1
|
Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021; 58:3252-3269. [PMID: 33665742 PMCID: PMC8260465 DOI: 10.1007/s12035-021-02339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Arnone CM, Polito VA, Mastronuzzi A, Carai A, Diomedi FC, Antonucci L, Petrilli LL, Vinci M, Ferrari F, Salviato E, Scarsella M, De Stefanis C, Weber G, Quintarelli C, De Angelis B, Brenner MK, Gottschalk S, Hoyos V, Locatelli F, Caruana I, Del Bufalo F. Oncolytic adenovirus and gene therapy with EphA2-BiTE for the treatment of pediatric high-grade gliomas. J Immunother Cancer 2021; 9:e001930. [PMID: 33963009 PMCID: PMC8108682 DOI: 10.1136/jitc-2020-001930] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Pediatric high-grade gliomas (pHGGs) are among the most common and incurable malignant neoplasms of childhood. Despite aggressive, multimodal treatment, the outcome of children with high-grade gliomas has not significantly improved over the past decades, prompting the development of innovative approaches. METHODS To develop an effective treatment, we aimed at improving the suboptimal antitumor efficacy of oncolytic adenoviruses (OAs) by testing the combination with a gene-therapy approach using a bispecific T-cell engager (BiTE) directed towards the erythropoietin-producing human hepatocellular carcinoma A2 receptor (EphA2), conveyed by a replication-incompetent adenoviral vector (EphA2 adenovirus (EAd)). The combinatorial approach was tested in vitro, in vivo and thoroughly characterized at a molecular level. RESULTS After confirming the relevance of EphA2 as target in pHGGs, documenting a significant correlation with worse clinical outcome of the patients, we showed that the proposed strategy provides significant EphA2-BiTE amplification and enhanced tumor cell apoptosis, on coculture with T cells. Moreover, T-cell activation through an agonistic anti-CD28 antibody further increased the activation/proliferation profiles and functional response against infected tumor cells, inducing eradication of highly resistant, primary pHGG cells. The gene-expression analysis of tumor cells and T cells, after coculture, revealed the importance of both EphA2-BiTE and costimulation in the proposed system. These in vitro observations translated into significant tumor control in vivo, in both subcutaneous and a more challenging orthotopic model. CONCLUSIONS The combination of OA and EphA2-BiTE gene therapy strongly enhances the antitumor activity of OA, inducing the eradication of highly resistant tumor cells, thus supporting the clinical translation of the approach.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Adenoviridae/pathogenicity
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/metabolism
- Apoptosis
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/therapy
- Brain Neoplasms/virology
- Cell Line, Tumor
- Coculture Techniques
- Cytotoxicity, Immunologic
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Genetic Vectors
- Glioma/genetics
- Glioma/metabolism
- Glioma/therapy
- Glioma/virology
- Humans
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Grading
- Oncolytic Virotherapy
- Oncolytic Viruses/genetics
- Oncolytic Viruses/metabolism
- Oncolytic Viruses/pathogenicity
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Claudia Manuela Arnone
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vinicia Assunta Polito
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Laura Antonucci
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Ferrari
- The FIRC Institute of Molecular Oncology, IFOM, Milano, Italy
- Institute of Molecular Genetics National Research Council, Pavia, Italy
| | - Elisa Salviato
- The FIRC Institute of Molecular Oncology, IFOM, Milano, Italy
| | - Marco Scarsella
- Flow Cytometry and Histology Core Facilities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Flow Cytometry and Histology Core Facilities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gerrit Weber
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Malcolm K Brenner
- Baylor College of Medicine Center for Cell and Gene Therapy, Houston, Texas, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Valentina Hoyos
- Baylor College of Medicine Center for Cell and Gene Therapy, Houston, Texas, USA
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Pediatrics, Sapienza University of Rome, Roma, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Receptor Tyrosine Kinases: Principles and Functions in Glioma Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:151-178. [PMID: 32034713 DOI: 10.1007/978-3-030-30651-9_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
|
4
|
Howarth A, Madureira PA, Lockwood G, Storer LCD, Grundy R, Rahman R, Pilkington GJ, Hill R. Modulating autophagy as a therapeutic strategy for the treatment of paediatric high-grade glioma. Brain Pathol 2019; 29:707-725. [PMID: 31012506 PMCID: PMC8028648 DOI: 10.1111/bpa.12729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Paediatric high-grade gliomas (pHGG) represent a therapeutically challenging group of tumors. Despite decades of research, there has been minimal improvement in treatment and the clinical prognosis remains poor. Autophagy, a highly conserved process for recycling metabolic substrates is upregulated in pHGG, promoting tumor progression and evading cell death. There is significant crosstalk between autophagy and a plethora of critical cellular pathways, many of which are dysregulated in pHGG. The following article will discuss our current understanding of autophagy signaling in pHGG and the potential modulation of this network as a therapeutic target.
