIKfyve inhibitor. Permanent silencing of the MAP1LC3A gene resulted in enhanced HLA-class-I expression. In immunohistochemistry experiments, double LC3A+/HLA-class-I expression was seldom. Pre-incubation of H1299 cancer cells with chloroquine and anti-PD-L1 MoAbs increased the mean % of apoptotic/necrotic cells from 2.5% to 18.4%; Conclusions: Autophagy blockers acting either at late or early stages of the autophagic process may restore HLA-class-I-mediated antigen presentation, eventually leading to enhanced immunotherapy efficacy.
Collapse
Affiliation(s)
- Erasmia Xanthopoulou
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Ioannis Lamprou
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Achilleas G. Mitrakas
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Georgios D. Michos
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Christos E. Zois
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Adrian L. Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| |
Collapse
|
2
|
Aghajani M, Jalilzadeh N, Aghebati-Maleki A, Yari A, Tabnak P, Mardi A, Saeedi H, Aghebati-Maleki L, Baradaran B. Current approaches in glioblastoma multiforme immunotherapy. Clin Transl Oncol 2024; 26:1584-1612. [PMID: 38512448 DOI: 10.1007/s12094-024-03395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Glioblastoma multiform (GBM) is the most prevalent CNS (central nervous system) tumor in adults, with an average survival length shorter than 2 years and rare metastasis to organs other than CNS. Despite extensive attempts at surgical resecting, the inherently permeable nature of this disease has rendered relapse nearly unavoidable. Thus, immunotherapy is a feasible alternative, as stimulated immune cells can enter into the remote and inaccessible tumor cells. Immunotherapy has revolutionized patient upshots in various malignancies and might introduce different effective ways for GBM patients. Currently, researchers are exploring various immunotherapeutic strategies in patients with GBM to target both the innate and acquired immune responses. These approaches include reprogrammed tumor-associated macrophages, the use of specific antibodies to inhibit tumor progression and metastasis, modifying tumor-associated macrophages with antibodies, vaccines that utilize tumor-specific dendritic cells to activate anti-tumor T cells, immune checkpoint inhibitors, and enhanced T cells that function against tumor cells. Despite these findings, there is still room for improving the response faults of the many currently tested immunotherapies. This study aims to review the currently used immunotherapy approaches with their molecular mechanisms and clinical application in GBM.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Peyman Tabnak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhang M, Ding Y, Gao M, Lu X, Tan J, Yu F, Gu C, Gu L, Ren X, Hao C, Ming L, Xu K, Mao W, Jin Y, Zhang M, You L, Wang Z, Sun Y, Jiang J, Yang Y, Zhang D, Tang X. Discovery of Novel N-(Anthracen-9-ylmethyl) Benzamide Derivatives as ZNF207 Inhibitors Promising in Treating Glioma. J Med Chem 2024; 67:3909-3934. [PMID: 38377560 DOI: 10.1021/acs.jmedchem.3c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Targeting tumor stemness is an innovative approach to cancer treatment. Zinc Finger Protein 207 (ZNF207) is a promising target for weakening the stemness of glioma cells. Here, a series of novel N-(anthracen-9-ylmethyl) benzamide derivatives against ZNF207 were rationally designed and synthesized. The inhibitory activity was evaluated, and their structure-activity relationships were summarized. Among them, C16 exhibited the most potent inhibitory activity, as evidenced by its IC50 values ranging from 0.5-2.5 μM for inhibiting sphere formation and 0.5-15 μM for cytotoxicity. Furthermore, we found that C16 could hinder tumorigenesis and migration and promote apoptosis in vitro. These effects were attributed to the downregulation of stem-related genes. The in vivo evaluation demonstrated that C16 exhibited efficient permeability across the blood-brain barrier and potent efficacy in both subcutaneous and orthotopic glioma tumor models. Hence, C16 may serve as a potential lead compound targeting ZNF207 and has promising therapeutic potential for glioma.
Collapse
Affiliation(s)
- Menghan Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Yushi Ding
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
| | - Mengkang Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Xiaolin Lu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Jun Tan
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Fei Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Congying Gu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Lujun Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Xiameng Ren
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Chenyan Hao
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Liqin Ming
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Kang Xu
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Wenhao Mao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Yuqing Jin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| | - Min Zhang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
| | - Linjun You
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China 211112
| | - Zhanbo Wang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China 211112
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China 211112
| | - Yuanyuan Sun
- Shuangyun BioMed Sci & Tech (Suzhou) Co., Ltd, Suzhou, China 215000
| | - Jingwei Jiang
- Shuangyun BioMed Sci & Tech (Suzhou) Co., Ltd, Suzhou, China 215000
| | - Yong Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China 211112
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China 221004
| | - Dayong Zhang
- School of Science, China Pharmaceutical University, Nanjing, China 211112
| | - Xinying Tang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China 211112
| |
Collapse
|
4
|
Genoud V, Kinnersley B, Brown NF, Ottaviani D, Mulholland P. Therapeutic Targeting of Glioblastoma and the Interactions with Its Microenvironment. Cancers (Basel) 2023; 15:5790. [PMID: 38136335 PMCID: PMC10741850 DOI: 10.3390/cancers15245790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour, and it confers a dismal prognosis despite intensive multimodal treatments. Whilst historically, research has focussed on the evolution of GBM tumour cells themselves, there is growing recognition of the importance of studying the tumour microenvironment (TME). Improved characterisation of the interaction between GBM cells and the TME has led to a better understanding of therapeutic resistance and the identification of potential targets to block these escape mechanisms. This review describes the network of cells within the TME and proposes treatment strategies for simultaneously targeting GBM cells, the surrounding immune cells, and the crosstalk between them.
Collapse
Affiliation(s)
- Vassilis Genoud
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
- Department of Oncology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Centre for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Ben Kinnersley
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Nicholas F. Brown
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Guy’s Cancer, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 3SS, UK
| | - Diego Ottaviani
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Paul Mulholland
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| |
Collapse
|
5
|
Dong S, Liu X, Bi Y, Wang Y, Antony A, Lee D, Huntoon K, Jeong S, Ma Y, Li X, Deng W, Schrank BR, Grippin AJ, Ha J, Kang M, Chang M, Zhao Y, Sun R, Sun X, Yang J, Chen J, Tang SK, Lee LJ, Lee AS, Teng L, Wang S, Teng L, Kim BYS, Yang Z, Jiang W. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer. Nat Commun 2023; 14:6610. [PMID: 37857647 PMCID: PMC10587228 DOI: 10.1038/s41467-023-42365-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The recent success of mRNA therapeutics against pathogenic infections has increased interest in their use for other human diseases including cancer. However, the precise delivery of the genetic cargo to cells and tissues of interest remains challenging. Here, we show an adaptive strategy that enables the docking of different targeting ligands onto the surface of mRNA-loaded small extracellular vesicles (sEVs). This is achieved by using a microfluidic electroporation approach in which a combination of nano- and milli-second pulses produces large amounts of IFN-γ mRNA-loaded sEVs with CD64 overexpressed on their surface. The CD64 molecule serves as an adaptor to dock targeting ligands, such as anti-CD71 and anti-programmed cell death-ligand 1 (PD-L1) antibodies. The resulting immunogenic sEVs (imsEV) preferentially target glioblastoma cells and generate potent antitumour activities in vivo, including against tumours intrinsically resistant to immunotherapy. Together, these results provide an adaptive approach to engineering mRNA-loaded sEVs with targeting functionality and pave the way for their adoption in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Shiyan Dong
- School of Life Science, Jilin University, Changchun, 130012, China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xuan Liu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seongdong Jeong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Benjamin R Schrank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Adam J Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - JongHoon Ha
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Minjeong Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengyu Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yarong Zhao
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Rongze Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Xiangshi Sun
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jie Yang
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jiayi Chen
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Sarah K Tang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Spot Biosystems Ltd., Palo Alto, CA, 94305, USA
| | - Andrew S Lee
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Lirong Teng
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Shengnian Wang
- Chemical Engineering, Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA.