Collapse
Affiliation(s)
- Alison Howarth
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| | - Patricia A. Madureira
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
- Centre for Biomedical Research (CBMR)University of AlgarveFaroPortugal
| | - George Lockwood
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Lisa C. D. Storer
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Richard Grundy
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Ruman Rahman
- Children’s Brain Tumour Research Centre, School of Medicine, Queen’s Medical CentreUniversity of NottinghamNottinghamUK
| | - Geoffrey J. Pilkington
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| | - Richard Hill
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, IBBSUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
5
|
Patel SK, Leong R, Zhao H, Barone A, Casey D, Liu Q, Burckart GJ, Reaman G. Pediatric Development of Molecularly Targeted Oncology Drugs. Clin Pharmacol Ther 2017; 104:384-389. [DOI: 10.1002/cpt.942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shivam Kamlesh Patel
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
- University of North Carolina at Chapel Hill; Chapel Hill North Carolina USA
| | - Ruby Leong
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Hong Zhao
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Amy Barone
- Office of Hematology and Oncology Products, Office of New Drugs, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Denise Casey
- Office of Hematology and Oncology Products, Office of New Drugs, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Qi Liu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Gilbert J. Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Gregory Reaman
- Office of Hematology and Oncology Products, Office of New Drugs, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| |
Collapse
|
6
|
Zaky W, Manton C, Miller CP, Khatua S, Gopalakrishnan V, Chandra J. The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities. Cancer Metastasis Rev 2017; 36:617-633. [PMID: 29071526 DOI: 10.1007/s10555-017-9700-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nearly 20 years ago, the concept of targeting the proteasome for cancer therapy began gaining momentum. This concept was driven by increased understanding of the biology/structure and function of the 26S proteasome, insight into the role of the proteasome in transformed cells, and the synthesis of pharmacological inhibitors with clinically favorable features. Subsequent in vitro, in vivo, and clinical testing culminated in the FDA approval of three proteasome inhibitors-bortezomib, carfilzomib, and ixazomib -for specific hematological malignancies. However, despite in vitro and in vivo studies pointing towards efficacy in solid tumors, clinical responses broadly have been evasive. For brain tumors, a malignancy in dire need of new approaches both in adult and pediatric patients, this has also been the case. Elucidation of proteasome-dependent processes in specific types of brain tumors, the evolution of newer proteasome targeting strategies, and the use of proteasome inhibitors in combination strategies will clarify how these agents can be leveraged more effectively to treat central nervous system malignancies. Since brain tumors represent a heterogeneous subset of solid tumors, and in particular, pediatric brain tumors possess distinct biology from adult brain tumors, tailoring of proteasome inhibitor-based strategies to specific subtypes of these tumors will be critical for advancing care for affected patients, and will be discussed in this review.
Collapse
Affiliation(s)
- Wafik Zaky
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Christa Manton
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Claudia P Miller
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Soumen Khatua
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Joya Chandra
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol 2017; 134:541-549. [PMID: 28357536 DOI: 10.1007/s11060-017-2393-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/24/2017] [Indexed: 01/06/2023]
Abstract
High-grade pediatric central nervous system glial tumors are comprised primarily of anaplastic astrocytomas (AA, WHO grade III) and glioblastomas (GBM, WHO grade IV). High-grade gliomas are most commonly diagnosed in the primary setting in children, but as in adults, they can also arise as a result of transformation of a low-grade malignancy, though with limited frequency in the pediatric population. The molecular genetics of high-grade gliomas in the pediatric population are distinct from their adult counterparts. In contrast to the adult population, high-grade gliomas in children are relatively infrequent, representing less than 20% of cases.
Collapse
|
8
|
Abstract
High-grade gliomas (HGGs) are extremely lethal tumors. Survival has not changed significantly in the past decades. The only known prognostic factors in pediatric HGGs (pHGGs) are extent of resection and histologic grade. Treatment has historically been based on adult trials because of the rarity of pHGGs and the lack of genomic tools to explore their unique molecular characteristics. The recent advances in molecular biological data helped divide these tumors into distinct subgroups. In this review, the authors focus on major molecular targets of alterations in pHGGs: histone H3.3, telomeres, PDGFRA, IDH, BRAF (V600E), ACVR1 and NTRK and briefly highlight the difference with the adult counterpart.
Collapse
Affiliation(s)
- Omar Chamdine
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
9
|
Buczkowicz P, Hawkins C. Pathology, Molecular Genetics, and Epigenetics of Diffuse Intrinsic Pontine Glioma. Front Oncol 2015; 5:147. [PMID: 26175967 PMCID: PMC4485076 DOI: 10.3389/fonc.2015.00147] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/16/2015] [Indexed: 11/13/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a devastating pediatric brain cancer with no effective therapy. Histological similarity of DIPG to supratentorial high-grade astrocytomas of adults has led to assumptions that these entities possess similar underlying molecular properties and therefore similar therapeutic responses to standard therapies. The failure of all clinical trials in the last 30 years to improve DIPG patient outcome has suggested otherwise. Recent studies employing next-generation sequencing and microarray technologies have provided a breadth of evidence highlighting the unique molecular genetics and epigenetics of this cancer, distinguishing it from both adult and pediatric cerebral high-grade astrocytomas. This review describes the most common molecular genetic and epigenetic signatures of DIPG in the context of molecular subgroups and histopathological diagnosis, including this tumor entity's unique mutational landscape, copy number alterations, and structural variants, as well as epigenetic changes on the global DNA and histone levels. The increased knowledge of DIPG biology and histopathology has opened doors to new diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Pawel Buczkowicz
- Division of Pathology, The Hospital for Sick Children , Toronto, ON , Canada ; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children , Toronto, ON , Canada
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children , Toronto, ON , Canada ; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children , Toronto, ON , Canada ; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
10
|
Au K, Singh SK, Burrell K, Sabha N, Hawkins C, Huang A, Zadeh G. A preclinical study demonstrating the efficacy of nilotinib in inhibiting the growth of pediatric high-grade glioma. J Neurooncol 2015; 122:471-80. [PMID: 25732621 PMCID: PMC4436849 DOI: 10.1007/s11060-015-1744-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 02/16/2015] [Indexed: 12/28/2022]
Abstract
Solid tumors arising from malignant transformation of glial cells are one of the leading causes of central nervous system tumor-related death in children. Recurrence in spite of rigorous surgical and chemoradiation therapies remains a major hurdle in management of these tumors. Here, we investigate the efficacy of the second-generation receptor tyrosine kinase inhibitor nilotinib as a therapeutic option for the management of pediatric gliomas. We have utilized two independent pediatric high-grade glioma cell lines with either high platelet-derived growth factor receptor alpha (PDGFRα) or high PDGFRβ expression in in vitro assays to investigate the specific downstream effects of nilotinib treatment. Using in vitro cell-based assays we show that nilotinib inhibits PDGF-BB-dependent activation of PDGFRα. We further show that nilotinib is able to decrease cell proliferation and anchorage-independent growth via suppression of AKT and ERK1/2 signaling pathways. Our results suggest that nilotinib may be effective for management of a PDGFRα-dependent group of pediatric gliomas.