| | - Lesheng Teng
- School of Life Science, Jilin University, Changchun, 130012, China.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zhaogang Yang
- School of Life Science, Jilin University, Changchun, 130012, China.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Salvatori L, Malatesta S, Illi B, Somma MP, Fionda C, Stabile H, Fontanella RA, Gaetano C. Nitric Oxide Prevents Glioblastoma Stem Cells' Expansion and Induces Temozolomide Sensitization. Int J Mol Sci 2023; 24:11286. [PMID: 37511047 PMCID: PMC10379318 DOI: 10.3390/ijms241411286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma multiforme (GBM) has high mortality and recurrence rates. Malignancy resilience is ascribed to Glioblastoma Stem Cells (GSCs), which are resistant to Temozolomide (TMZ), the gold standard for GBM post-surgical treatment. However, Nitric Oxide (NO) has demonstrated anti-cancer efficacy in GBM cells, but its potential impact on GSCs remains unexplored. Accordingly, we investigated the effects of NO, both alone and in combination with TMZ, on patient-derived GSCs. Experimentally selected concentrations of diethylenetriamine/NO adduct and TMZ were used through a time course up to 21 days of treatment, to evaluate GSC proliferation and death, functional recovery, and apoptosis. Immunofluorescence and Western blot analyses revealed treatment-induced effects in cell cycle and DNA damage occurrence and repair. Our results showed that NO impairs self-renewal, disrupts cell-cycle progression, and expands the quiescent cells' population. Consistently, NO triggered a significant but tolerated level of DNA damage, but not apoptosis. Interestingly, NO/TMZ cotreatment further inhibited cell cycle progression, augmented G0 cells, induced cell death, but also enhanced DNA damage repair activity. These findings suggest that, although NO administration does not eliminate GSCs, it stunts their proliferation, and makes cells susceptible to TMZ. The resulting cytostatic effect may potentially allow long-term control over the GSCs' subpopulation.
Collapse
Affiliation(s)
- Luisa Salvatori
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Malatesta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rosaria Anna Fontanella
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185 Rome, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
7
|
Cascão R, Faria CC. Optimizing the role of immunotherapy for the treatment of glioblastoma. NEW INSIGHTS INTO GLIOBLASTOMA 2023:553-591. [DOI: 10.1016/b978-0-323-99873-4.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
The Role of Cancer Stem Cells and Their Extracellular Vesicles in the Modulation of the Antitumor Immunity. Int J Mol Sci 2022; 24:ijms24010395. [PMID: 36613838 PMCID: PMC9820747 DOI: 10.3390/ijms24010395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are a population of tumor cells that share similar properties to normal stem cells. CSCs are able to promote tumor progression and recurrence due to their resistance to chemotherapy and ability to stimulate angiogenesis and differentiate into non-CSCs. Cancer stem cells can also create a significant immunosuppressive environment around themselves by suppressing the activity of effector immune cells and recruiting cells that support tumor escape from immune response. The immunosuppressive effect of CSCs can be mediated by receptors located on their surface, as well as by secreted molecules, which transfer immunosuppressive signals to the cells of tumor microenvironment. In this article, the ability of CSCs to regulate the antitumor immune response and a contribution of CSC-derived EVs into the avoidance of the immune response are discussed.
Collapse
|
9
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Letchuman V, Ampie L, Shah AH, Brown DA, Heiss JD, Chittiboina P. Syngeneic murine glioblastoma models: reactionary immune changes and immunotherapy intervention outcomes. Neurosurg Focus 2022; 52:E5. [PMID: 35104794 PMCID: PMC10851929 DOI: 10.3171/2021.11.focus21556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma is the most common primary malignant brain neoplasm with dismal 10-year survival rates of < 1%. Despite promising preliminary results from several novel therapeutic agents, clinical responses have been modest due to several factors, including tumor heterogeneity, immunosuppressive tumor microenvironment, and treatment resistance. Novel immunotherapeutics have been developed to reverse tumor-induced immunosuppression in patients with glioblastomas. In order to recapitulate the tumor microenvironment, reliable in vivo syngeneic murine models are critical for the development of new targeted agents as these models demonstrate rapid tumor induction and reliable tumor growth over multiple generations. Despite the clear advantages of murine models, choosing an appropriate model from an immunological perspective can be difficult and have significant ramifications on the translatability of the results from murine to human trials. Herein, the authors reviewed the 4 most commonly used immunocompetent syngeneic murine glioma models (GL261 [C57BL/6], SB28 [C57BL/6], CT-2A [C57BL/6], and SMA-560 [VM/Dk]) and compared their strengths and weaknesses from an immunological standpoint.
Collapse
Affiliation(s)
- Vijay Letchuman
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Leonel Ampie
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Ashish H. Shah
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Desmond A. Brown
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - John D. Heiss
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Prashant Chittiboina
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Shokouhifar A, Firouzi J, Nouri M, Sarab GA, Ebrahimi M. NK cell upraise in the dark world of cancer stem cells. Cancer Cell Int 2021; 21:682. [PMID: 34923966 PMCID: PMC8684645 DOI: 10.1186/s12935-021-02400-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
One of the obstacles in treating different cancers, especially solid tumors, is cancer stem cells (CSCs) with their ability in resistance to chemo/radio therapy. The efforts for finding advanced treatments to overcome these cells have led to the emergence of advanced immune cell-based therapy (AICBT). Today, NK cells have become the center of attention since they have been proved to show an appropriate cytotoxicity against different cancer types as well as the capability of detecting and killing CSCs. Attempts for reaching an off-the-shelf source of NK cells have been made and resulted in the emergence of chimeric antigen receptor natural killer cells (CAR-NK cells). The CAR technology has then been used for generating more cytotoxic and efficient NK cells, which has increased the hope for cancer treatment. Since utilizing this advanced technology to target CSCs have been published in few studies, the present study has focused on discussing the characteristics of CSCs, which are detected and targeted by NK cells, the advantages and restrictions of using CAR-NK cells in CSCs treatment and the probable challenges in this process.
Collapse
Affiliation(s)
- Alireza Shokouhifar
- Department of Molecular Medicine, Genomic Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Nouri
- R&D Department, Royan Stem Cell Technology Co., Tehran, Iran
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, 14155-4364, Tehran, Iran.
| |
Collapse
|
12
|
Wei C, Chen M, Deng W, Bie L, Ma Y, Zhang C, Liu K, Shen W, Wang S, Yang C, Luo S, Li N. Characterization of gastric cancer stem-like molecular features, immune and pharmacogenomic landscapes. Brief Bioinform 2021; 23:6375060. [PMID: 34571533 DOI: 10.1093/bib/bbab386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) actively reprogram their tumor microenvironment (TME) to sustain a supportive niche, which may have a dramatic impact on prognosis and immunotherapy. However, our knowledge of the landscape of the gastric cancer stem-like cell (GCSC) microenvironment needs to be further improved. A multi-step process of machine learning approaches was performed to develop and validate the prognostic and predictive potential of the GCSC-related score (GCScore). The high GCScore subgroup was not only associated with stem cell characteristics, but also with a potential immune escape mechanism. Furthermore, we experimentally demonstrated the upregulated infiltration of CD206+ tumor-associated macrophages (TAMs) in the invasive margin region, which in turn maintained the stem cell properties of tumor cells. Finally, we proposed that the GCScore showed a robust capacity for prediction for immunotherapy, and investigated potential therapeutic targets and compounds for patients with a high GCScore. The results indicate that the proposed GCScore can be a promising predictor of prognosis and responses to immunotherapy, which provides new strategies for the precision treatment of GCSCs.
Collapse
Affiliation(s)
- Chen Wei
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Mingkai Chen
- Department of Digestion Internal Medicine, Zhengzhou Yihe Hospital Affiliated to Henan University, Zhengzhou, Henan, 450001, China
| | - Wenying Deng
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Liangyu Bie
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Yijie Ma
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Chi Zhang
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Wei Shen
- Department of Internal Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Suxia Luo
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| | - Ning Li
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, 450001, China
| |
Collapse
|
13
|
Genoud V, Espinoza FI, Marinari E, Rochemont V, Dietrich PY, McSheehy P, Bachmann F, Lane HA, Walker PR. Treating ICB-resistant glioma with anti-CD40 and mitotic spindle checkpoint controller BAL101553 (lisavanbulin). JCI Insight 2021; 6:e142980. [PMID: 34403371 PMCID: PMC8492343 DOI: 10.1172/jci.insight.142980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma is a highly malignant brain tumor with no curative treatment options, and immune checkpoint blockade has not yet shown major impact. We hypothesized that drugs targeting mitosis might affect the tumor microenvironment and sensitize cancer cells to immunotherapy. We used 2 glioblastoma mouse models with different immunogenicity profiles, GL261 and SB28, to test the efficacy of antineoplastic and immunotherapy combinations. The spindle assembly checkpoint activator BAL101553 (lisavanbulin), agonistic anti-CD40 antibody, and double immune checkpoint blockade (anti–programmed cell death 1 and anti–cytotoxic T lymphocyte–associated protein 4; anti–PD-1 and anti–CTLA-4) were evaluated individually or in combination for treating orthotopic GL261 and SB28 tumors. Genomic and immunological analyses were used to predict and interpret therapy responsiveness. BAL101553 monotherapy increased survival in immune checkpoint blockade–resistant SB28 glioblastoma tumors and synergized with anti-CD40 antibody, in a T cell–independent manner. In contrast, the more immunogenic and highly mutated GL261 model responded best to anti–PD-1 and anti–CTLA-4 therapy and more modestly to BAL101553 and anti-CD40 combination. Our results show that BAL101553 is a promising therapeutic agent for glioblastoma and could synergize with innate immune stimulation. Overall, these data strongly support immune profiling of glioblastoma patients and preclinical testing of combination therapies with appropriate models for particular patient groups.