Collapse
Affiliation(s)
- Karolyn Au
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Sun J, Guo M, Pang H, Qi J, Zhang J, Ge Y. Treatment of malignant glioma using hyperthermia. Neural Regen Res 2014; 8:2775-82. [PMID: 25206588 PMCID: PMC4145998 DOI: 10.3969/j.issn.1673-5374.2013.29.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/20/2013] [Indexed: 12/28/2022] Open
Abstract
Thirty pathologically diagnosed patients with grade III–IV primary or recurrent malignant glioma (tumor diameter 3–7 cm) were randomly divided into two groups. The control group underwent conventional radiotherapy and chemotherapy. In the hyperthermia group, primary cases received hyperthermia treatment, and patients with recurrent tumors were treated with hyperthermia in com-bination with radiotherapy and chemotherapy. Hyperthermia treatment was administered using a 13.56-MHz radio frequency hyperthermia device. Electrodes were inserted into the tumor with the aid of a CT-guided stereotactic apparatus and heat was applied for 1 hour. During 3 months after hyperthermia, patients were evaluated with head CT or MRI every month. Gliomas in the hyper-thermia group exhibited growth retardation or growth termination. Necrosis was evident in 80% of the heated tumor tissue and there was a decrease in tumor diameter. Our findings indicate that ra-dio frequency hyperthermia has a beneficial effect in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Jiahang Sun
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Hengyuan Pang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Jingtao Qi
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Jinwei Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| | - Yunlong Ge
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, Heilongjiang Province, China
| |
Collapse
|
12
|
Agnihotri S, Burrell K, Buczkowicz P, Remke M, Golbourn B, Chornenkyy Y, Gajadhar A, Fernandez NA, Clarke ID, Barszczyk MS, Pajovic S, Ternamian C, Head R, Sabha N, Sobol RW, Taylor MD, Rutka JT, Jones C, Dirks PB, Zadeh G, Hawkins C. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents. Cancer Discov 2014; 4:1198-213. [PMID: 25100205 DOI: 10.1158/2159-8290.cd-14-0157] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. SIGNIFICANCE Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window.
Collapse
Affiliation(s)
- Sameer Agnihotri
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Kelly Burrell
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Pawel Buczkowicz
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Marc Remke
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Brian Golbourn
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Yevgen Chornenkyy
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Aaron Gajadhar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nestor A Fernandez
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Ian D Clarke
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Mark S Barszczyk
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Sanja Pajovic
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Christian Ternamian
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Renee Head
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Nesrin Sabha
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Robert W Sobol
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania. Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - James T Rutka
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Chris Jones
- The Institute of Cancer Research, London, United Kingdom
| | - Peter B Dirks
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Gelareh Zadeh
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada. Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada. Division of Pathology, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Cabanas R, Saurez G, Rios M, Alert J, Reyes A, Valdes J, Gonzalez MC, Pedrayes JL, Avila M, Herrera R, Infante M, Echevarria E, Moreno M, Luaces PL, Ramos TC. Treatment of children with high grade glioma with nimotuzumab: a 5-year institutional experience. MAbs 2013; 5:202-7. [PMID: 23575267 DOI: 10.4161/mabs.22970] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Brain tumors are a major cause of cancer-related mortality in children. Overexpression of epidermal growth factor receptor (EGFR) is detected in pediatric brain tumors and receptor density appears to increase with tumor grading. Nimotuzumab is an IgG1 antibody that targets EGFR. Twenty-three children with high-grade glioma (HGG) were enrolled in an expanded access program in which nimotuzumab was administered alone or with radio-chemotherapy. The mean number of doses was 39. Nimotuzumab was well-tolerated and treatment with the antibody yielded a survival benefit: median survival time was 32.66 mo and the 2-y survival rate was 54.2%. This study demonstrated the feasibility of prolonged administration of nimotuzumab and showed preliminary evidence of clinical benefit in HGG patients with poor prognosis.