Collapse
Affiliation(s)
- Vassilis Genoud
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Felipe I Espinoza
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Eliana Marinari
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Viviane Rochemont
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | | | - Paul McSheehy
- Department of Oncology, Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Felix Bachmann
- Department of Oncology, Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Heidi A Lane
- Department of Oncology, Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Paul R Walker
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
14
|
Abstract
Cellular heterogeneity and an immunosuppressive tumour microenvironment are independent yet synergistic drivers of tumour progression and underlie therapeutic resistance. Recent studies have highlighted the complex interaction between these cell-intrinsic and cell-extrinsic mechanisms. The reciprocal communication between cancer stem cells (CSCs) and infiltrating immune cell populations in the tumour microenvironment is a paradigm for these interactions. In this Perspective, we discuss the signalling programmes that simultaneously induce CSCs and reprogramme the immune response to facilitate tumour immune evasion, metastasis and recurrence. We further highlight biological factors that can impact the nature of CSC-immune cell communication. Finally, we discuss targeting opportunities for simultaneous regulation of the CSC niche and immunosurveillance.
Collapse
Affiliation(s)
- Defne Bayik
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Justin D Lathia
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
15
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|
16
|
Stem cells-derived natural killer cells for cancer immunotherapy: current protocols, feasibility, and benefits of ex vivo generated natural killer cells in treatment of advanced solid tumors. Cancer Immunol Immunother 2021; 70:3369-3395. [PMID: 34218295 DOI: 10.1007/s00262-021-02975-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, natural killer (NK) cell-based immunotherapy provides a practical therapeutic strategy for patients with advanced solid tumors (STs). This approach is adaptively conducted by the autologous and identical NK cells after in vitro expansion and overnight activation. However, the NK cell-based cancer immunotherapy has been faced with some fundamental and technical limitations. Moreover, the desirable outcomes of the NK cell therapy may not be achieved due to the complex tumor microenvironment by inhibition of intra-tumoral polarization and cytotoxicity of implanted NK cells. Currently, stem cells (SCs) technology provides a powerful opportunity to generate more effective and universal sources of the NK cells. Till now, several strategies have been developed to differentiate types of the pluripotent and adult SCs into the mature NK cells, with both feeder layer-dependent and/or feeder laye-free strategies. Higher cytokine production and intra-tumoral polarization capabilities as well as stronger anti-tumor properties are the main features of these SCs-derived NK cells. The present review article focuses on the principal barriers through the conventional NK cell immunotherapies for patients with advanced STs. It also provides a comprehensive resource of protocols regarding the generation of SCs-derived NK cells in an ex vivo condition.
Collapse
|
17
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
18
|
Genoud V, Migliorini D. Challenging Hurdles of Current Targeting in Glioblastoma: A Focus on Immunotherapeutic Strategies. Int J Mol Sci 2021; 22:3493. [PMID: 33800593 PMCID: PMC8036548 DOI: 10.3390/ijms22073493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma is the most frequent primary neoplasm of the central nervous system and still suffers from very poor therapeutic impact. No clear improvements over current standard of care have been made in the last decade. For other cancers, but also for brain metastasis, which harbors a very distinct biology from glioblastoma, immunotherapy has already proven its efficacy. Efforts have been pursued to allow glioblastoma patients to benefit from these new approaches, but the road is still long for broad application. Here, we aim to review key glioblastoma immune related characteristics, current immunotherapeutic strategies being explored, their potential caveats, and future directions.
Collapse
Affiliation(s)
- Vassilis Genoud
- Department of Oncology, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Center for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Denis Migliorini
- Department of Oncology, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Center for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
- Brain Tumor and Immune Cell Engineering Laboratory, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, 1205 Geneva, Switzerland
| |
Collapse
|
19
|
Wang W, Bai L, Xu D, Li W, Cui J. Immunotherapy: A Potential Approach to Targeting Cancer Stem Cells. Curr Cancer Drug Targets 2021; 21:117-131. [PMID: 32364076 DOI: 10.2174/1568009620666200504111914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
Tumor recurrence and drug resistance are two of the key factors affecting the prognosis of cancer patients. Cancer stem cells (CSCs) are a group of cells with infinite proliferation potential which are not sensitive to traditional therapies, including radio- and chemotherapy. These CSCs are considered to be central to tumor recurrence and the development of drug resistance. In addition, CSCs are important targets in cancer immunotherapy because of their expression of novel tumorassociated antigens, which result from mutations in cancer cells over the course of treatment. Emerging immunotherapies, including cancer vaccines, checkpoint blockade therapies, and transferred immune cell therapies, have all been shown to be more effective when they selectively target CSCs. Such therapies may also provide novel additions to the current therapeutic milieu and may offer new therapeutic combinations for treatment. This review summarizes the relationships between various immunotherapies and CSCs and provides novel insights into potential therapeutic applications for these approaches in the future.
Collapse
Affiliation(s)
- Wenjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
20
|
Burster T, Gärtner F, Bulach C, Zhanapiya A, Gihring A, Knippschild U. Regulation of MHC I Molecules in Glioblastoma Cells and the Sensitizing of NK Cells. Pharmaceuticals (Basel) 2021; 14:ph14030236. [PMID: 33800301 PMCID: PMC7998501 DOI: 10.3390/ph14030236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy has been established as an important area in the therapy of malignant diseases. Immunogenicity sufficient for immune recognition and subsequent elimination can be bypassed by tumors through altered and/or reduced expression levels of major histocompatibility complex class I (MHC I) molecules. Natural killer (NK) cells can eliminate tumor cells in a MHC I antigen presentation-independent manner by an array of activating and inhibitory receptors, which are promising candidates for immunotherapy. Here we summarize the latest findings in recognizing and regulating MHC I molecules that affect NK cell surveillance of glioblastoma cells.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, 010000 Nur-Sultan, Kazakhstan;
- Correspondence: ; Tel.: +7-(7172)-70-66-75
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Christiane Bulach
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, 010000 Nur-Sultan, Kazakhstan;
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (F.G.); (C.B.); (A.G.); (U.K.)
| |
Collapse
|
21
|
Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells 2021; 10:cells10030543. [PMID: 33806296 PMCID: PMC8001974 DOI: 10.3390/cells10030543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Ramona Rotolo
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Alessia Proment
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
- Correspondence: ; Tel.: +39-011-993-3503; Fax: +39-011-993-3522
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| |
Collapse
|
22
|
Piper K, DePledge L, Karsy M, Cobbs C. Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Front Oncol 2021; 11:615704. [PMID: 33718170 PMCID: PMC7945033 DOI: 10.3389/fonc.2021.615704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy. Despite major investments in research into glioblastoma biology and drug development, treatment remains limited and survival has not substantially improved beyond 1-2 years. Cancer stem cells (CSC) or glioma stem cells (GSC) refer to a population of tumor originating cells capable of self-renewal and differentiation. While controversial and challenging to study, evidence suggests that GCSs may result in glioblastoma tumor recurrence and resistance to treatment. Multiple treatment strategies have been suggested at targeting GCSs, including immunotherapy, posttranscriptional regulation, modulation of the tumor microenvironment, and epigenetic modulation. In this review, we discuss recent advances in glioblastoma treatment specifically focused on targeting of GCSs as well as their potential integration into current clinical pathways and trials.