Collapse
Affiliation(s)
- Ricardo Cabanas
- Oncohematology, Juan Manuel Márquez Pediatric Hospital, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
OPINION STATEMENT Gliomas are the most common brain tumor in children and represent nearly 50 % of all pediatric central nervous system (CNS) tumors. They are a heterogeneous group of diseases, ranging from highly malignant and frequently fatal to histologically benign and curable by surgery alone. A uniform treatment approach to these tumors is not practical, due to their histological and biological heterogeneity. Low-grade gliomas (LGGs) are best treated with maximally safe surgical resection, generally achievable for hemispheric or cerebellar locations. Patients with deep midline, optic pathway/hypothalamic, and brain stem locations should undergo subtotal resection or biopsy only. If a complete resection is not feasible, subtotal resection followed by adjuvant chemotherapy or radiotherapy is the standard approach; however, observation alone with serial neuroimaging is used in some asymptomatic, surgically inaccessible lesions. Chemotherapy is used first-line in cases of residual or progressive disease, to avoid or delay radiation therapy and its associated side effects. Regimens demonstrating objective responses and increased progression free survival (PFS) include carboplatin and vincristine (CV), thioguanine/procarbazine/CCNU/vincristine (TPCV), or weekly vinblastine. High-grade gliomas (HGGs) are less common in children than in adults, though are similar in their aggressive clinical behavior, resistance to therapy, and dismal outcomes. There is not a single "standard of care" therapy for non-metastatic HGGs, but generally accepted is an aggressive attempt at a complete surgical resection, followed by multimodality therapy with focal radiation and chemotherapy. The use of temozolomide (TMZ) during and following radiotherapy is common, though it appeared not to improve the outcome in a cooperative group clinical trial when compared to an historical control cohort. The angiogenesis inhibitor bevacizumab, used alone or in combination with irinotecan, is also commonly used as maintenance therapy after radiation. Current trials are prospectively comparing TMZ to newer agents (vorinostat, bevacizumab) in a randomized phase II trial. Brainstem gliomas are a unique category of childhood gliomas. Approximately 80 % of childhood brainstem gliomas arise within the pons as diffuse intrinsic pontine gliomas (DIPG). When biopsied, these are usually HGGs and carry a dismal prognosis. Standard therapy is focal radiation (54-58 Gy), preferably on a clinical trial testing concurrent chemotherapy or biologic agent. No standard chemotherapy agent has impacted survival. The remaining 20 % of brainstem gliomas are low-grade, arise in the midbrain, dorsal medulla, or cervicomedullary junction, and are indolent in nature with a much better prognosis. Improvement in the outcome of all childhood gliomas will require increased knowledge of the underlying biology of these tumors, in order to treat with more biologically based and precise therapies.
Collapse
Affiliation(s)
- Jane E Minturn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, CTRB 4028, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
15
|
Abstract
Primary glial brain tumors account for the majority of primary brain tumors in children. They are classified as low-grade gliomas (LGG) or high-grade gliomas (HGG), based on specific pathologic characteristics of the tumor, resulting in disparate clinical prognoses. Surgery is a mainstay of treatment for HGG, although it is not curative, and adjuvant therapy is required. Temozolomide, an oral imidazotetrazine prodrug, while considered standard of care for adult HGG, has not shown the same degree of benefit in the treatment of pediatric HGG. There are significant biologic differences that exist between adult and pediatric HGG, and targets specifically aimed at the biology in the pediatric population are required. Novel and specific therapies currently being investigated for pediatric HGG include small molecule inhibitors of epidermal growth factor receptor, platelet-derived growth factor receptor, histone deacetylase, the RAS/AKT pathway, telomerase, integrin, insulin-like growth factor receptor, and γ-secretase. Surgery is also the mainstay for LGG. There are defined front-line, multiagent chemotherapy regimens, but there are few proven second-line chemotherapy options for refractory patients. Approaches such as the inhibition of the mammalian target of rapamycin pathway, inhibition of MEK1 and 2, as well as BRAF, are discussed. Further research is required to understand the biology of pediatric gliomas as well as the use of molecularly targeted agents, especially in patients with surgically unresectable tumors.
Collapse
|
16
|
Nakada M, Kita D, Teng L, Pyko IV, Watanabe T, Hayashi Y, Hamada JI. Receptor tyrosine kinases: principles and functions in glioma invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:143-70. [PMID: 22879068 DOI: 10.1007/978-94-007-4719-7_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
Affiliation(s)
- Mitsutoshi Nakada
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gilheeney SW, Kieran MW. Differences in molecular genetics between pediatric and adult malignant astrocytomas: age matters. Future Oncol 2012; 8:549-58. [PMID: 22646770 DOI: 10.2217/fon.12.51] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The microscope - the classical tool for the investigation of cells and tissues - remains the basis for the classification of tumors throughout the body. Nowhere has this been more true than in the grading of astrocytomas. In spite of the fact that our parents warned us not to judge a book by its cover, we have continued to assume that adult and pediatric malignant gliomas that look the same, will have the same mutations, and thus respond to the same therapy. Rapid advances in molecular biology have permitted us the opportunity to go inside the cell and characterize the genetic events that underlie the true molecular heterogeneity of adult and pediatric brain tumors. In this paper, we will discuss some of the important clinical differences between pediatric and adult gliomas, with a focus on the molecular analysis of these different age groups.
Collapse
Affiliation(s)
- Stephen W Gilheeney
- Pediatric Neuro-Oncology, Dana-Farber Children's Hospital Cancer Center, Boston, MA, USA.
| | | |
Collapse
|
18
|
Platelet-derived growth factor may be a potential diagnostic and prognostic marker for cholangiocarcinoma. Tumour Biol 2012; 33:1785-802. [DOI: 10.1007/s13277-012-0438-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 05/30/2012] [Indexed: 12/15/2022] Open
|
19
|
Jones C, Perryman L, Hargrave D. Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 2012; 9:400-13. [PMID: 22641364 DOI: 10.1038/nrclinonc.2012.87] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliomas in children differ from their adult counterparts by their distribution of histological grade, site of presentation and rate of malignant transformation. Although rare in the paediatric population, patients with high-grade gliomas have, for the most part, a comparably dismal clinical outcome to older patients with morphologically similar lesions. Molecular profiling data have begun to reveal the major genetic alterations underpinning these malignant tumours in children. Indeed, the accumulation of large datasets on adult high-grade glioma has revealed key biological differences between the adult and paediatric disease. Furthermore, subclassifications within the childhood age group can be made depending on age at diagnosis and tumour site. However, challenges remain on how to reconcile clinical data from adult patients to tailor novel treatment strategies specifically for paediatric patients.
Collapse
Affiliation(s)
- Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | | | | |
Collapse
|
20
|
Nageswara Rao AA, Packer RJ. Impact of molecular biology studies on the understanding of brain tumors in childhood. Curr Oncol Rep 2012; 14:206-12. [PMID: 22237928 DOI: 10.1007/s11912-012-0214-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pediatric brain tumors are the second most common form of childhood malignancy. Brain tumors are a very heterogenous group of tumors and the pathogenesis of many of these tumors is yet to be clearly elucidated. Current diagnostic tools include histopathology and immunohistochemistry, but classification based on these means has significant limitations. As our understanding of the molecular biology of individual tumors continues to increase it has led to the identification of reliable and increasingly available molecular biomarkers. Molecular techniques are likely to complement current standard means of investigation and help not only overcome diagnostic challenges but may also result in better disease classification and risk stratification, leading to more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Amulya A Nageswara Rao
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
21
|
Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proc Natl Acad Sci U S A 2012; 109:8710-5. [PMID: 22586120 DOI: 10.1073/pnas.1117255109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although malignant astrocytomas are a leading cause of cancer-related death in children, rational therapeutic strategies are lacking. We previously identified activating mutations of v-raf murine sarcoma viral oncogene homolog B1 (BRAF) (BRAF(T1799A) encoding BRAF(V600E)) in association with homozygous cyclin-dependent kinase inhibitor 2A (CDKN2A, encoding p14ARF and p16Ink4a) deletions in pediatric infiltrative astrocytomas. Here we report that BRAF(V600E) expression in neural progenitors (NPs) is insufficient for tumorigenesis and increases NP cellular differentiation as well as apoptosis. In contrast, astrocytomas are readily generated from NPs with additional Ink4a-Arf deletion. The BRAF(V600E) inhibitor PLX4720 significantly increased survival of mice after intracranial transplant of genetically relevant murine or human astrocytoma cells. Moreover, combination therapy using PLX4720 plus the Cyclin-dependent kinase (CDK) 4/6-specific inhibitor PD0332991 further extended survival relative to either monotherapy. Our findings indicate a rational therapeutic strategy for treating a subset of pediatric astrocytomas with BRAF(V600E) mutation and CDKN2A deficiency.