Collapse
Affiliation(s)
- Keenan Piper
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Lisa DePledge
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,University of Washington School of Medicine, Spokane, WA, United States
| | - Michael Karsy
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| |
Collapse
|
23
|
Du L, Cheng Q, Zheng H, Liu J, Liu L, Chen Q. Targeting stemness of cancer stem cells to fight colorectal cancers. Semin Cancer Biol 2021; 82:150-161. [PMID: 33631296 DOI: 10.1016/j.semcancer.2021.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Cancer initiating/ stem cells (CSCs) undergo self-renewal and differentiation that contributes to tumor initiation, recurrence and metastasis in colorectal cancer (CRC). Targeting of colorectal cancer stem cells (CCSCs) holds significant promise in eradicating cancer cells and ultimately curing patients with cancer. In this review, we will introduce the current progress of CCSC studies, including the specific surface markers of CCSCs, the intrinsic signaling pathways that regulate the stemness and differentiation characteristics of CCSCs, and the tumor organoid model for CCSC research. We will focus on how these studies will lead to the progress in targeting specific surface markers or signaling pathways on CCSCs by monoclonal antibodies, or by natural or synthetic compounds, or by immunotherapy. As CSCs are highly heterogeneous and plastic, we suggest that combinatory approaches that target the stemness network may represent an important strategy for eradicating cancers.
Collapse
Affiliation(s)
- Lei Du
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China.
| | - Qi Cheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The Graduate University of Chinese Academy of Sciences. Beijing, 100049, China
| | - Hao Zheng
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinming Liu
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine. Beijing, 100101, China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Lupo KB, Matosevic S. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. J Hematol Oncol 2020; 13:76. [PMID: 32532329 PMCID: PMC7291472 DOI: 10.1186/s13045-020-00913-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are powerful immune effectors, modulating their anti-tumor function through a balance activating and inhibitor ligands on their cell surface. Though still emerging, cancer immunotherapies utilizing NK cells are proving promising as a modality for the treatment of a number of solid tumors, including glioblastoma (GBM) and other gliomas, but are often limited due to complex immunosuppression associated with the GBM tumor microenvironment which includes overexpression of inhibitory receptors on GBM cells. CD155, or poliovirus receptor (PVR), has recently emerged as a pro-tumorigenic antigen, overexpressed on GBM and contributing to increased GBM migration and aggressiveness. CD155 has also been established as an immunomodulatory receptor, able to both activate NK cells through interactions with CD226 (DNAM-1) and CD96 and inhibit them through interaction with TIGIT. However, NK cell TIGIT expression has been shown to be upregulated in cancer, establishing CD155 as a predominantly inhibitory receptor within the context of GBM and other solid tumors, and rendering it of interest as a potential target for antigen-specific NK cell-based immunotherapy. This review will explore the function of CD155 within GBM as it relates to tumor migration and NK cell immunoregulation, as well as pre-clinical and clinical targeting of CD155/TIGIT and the potential that this pathway holds for the development of emerging NK cell-based immunotherapies.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/physiology
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Adhesion
- Cell Movement
- Glioblastoma/immunology
- Glioblastoma/pathology
- Glioblastoma/therapy
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Mice
- Neoplasm Invasiveness/immunology
- Neoplasm Invasiveness/prevention & control
- Neoplasm Metastasis
- Oncolytic Virotherapy
- Poliovirus/physiology
- Reassortant Viruses/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/immunology
- Rhinovirus/physiology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, West Lafayette, IN, 47906, USA.
| |
Collapse
|
25
|
Alhabbab RY. Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Front Genet 2020; 11:312. [PMID: 32391048 PMCID: PMC7188929 DOI: 10.3389/fgene.2020.00312] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Division of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Defective Regulation of Membrane TNFα Expression in Dendritic Cells of Glioblastoma Patients Leads to the Impairment of Cytotoxic Activity against Autologous Tumor Cells. Int J Mol Sci 2020; 21:ijms21082898. [PMID: 32326230 PMCID: PMC7215742 DOI: 10.3390/ijms21082898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Besides an antigen-presenting function and ability to induce antitumor immune responses, dendritic cells (DCs) possess a direct tumoricidal activity. We previously reported that monocyte-derived IFNα-induced DCs (IFN-DCs) of glioblastoma multiforme patients express low levels of membrane TNFα molecule (mTNFα) and have impaired TNFα/TNF-R1-mediated cytotoxicity against immortalized tumor cell line HEp-2. However, whether the observed defect could affect killer activity of glioma patient DCs against autologous tumor cells remained unclear. Here, we show that donor IFN-DCs possess cytotoxic activity against glioblastoma cell lines derived from a primary tumor culture. Granule-mediated and TNFα/TNF-R1-dependent pathways were established as the main mechanisms underlying cytotoxic activity of IFN-DCs. Glioblastoma patient IFN-DCs showed lower cytotoxicity against autologous glioblastoma cells sensitive to TNFα/TNFR1-mediated lysis, which was associated with low TNFα mRNA expression and high TACE/ADAM-17 enzyme activity. Recombinant IL-2 (rIL-2) and human double-stranded DNA (dsDNA) increased 1.5-fold cytotoxic activity of patient IFN-DCs against autologous glioblastoma cells. dsDNA, but not rIL-2, enhanced the expression of TNFα mRNA and decreased expression and activity of TACE/ADAM-17 enzyme. In addition, dsDNA and rIL-2 stimulated the expression of perforin and granzyme B (in the presence of dsDNA), suggesting the possibility of enhancing DC cytotoxicity against autologous glioblastoma cells via various mechanisms.
Collapse
|
27
|
Immunotherapy: Newer Therapeutic Armamentarium against Cancer Stem Cells. JOURNAL OF ONCOLOGY 2020; 2020:3963561. [PMID: 32211043 PMCID: PMC7085385 DOI: 10.1155/2020/3963561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Mounting evidence from the literature suggests the existence of a subpopulation of cancer stem cells (CSCs) in almost all types of human cancers. These CSCs possessing a self-renewal capacity inhabit primary tumors and are more defiant to standard antimitotic and molecularly targeted therapies which are used for eliminating actively proliferating and differentiated cancer cells. Clinical relevance of CSCs emerges from the fact that they are the root cause of therapy resistance, relapse, and metastasis. Earlier, surgery, chemotherapy, and radiotherapy were established as cancer treatment modalities, but recently, immunotherapy is also gaining importance in the management of various cancer patients, mostly those of the advanced stage. This review abridges potential off-target effects of inhibiting CSC self-renewal pathways on immune cells and some recent immunological studies specifically targeting CSCs on the basis of their antigen expression profile, even though molecular markers or antigens that have been described till date as expressed by cancer stem cells are not specifically expressed by these cells which is a major limitation to target CSCs. We propose that owing to CSC stemness property to mediate immunotherapy response, we can apply a combination therapy approach by targeting CSCs and tumor microenvironment (TME) along with conventional treatment strategies as an effective means to eradicate cancer cells.
Collapse
|
28
|
Combined proteomics/miRNomics of dendritic cell immunotherapy-treated glioblastoma patients as a screening for survival-associated factors. NPJ Vaccines 2020; 5:5. [PMID: 31969991 PMCID: PMC6965118 DOI: 10.1038/s41541-019-0149-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most prevalent and aggressive brain cancer. With a median overall survival of ~15–20 months under standard therapy, novel treatment approaches are desperately needed. A recent phase II clinical trial with a personalized immunotherapy based on tumor lysate-charged dendritic cell (DC) vaccination, however, failed to prolong survival. Here, we investigated tumor tissue from trial patients to explore glioblastoma survival-related factors. We followed an innovative approach of combining mass spectrometry-based quantitative proteomics (n = 36) with microRNA sequencing plus RT-qPCR (n = 38). Protein quantification identified, e.g., huntingtin interacting protein 1 (HIP1), retinol-binding protein 1 (RBP1), ferritin heavy chain (FTH1) and focal adhesion kinase 2 (FAK2) as factor candidates correlated with a dismal prognosis. MicroRNA analysis identified miR-216b, miR-216a, miR-708 and let-7i as molecules potentially associated with favorable tissue characteristics as they were enriched in patients with a comparably longer survival. To illustrate the utility of integrated miRNomics and proteomics findings, focal adhesion was studied further as one example for a pathway of potential general interest. Taken together, we here mapped possible drivers of glioblastoma outcome under immunotherapy in one of the largest DC vaccination tissue analysis cohorts so far—demonstrating usefulness and feasibility of combined proteomics/miRNomics approaches. Future research should investigate agents that sensitize glioblastoma to (immuno)therapy—potentially building on insights generated here. Glioblastoma is an aggressive form of brain cancer and effective immunotherapeutics are limited, with treatment currently based on chemotherapy and radiotherapy. A recent phase II clinical trial tested a personalized, targeted dendritic cell-based immunotherapy but there was no observed improvement in patient survival or progression-free survival compared to standard-of-care therapy. Here, Carmen Visus and colleagues have used tumor tissue samples from glioblastoma patients involved in this trial and receiving immunotherapy. Using a combination of mass spectrometry-based proteomics, microRNA sequencing and RT-qPCR they identified factors associated with survival or poor prognosis. Proteomics associated poor prognosis with various proteins including focal adhesion kinase 2 (FAK2), whilst microRNAs, miR-216b, miR-216a, miR-708 and let-7i, were associated with longer survival. Focussing on one pathway, FAK2, they integrated the proteomic and microRNA datasets and saw a negative association with overall survival across all patients. To test this, they added an FAK inhibitor to glioblastoma cell lines, including cells isolated from trial patients, and observed inhibition of gliomaspheres in treated cells, providing insights into potential immunotherapy targets.
Collapse
|
29
|
Lukas RV, Wainwright DA, Horbinski CM, Iwamoto FM, Sonabend AM. Immunotherapy Against Gliomas: is the Breakthrough Near? Drugs 2019; 79:1839-1848. [PMID: 31598900 PMCID: PMC6868342 DOI: 10.1007/s40265-019-01203-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapeutic approaches have been, and continue to be, aggressively investigated in the treatment of infiltrating gliomas. While the results of late-phase clinical studies have been disappointing in this disease space thus far, the success of immunotherapies in other malignancies as well as the incremental gains in our understanding of immune-tumour interactions in gliomas has fuelled a strong continued interest of their evaluation in these tumours. We discuss a range of immunotherapeutic approaches including, but not limited to, vaccines, checkpoint inhibitors, oncolytic viruses, and gene therapies. Potential biomarkers under investigation to help elucidate which patients may respond or not respond to immunotherapeutic regimens are reviewed. Directions for future investigations are also noted.
Collapse
Affiliation(s)
- Rimas V Lukas
- Department of Neurology, Northwestern University, 710 N. Lake Shore Drive, Abbott Hall 1114, Chicago, IL, 60611, USA.
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA.
| | - Derek A Wainwright
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, USA
- Department of Medicine-Hematology/Oncology, Northwestern University, Chicago, USA
| | - Craig M Horbinski
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | | | - Adam M Sonabend
- Lou & Jean Malnati Brain Tumor Institute at the Lurie Comprehensive Cancer Center, Northwestern University, Chicago, USA
- Department of Neurological Surgery, Northwestern University, Chicago, USA
| |
Collapse
|
30
|
Rajayi H, Tavasolian P, Rezalotfi A, Ebrahimi M. Cancer Stem Cells Targeting; the Lessons from the Interaction of the Immune System, the Cancer Stem Cells and the Tumor Niche. Int Rev Immunol 2019; 38:267-283. [DOI: 10.1080/08830185.2019.1669593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hajar Rajayi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parsova Tavasolian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alaleh Rezalotfi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Chang WH, Lai AG. Aberrations in Notch-Hedgehog signalling reveal cancer stem cells harbouring conserved oncogenic properties associated with hypoxia and immunoevasion. Br J Cancer 2019; 121:666-678. [PMID: 31523055 PMCID: PMC6889439 DOI: 10.1038/s41416-019-0572-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022] Open
Abstract
Background Cancer stem cells (CSCs) have innate abilities to resist even the harshest of therapies. To eradicate CSCs, parallels can be drawn from signalling modules that orchestrate pluripotency. Notch-Hedgehog hyperactivation are seen in CSCs, yet, not much is known about their conserved roles in tumour progression across cancers. Methods Employing a comparative approach involving 21 cancers, we uncovered clinically-relevant, pan-cancer drivers of Notch and Hedgehog. GISTIC datasets were used to evaluate copy number alterations. Receiver operating characteristic and Cox regression were employed for survival analyses. Results We identified a Notch-Hedgehog signature of 13 genes exhibiting high frequencies of somatic amplifications leading to transcript overexpression. The signature successfully predicted patients at risk of death in five cancers (n = 2278): glioma (P < 0.0001), clear cell renal cell (P = 0.0022), papillary renal cell (P = 0.00099), liver (P = 0.014) and stomach (P = 0.011). The signature was independent of other clinicopathological parameters and offered an additional resolution to stratify similarly-staged tumours. High-risk patients exhibited features of stemness and had more hypoxic tumours, suggesting that hypoxia may influence CSC behaviour. Notch-Hedgehog+ CSCs had an immune privileged phenotype associated with increased regulatory T cell function. Conclusion This study will set the stage for exploring adjuvant therapy targeting the Notch-Hedgehog axis to help optimise therapeutic regimes leading to successful CSC elimination.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK
| | - Alvina G Lai
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK.
| |
Collapse
|
32
|
Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH. Cancer stem cells: A review from origin to therapeutic implications. J Cell Physiol 2019; 235:790-803. [PMID: 31286518 DOI: 10.1002/jcp.29044] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Rasoul Baharlou
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jafar Karami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ramazan Rezaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourramezan
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
33
|
Ruiu R, Tarone L, Rolih V, Barutello G, Bolli E, Riccardo F, Cavallo F, Conti L. Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer's source. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:119-188. [PMID: 31383404 DOI: 10.1016/bs.pmbts.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent advances in diagnosis and therapy having improved cancer outcome, many patients still do not respond to treatments, resulting in the progression or relapse of the disease, eventually impairing survival expectations. The limited efficacy of therapy is often attributable to its inability to affect cancer stem cells (CSCs), a small population of cells resistant to current radio- and chemo-therapies. CSCs are characterized by self-renewal and tumor-initiating capabilities, and function as a reservoir for the local and distant recurrence of the disease. Therefore, new therapeutic approaches able to effectively target and deplete CSCs are urgently needed. Immunotherapy is facing a renewed interest for its potential in cancer treatment, and the possibility of harnessing the immune system to target CSCs is being addressed by a new exciting research field. In this chapter, we discuss the cancer stem cell model and illustrate CSC biological and molecular properties, critically addressing theoretical and practical issues linked with their definition and study. We then review the existing literature regarding the immunological properties of CSCs and the complex interplay occurring between CSCs and immune cells. Finally, we present up-to-date studies on CSC immunotargeting and its potential future perspective. In conclusion, understanding the interplay between CSC biology and tumor immunology will provide a deeper understanding of the mechanisms that regulate CSC immunological properties. This will contribute to the design of new CSC-directed immunotherapeutic strategies with the potential of strongly improving cancer outcomes.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
34
|
Spheroid glioblastoma culture conditions as antigen source for dendritic cell-based immunotherapy: spheroid proteins are survival-relevant targets but can impair immunogenic interferon γ production. Cytotherapy 2019; 21:643-658. [PMID: 30975602 DOI: 10.1016/j.jcyt.2019.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/04/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glioblastoma is the most aggressive type of brain cancer. Dendritic cell (DC)-based immunotherapy against glioblastoma depends on the effectiveness of loaded antigens. Sphere-inducing culture conditions are being studied by many as a potential antigen source. Here, we investigated two different in vitro conditions (spheroid culture versus adherent culture) in relation to DC immunotherapy: (1) We studied the specific spheroid-culture proteome and assessed the clinical importance of spheroid proteins. (2) We evaluated the immunogenicity of spheroid lysate - both compared to adherent conditions. METHODS We used seven spheroid culture systems, three of them patient-derived. Stemness-related markers were studied in those three via immunofluorescence. Spheroid-specific protein expression was measured via quantitative proteomics. The Cancer Genome Atlas (TCGA) survival data was used to investigate the clinical impact of spheroid proteins. Immunogenicity of spheroid versus adherent cell lysate was explored in autologous ELISPOT systems (DCs and T cells from the three patients). RESULTS (1) The differential proteome of spheroid versus adherent glioblastoma culture conditions could successfully be established. The top 10 identified spheroid-specific proteins were associated with significantly decreased overall survival (TCGA MIT/Harvard cohort; n = 350, P = 0.014). (2) In exploratory experiments, immunogenicity of spheroid lysate vis-á-vis interferon (IFN)γ production was lower than that of adherent cell lysate (IFNγ ELISPOT; P = 0.034). CONCLUSIONS Spheroid culture proteins seem to represent survival-relevant targets, supporting the use of spheroid culture conditions as an antigen source for DC immunotherapy. However, immunogenicity enhancement should be considered for future research. Transferability of our findings in terms of clinical impact and regarding different spheroid-generation techniques needs further validation.
Collapse
|
35
|
Maccalli C, Rasul KI, Elawad M, Ferrone S. The role of cancer stem cells in the modulation of anti-tumor immune responses. Semin Cancer Biol 2018; 53:189-200. [DOI: 10.1016/j.semcancer.2018.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
|
36
|
Erhart F, Blauensteiner B, Zirkovits G, Printz D, Soukup K, Klingenbrunner S, Fischhuber K, Reitermaier R, Halfmann A, Lötsch D, Spiegl-Kreinecker S, Berger W, Visus C, Dohnal A. Gliomasphere marker combinatorics: multidimensional flow cytometry detects CD44+/CD133+/ITGA6+/CD36+ signature. J Cell Mol Med 2018; 23:281-292. [PMID: 30467961 PMCID: PMC6307809 DOI: 10.1111/jcmm.13927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma is the most dangerous brain cancer. One reason for glioblastoma's aggressiveness are glioblastoma stem‐like cells. To target them, a number of markers have been proposed (CD133, CD44, CD15, A2B5, CD36, CXCR4, IL6R, L1CAM, and ITGA6). A comprehensive study of co‐expression patterns of them has, however, not been performed so far. Here, we mapped the multidimensional co‐expression profile of these stemness‐associated molecules. Gliomaspheres – an established model of glioblastoma stem‐like cells – were used. Seven different gliomasphere systems were subjected to multicolor flow cytometry measuring the nine markers CD133, CD44, CD15, A2B5, CD36, CXCR4, IL6R, L1CAM, and ITGA6 all simultaneously based on a novel 9‐marker multicolor panel developed for this study. The viSNE dimensionality reduction algorithm was applied for analysis. All gliomaspheres were found to express at least five different glioblastoma stem‐like cell markers. Multi‐dimensional analysis showed that all studied gliomaspheres consistently harbored a cell population positive for the molecular signature CD44+/CD133+/ITGA6+/CD36+. Glioblastoma patients with an enrichment of this combination had a significantly worse survival outcome when analyzing the two largest available The Cancer Genome Atlas datasets (MIT/Harvard Affymetrix: P = 0.0015, University of North Carolina Agilent: P = 0.0322). In sum, we detected a previously unknown marker combination – demonstrating feasibility, usefulness, and importance of high‐dimensional gliomasphere marker combinatorics.
Collapse
Affiliation(s)
- Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.,Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Bernadette Blauensteiner
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Gabriel Zirkovits
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Dieter Printz
- FACS Core Unit, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Klara Soukup
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | | | | | | | - Angela Halfmann
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| | - Daniela Lötsch
- Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- University Clinic for Neurosurgery, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Walter Berger
- Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Alexander Dohnal
- Department of Tumor Immunology, St. Anna Kinderkrebsforschung Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
37
|
Wielgat P, Trofimiuk E, Czarnomysy R, Braszko JJ, Car H. Sialic acids as cellular markers of immunomodulatory action of dexamethasone on glioma cells of different immunogenicity. Mol Cell Biochem 2018; 455:147-157. [PMID: 30443853 PMCID: PMC6445812 DOI: 10.1007/s11010-018-3478-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/09/2018] [Indexed: 01/17/2023]
Abstract
Glucocorticosteroids, including dexamethasone (Dex), are commonly used to control tumor-induced edema in the brain tumor patients. There are increasing evidences that immunosuppressive action of Dex interferes with immune surveillance resulting in lower patients overall survival; however, the mechanisms underlying these actions remain unclear. Changes in the expression of sialic acids are critical features of many cancers that reduce their immunogenicity and increase viability. Sialoglycans can be recognized by CD33-related Siglecs that negatively regulate the immune response and thereby impair immune surveillance. In this study, we analysed the effect of Dex on cell surface sialylation pattern and recognition of these structures by Siglec-F receptor in poorly immunogenic GL261 and immunogenic SMA560 glioma cells. Relative amount of α2.3-, α2.6- and α2.8-linked sialic acids were detected by Western blot with MAA (Maackia amurensis) and SNA (Sambucus nigra) lectins, and flow cytometry using monoclonal antibody anti-PSA-NCAM. In response to Dex, α2.8 sialylation in both, GL261 and SMA560 was increased, whereas the level of α2.3-linked sialic acids remained unchanged. Moreover, we found the opposite effects of Dex on α2.6 sialylation in poorly immunogenic and immunogenic glioma cells. Furthermore, changes in sialylation pattern were accompanied by dose-dependent effects of Dex on Siglec-F binding to glioma cell membranes as well as decreased α-neuraminidase activity. These results suggest that glucocorticosteroid-induced alterations in cell surface sialylation and Siglecs recognition may dampen anti-tumor immunity, and participate in glioma-promoting process by immune cells. Our study gives new view on corticosteroid therapy in glioma patients.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274, Bialystok, Poland.
| | - Emil Trofimiuk
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089, Bialystok, Poland
| | - Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274, Bialystok, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274, Bialystok, Poland
| |
Collapse
|
38
|
Genoud V, Marinari E, Nikolaev SI, Castle JC, Bukur V, Dietrich PY, Okada H, Walker PR. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 2018; 7:e1501137. [PMID: 30524896 PMCID: PMC6279422 DOI: 10.1080/2162402x.2018.1501137] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) is currently evaluated in patients with glioblastoma (GBM), based on encouraging clinical data in other cancers, and results from studies with the methylcholanthrene-induced GL261 mouse glioma. In this paper, we describe a novel model faithfully recapitulating some key human GBM characteristics, including low mutational load, a factor reported as a prognostic indicator of ICB response. Consistent with this observation, SB28 is completely resistant to ICB, contrasting with treatment sensitivity of the more highly mutated GL261. Moreover, SB28 shows features of a poorly immunogenic tumor, with low MHC-I expression and modest CD8+ T-cell infiltration, suggesting that it may present similar challenges for immunotherapy as human GBM. Based on these key features for immune reactivity, SB28 may represent a treatment-resistant malignancy likely to mirror responses of many human tumors. We therefore propose that SB28 is a particularly suitable model for optimization of GBM immunotherapy.
Collapse
Affiliation(s)
- Vassilis Genoud
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eliana Marinari
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - John C. Castle
- Biomarker Development Center, Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Valesca Bukur
- Biomarker Development Center, Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Pierre-Yves Dietrich
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Paul R. Walker
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 2018; 52:94-106. [PMID: 29752993 DOI: 10.1016/j.semcancer.2018.05.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that virtually all types of human cancers harbor a small population of stem-like cancer cells (i.e., cancer stem cells, CSCs). These CSCs preexist in primary tumors, can self-renew and are more tolerant of standard treatments, such as antimitotic and molecularly targeted agents, most of which preferentially eliminate differentiated and proliferating cancer cells. CSCs are therefore postulated as the root of therapy resistance, relapse and metastasis. Aside from surgery, radiation, and chemotherapy, immunotherapy is now established as the fourth pillar in the therapeutic armamentarium for patients with cancer, especially late-stage and advanced cancers. A better understanding of CSC immunological properties should lead to development of novel immunologic approaches targeting CSCs, which, in turn, may help prevent tumor recurrence and eliminate residual diseases. Here, with a focus on CSCs in solid tumors, we review CSC regulation programs and recent transcriptomics-based immunological profiling data specific to CSCs. By highlighting CSC antigens that could potentially be immunogenic, we further discuss how CSCs can be targeted immunologically.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Key Lab of Agricultural Animal Genetics, Breeding & Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
40
|
Morrison BJ, Steel JC, Morris JC. Reduction of MHC-I expression limits T-lymphocyte-mediated killing of Cancer-initiating cells. BMC Cancer 2018; 18:469. [PMID: 29699516 PMCID: PMC5918869 DOI: 10.1186/s12885-018-4389-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Background It has been proposed that cancer establishment, maintenance, and recurrence may be attributed to a unique population of tumor cells termed cancer-initiating cells (CICs) that may include characteristics of putative cancer stem cell-like cells. Studies in lung cancer have shown that such cells can be enriched and propagated in vitro by culturing tumor cells in serum-free suspension as tumorspheres. CICs have been characterized for their phenotype, stem cell-like qualities, and their role in establishing tumor and maintaining tumor growth. Less is known about the interaction of CICs with the immune system. Methods We established CIC-enriched tumorspheres from murine TC-1 lung cancer cells, expressing human papillomavirus 16 (HPV-16) E6/E7 antigens, and evaluated their susceptibility to antitumor immune responses both in vitro and in vivo. Results TC-1 CICs demonstrated reduced expression of surface major histocompatibility complex (MHC)-I molecules compared to non-CICs. We similarly determined decreased MHC-I expression in five of six human lung cancer cell lines cultured under conditions enriching for CICs. In vivo, TC-1 cells enriched for CICs were resistant to human papillomavirus 16 E6/E7 peptide vaccine-mediated killing. We found that vaccinated mice challenged with CIC enriched tumorspheres demonstrated shorter survivals and showed significantly fewer CD8+ tumor infiltrating lymphocytes compared to CIC non-enriched challenged mice. Furthermore, cultured cytotoxic T lymphocytes (CTLs) from vaccinated mice demonstrated reduced capacity to lyse TC-1 cells enriched for CICs compared to non-enriched TC-1 cells. Following treatment with IFN-γ, both CIC enriched and non-enriched TC-1 cells expressed similar levels of MHC-I, and the increased MHC-I expression on CICs resulted in greater CTL-mediated tumor lysis and improved tumor-free survival in mice. Conclusions These results suggest that the attenuated expression of MHC-I molecules by CICs represents a potential strategy of CICs to escape immune recognition, and that the development of successful immunotherapy strategies targeting CICs may decrease their resistance to T cell-mediated immune detection by enhancing CIC MHC-I expression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4389-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brian J Morrison
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, 20910, USA.
| | - Jason C Steel
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - John C Morris
- Division of Hematology-Oncology, University of Cincinnati Cancer Institute, University of Cincinnati, Cincinnati, Ohio, 45267, USA
| |
Collapse
|
41
|
Müller S, Agnihotri S, Shoger KE, Myers MI, Smith N, Chaparala S, Villanueva CR, Chattopadhyay A, Lee AV, Butterfield LH, Diaz A, Okada H, Pollack IF, Kohanbash G. Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas. JCI Insight 2018; 3:98791. [PMID: 29618666 DOI: 10.1172/jci.insight.98791] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/28/2018] [Indexed: 01/25/2023] Open
Abstract
Low-grade gliomas (LGGs) are the most common brain tumor affecting children. We recently reported an early phase clinical trial of a peptide-based vaccine, which elicited consistent antigen-specific T cell responses in pediatric LGG patients. Additionally, we observed radiologic responses of stable disease (SD), partial response (PR), and near-complete/complete response (CR) following therapy. To identify biomarkers of clinical response in peripheral blood, we performed RNA sequencing on PBMC samples collected at multiple time points. Patients who showed CR demonstrated elevated levels of T cell activation markers, accompanied by a cytotoxic T cell response shortly after treatment initiation. At week 34, patients with CR demonstrated both IFN signaling and Poly-IC:LC adjuvant response patterns. Patients with PR demonstrated a unique, late monocyte response signature. Interestingly, HLA-V expression, before or during therapy, and an early monocytic hematopoietic response were strongly associated with SD. Finally, low IDO1 and PD-L1 expression before treatment and early elevated levels of T cell activation markers were associated with prolonged progression-free survival. Overall, our data support the presence of unique peripheral immune patterns in LGG patients associated with different radiographic responses to our peptide vaccine immunotherapy. Future clinical trials, including our ongoing phase II LGG vaccine immunotherapy, should monitor these response patterns.
Collapse
Affiliation(s)
- Sören Müller
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | - Lisa H Butterfield
- Departments of Medicine, Surgery, and Immunology and Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
42
|
Hu Z, Xu J, Cheng J, McMichael E, Yu L, Carson WE. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer. Oncotarget 2018; 8:1481-1494. [PMID: 27903969 PMCID: PMC5352071 DOI: 10.18632/oncotarget.13644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Medical Center and The James Comprehensive Cancer Center, Columbus, OH, USA.,Yale University School of Medicine Department of Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT, USA
| | - Jie Xu
- Yale University School of Medicine Department of Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT, USA
| | - Jijun Cheng
- Yale University School of Medicine Department of Obstetrics, Gynecology and Reproductive Sciences, New Haven, CT, USA
| | - Elizabeth McMichael
- Biomedical Sciences Graduate Program, The Ohio State University Medical Center and The James Comprehensive Cancer Center, Columbus, OH, USA
| | - Lianbo Yu
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University Medical Center and The James Comprehensive Cancer Center, Columbus, OH, USA
| | - William E Carson
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Medical Center and The James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
43
|
Scutti JAB. Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). Int J Oncol 2018; 52:1041-1056. [PMID: 29484440 PMCID: PMC5843403 DOI: 10.3892/ijo.2018.4283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
On the basis of immunological results, it is not in doubt that the immune system is able to recognize and eliminate transformed cells. A plethora of studies have investigated the immune system of patients with cancer and how it is prone to immunosuppression, due in part to the decrease in lymphocyte proliferation and cytotoxic activity. The series of experiments published following the demonstration by Dr Allison's group of the potential effect of anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) paved the way for a new perception in cancer immunotherapy: Immune checkpoints. Several T cell-co-stimulatory molecules including cluster of differentiation (CD)28, inducible T cell co-stimulatory, 4-1BB, OX40, glucocorticoid-induced tumor necrosis factor receptor-related gene and CD27, and inhibitory molecules including T cell immunoglobulin and mucin domain-containing-3, programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), V-domain immunoglobulin suppressor of T cells activation, T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, and B and T lymphocyte attenuator have been described in regulating T cell functions, and have been demonstrated to be essential targets in immunotherapy. In preclinical studies, glioblastoma multiforme, a high-grade glioma, the monotherapy targeting PD-1/PD-L1 and CTLA-4 resulted in increased survival times. An improved understanding of the pharmacodynamics and immune monitoring on glioma cancers, particularly in diffuse intrinsic pontine glioma (DIPG), an orphan type of cancer, is expected to have a major contribution to the development of novel therapeutic approaches. On the basis of the recent preclinical and clinical studies of glioma, but not of DIPG, the present review makes a claim for the importance of investigating the tumor microenvironment, the immune response and the use of immune checkpoints (agonists or antagonists) in preclinical/clinical DIPG samples by immune monitoring approaches and high-dimensional analysis. Evaluating the potential predictive and correlative biomarkers in preclinical and clinical studies may assist in answering certain crucial questions that may be useful to improve the clinical response in patients with DIPG.
Collapse
|
44
|
Choi YJ, Park SJ, Park YS, Park HS, Yang KM, Heo K. EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLoS One 2018; 13:e0190638. [PMID: 29298343 PMCID: PMC5752035 DOI: 10.1371/journal.pone.0190638] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer stem-like cells (CSCs) may play a key role in tumor initiation, self-renewal, differentiation, and resistance to current treatments. Dendritic cells (DCs) play a vital role in host immune reactions as well as antigen presentation. In this study, we explored the suitability of using CSC peptides as antigen sources for DC vaccination against human breast cancer and hepatocellular carcinoma (HCC) with the aim of achieving CSC targeting and enhancing anti-tumor immunity. CD44 is used as a CSC marker for breast cancer and EpCAM is used as a CSC marker for HCC. We selected CD44 and EpCAM peptides that bind to HLA-A2 molecules on the basis of their binding affinity, as determined by a peptide-T2 binding assay. Our data showed that CSCs express high levels of tumor-associated antigens (TAAs) as well as major histocompatibility complex (MHC) molecules. Pulsing DCs with CD44 and EpCAM peptides resulted in the efficient generation of mature DCs (mDCs), thus enhancing T cell stimulation and generating potent cytotoxic T lymphocytes (CTLs). The activation of CSC peptide-specific immune responses by the DC vaccine in combination with standard chemotherapy may provide better clinical outcomes in advanced carcinomas.
Collapse
Affiliation(s)
- Yoo Jin Choi
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Seong-Joon Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - You-Soo Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Hee Sung Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Kwang Mo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- * E-mail: (KH); (KMY)
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- * E-mail: (KH); (KMY)
| |
Collapse
|
45
|
Codd AS, Kanaseki T, Torigo T, Tabi Z. Cancer stem cells as targets for immunotherapy. Immunology 2017; 153:304-314. [PMID: 29150846 DOI: 10.1111/imm.12866] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Current cancer therapies target the bulk of the tumour, while a population of highly resistant tumour cells may be able to repopulate the tumour and metastasize to new sites. Cancer cells with such stem cell-like characteristics can be identified based on their phenotypical and/or functional features which may open up ways for their targeted elimination. In this review we discuss potential off-target effects of inhibiting cancer stem-cell self-renewal pathways on immune cells, and summarize some recent immunological studies specifically targeting cancer stem cells based on their unique antigen expression.
Collapse
Affiliation(s)
- Amy S Codd
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Toshihiko Torigo
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
46
|
Amey CL, Karnoub AE. Targeting Cancer Stem Cells-A Renewed Therapeutic Paradigm. ONCOLOGY & HEMATOLOGY REVIEW 2017; 13:45-55. [PMID: 33959299 PMCID: PMC8098671 DOI: 10.17925/ohr.2017.13.01.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis is often accompanied by radio- and chemotherapeutic resistance to anticancer treatments and is the major cause of death in cancer patients. Better understanding of how cancer cells circumvent therapeutic insults and how disseminated cancer clones generate life-threatening metastases would therefore be paramount to the development of effective therapeutic approaches for clinical management of malignant disease. Mounting reports over the past two decades have provided evidence for the existence of a minor population of highly malignant cells within liquid and solid tumors, which are capable of self-renewing and of regenerating secondary growths with the heterogeneity of the primary tumors from which they derive. These cells, called tumor-initiating cells or cancer stem cells (CSCs) exhibit increased resistance to standard radio- and chemotherapies and appear to have mechanisms that enable them to evade immune surveillance. CSCs are therefore considered to be responsible for systemic residual disease after cancer therapy, as well as for disease relapse. How CSCs develop, the nature of the interactions they establish with their microenvironment, their phenotypic and functional characteristics, as well as their molecular dependencies have all taken center stage in cancer therapy. Indeed, improved understanding of CSC biology is critical to the development of important CSC-based anti-neoplastic approaches that have the potential to radically improve cancer management. Here, we summarize some of the most pertinent elements regarding CSC development and properties, and highlight some of the clinical modalities in current development as anti-CSC therapeutics.
Collapse
Affiliation(s)
| | - Antoine E Karnoub
- Department of Pathology, Beth Israel Deaconess Cancer Center and Harvard Medical School, Boston, Massachusetts, US; Harvard Stem Cell Institute, Cambridge, Massachusetts, US; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, US
| |
Collapse
|
47
|
Zhang D, Qiu B, Wang Y, Guan Y, Zhang L, Wu A. Temozolomide increases MHC-I expression via NF-κB signaling in glioma stem cells. Cell Biol Int 2017; 41:680-690. [PMID: 28403532 DOI: 10.1002/cbin.10773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Dongyong Zhang
- Department of Neurosurgery; The First Affiliated Hospital of China Medical University; 155 Nanjingbei Street, Heping District Shenyang 110001 China
| | - Bo Qiu
- Department of Neurosurgery; The First Affiliated Hospital of China Medical University; 155 Nanjingbei Street, Heping District Shenyang 110001 China
| | - Yunjie Wang
- Department of Neurosurgery; The First Affiliated Hospital of China Medical University; 155 Nanjingbei Street, Heping District Shenyang 110001 China
| | - Yanlei Guan
- Department of Neurosurgery; The First Affiliated Hospital of China Medical University; 155 Nanjingbei Street, Heping District Shenyang 110001 China
| | - Luyang Zhang
- Department of Neurosurgery; The First Affiliated Hospital of China Medical University; 155 Nanjingbei Street, Heping District Shenyang 110001 China
| | - Anhua Wu
- Department of Neurosurgery; The First Affiliated Hospital of China Medical University; 155 Nanjingbei Street, Heping District Shenyang 110001 China
| |
Collapse
|
48
|
Maccalli C, Parmiani G, Ferrone S. Immunomodulating and Immunoresistance Properties of Cancer-Initiating Cells: Implications for the Clinical Success of Immunotherapy. Immunol Invest 2017; 46:221-238. [PMID: 28287848 DOI: 10.1080/08820139.2017.1280051] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer-initiating cells (CICs) represent a relatively rare subpopulation of cells endowed with self-renewal, stemness properties, tumorigenicity in immunodeficient mice, and resistance to standard therapies as well as to immunotherapy. Here, we review the biological and immunological characteristics of CICs with special focus on the immunomodulating mechanisms they utilize to escape from immunosurveillance. The recently developed immunotherapeutic strategies have yielded remarkable clinical results in many types of tumors, indicating that indeed a patient's immune system can mount an immune response, which is effective in controlling tumor growth. However, a high proportion of patients is resistant or acquires resistance to these therapeutic strategies. The latter findings may reflect, at least in some cases, the inability of the immunotherapeutic strategies used to eradicate CICs. The CICs that escape immune recognition and destruction may give rise to new tumors in the same organ site or through the metastatic colonization in other anatomic sites. Identification of novel therapeutic approaches that can eradicate CICs is a major challenge in the cancer therapy area. An improved understanding of the interactions of CICs with immune system and with tumor microenvironment may contribute to optimize the available therapies and to design novel combination treatments for cancer therapy. ABBREVIATIONS ALDH, aldehyde dehydrogenase; APC, antigen-presenting cells; APM, antigen-processing machinery; CAR: chimeric antigen receptor; CHK1, checkpoint serine/threonine protein kinase; CIC, cancer-initiating cell; CRC, colorectal cancer; CTLA-4, cytotoxic T lymphocyte antigen-4; GBM, glioblastoma multiforme; GDF-15, growth differentiation factor-15; CSPG4: chondroitin sulfate proteoglycan-4; IFN, interferon; IL-4, interleukin-4; IL-10, interleukin-10; IL-13, interleukin-13; IL-13α2, α2 chain of IL-13 receptor; mAb, monoclonal antibody; MDSC, myeloid-derived suppressor cell; MHC, major histocompatibility complex; PD-1, programmed death-1; PD-L1 programmed death ligand-1; PDK, 3-phosphoinositide-dependent protein kinase-1; PGE2, prostaglandin E2; STAT3, signal transducer and activator of transcription 3; TGFB-1, transforming growth factor beta-1; Treg, T regulatory cell.
Collapse
Affiliation(s)
- Cristina Maccalli
- a Department of Translational Medicine , Sidra Medical and Research Center , Doha , Qatar
| | - Giorgio Parmiani
- b Italian Network for Biotherapy, University Hospital of Siena , Siena , Italy
| | - Soldano Ferrone
- c Department of Surgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
49
|
Bassoy EY, Kasahara A, Chiusolo V, Jacquemin G, Boydell E, Zamorano S, Riccadonna C, Pellegatta S, Hulo N, Dutoit V, Derouazi M, Dietrich PY, Walker PR, Martinvalet D. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells. EMBO J 2017; 36:1493-1512. [PMID: 28283580 DOI: 10.15252/embj.201695429] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Atsuko Kasahara
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Valentina Chiusolo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Guillaume Jacquemin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Emma Boydell
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sebastian Zamorano
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cristina Riccadonna
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Serena Pellegatta
- Department of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Hulo
- Biomathematical and Biostatistical Analysis, Institute of Genetics and Genomics University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Amal Therapeutics, Geneva, Switzerland
| | - Pierre Yves Dietrich
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
50
|
Ferreira-Teixeira M, Paiva-Oliveira D, Parada B, Alves V, Sousa V, Chijioke O, Münz C, Reis F, Rodrigues-Santos P, Gomes C. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells. BMC Med 2016; 14:163. [PMID: 27769244 PMCID: PMC5075212 DOI: 10.1186/s12916-016-0715-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/06/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. METHODS Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. RESULTS NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete remission. CONCLUSION Although pre-clinical, our results strongly suggest that an immunotherapeutic strategy using allogeneic activated NK cells from healthy donors is effective and should be exploited as a complementary therapeutic strategy in high-risk NMIBC patients to prevent tumor recurrence and progression.
Collapse
Affiliation(s)
- Margarida Ferreira-Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Daniela Paiva-Oliveira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Belmiro Parada
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Vera Alves
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vitor Sousa
- Service of Anatomical Pathology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal.,Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Immunology and Oncology Laboratory, Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, Coimbra, Portugal. .,Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|