Collapse
|
22
|
Oka H, Utsuki S, Tanizaki Y, Hagiwara H, Miyajima Y, Sato K, Kusumi M, Kijima C, Fujii K. Clinicopathological features of human brainstem gliomas. Brain Tumor Pathol 2012; 30:1-7. [PMID: 22484454 DOI: 10.1007/s10014-012-0099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/19/2012] [Indexed: 01/13/2023]
Abstract
We describe the clinicopathological features of 25 brainstem gliomas (BSGs). Twenty BSGs located in the pons and were all in children. Four BSGs located in the medulla oblongata were in 2 children and 2 adults. One (in a child) was located in the midbrain. Radiological findings on MR images were low-intensity on T1 weighted images and high-intensity on T2 weighted images. Mean survival when pontine glioma was treated by radiotherapy and/or use of temozolomide was 14 months, although 4 patients (3 cervicomedullary types and one focal type arising from midbrain) are alive. Follow up was from 5 months to 6 years. Histopathological features of 10 cases of the diffuse type were: 4 grade II astrocytomas, 4 grade III astrocytomas, and 2 glioblastomas. MIB-1 index was from 0.8 to 38 %. P53 was positive for 80 % of 15 tumors and there were no negative results. MGMT was positive in 60 % of 15 tumors and negative in 12.4 %. IDH1 was negative in 61.6 %. There was no positive result for IDH1 in this study. Thus, our histopathological results were indicative of high p53 immunoreactivity and no IDH1 immunoreactivity related to secondary malignant change.
Collapse
Affiliation(s)
- Hidehiro Oka
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minimi-ku, Sagamihara, Kanagawa 225-318, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Aurora kinase B/C inhibition impairs malignant glioma growth in vivo. J Neurooncol 2012; 108:349-60. [PMID: 22382783 DOI: 10.1007/s11060-012-0835-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 02/15/2012] [Indexed: 12/25/2022]
Abstract
Inhibition of Aurora kinase B has been evaluated as a therapy to block solid tumor growth in breast cancer, hepatocellular carcinoma, lung adenocarcinoma, and colorectal cancer models. Aurora kinase inhibitors are in early clinical trials for the treatment of leukemia. We hypothesized that Aurora B inhibition would reduce malignant glioma cell viability and result in impaired tumor growth in vivo. Aurora B expression is greater in cultured malignant glioma U251 cells compared to proliferating normal human astrocytes, and expression is maintained in U251 flank xenografts. Aurora B inhibition with AZD1152-HQPA blocked cell division in four different p53-mutant glioma cell lines (U251, T98G, U373, and U118). AZD1152-HQPA also inhibited Aurora C activation loop threonine autophosphorylation at the effective antiproliferative concentrations in vitro. Reduction in cell viability of U251 (p53(R273H)) cells was secondary to cytokinesis blockade and apoptosis induction following endoreplication. AZD1152-HQPA inhibited the growth of U251 tumor xenografts and resulted in an increase in tumor cell apoptosis both in vitro and in vivo. Subcutaneous administration of AZD1152-HQPA (25 mg/kg/day × 4 days; 2 cycles spaced 7 days apart) resulted in a prolongation in median survival after intracranial inoculation of U251 cells in mice (P = 0.025). This is the first demonstration that an Aurora kinase inhibitor can inhibit malignant glioma growth in vivo at drug doses that are clinically relevant.
Collapse
|
24
|
Affiliation(s)
- Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Gilbert Neurofibromatosis Institute, Brain Tumor Institute, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| |
Collapse
|
25
|
MacDonald TJ, Aguilera D, Kramm CM. Treatment of high-grade glioma in children and adolescents. Neuro Oncol 2011; 13:1049-58. [PMID: 21784756 PMCID: PMC3177659 DOI: 10.1093/neuonc/nor092] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/20/2011] [Indexed: 12/15/2022] Open
Abstract
Pediatric high-grade gliomas (HGGs)--including glioblastoma multiforme, anaplastic astrocytoma, and diffuse intrinsic pontine glioma--are difficult to treat and are associated with an extremely poor prognosis. There are no effective chemotherapeutic regimens for the treatment of pediatric HGG, but many new treatment options are in active investigation. There are crucial molecular differences between adult and pediatric HGG such that results from adult clinical trials cannot simply be extrapolated to children. Molecular markers overexpressed in pediatric HGG include PDGFRα and P53. Amplification of EGFR is observed, but to a lesser degree than in adult HGG. Potential molecular targets and new therapies in development for pediatric HGG are described in this review. Research into bevacizumab in pediatric HGG indicates that its activity is less than that observed in adult HGG. Similarly, tipifarnib was found to have minimal activity in pediatric HGG, whereas gefitinib has shown greater effects. After promising phase I findings in children with primary CNS tumors, the integrin inhibitor cilengitide is being investigated in a phase II trial in pediatric HGG. Studies are also ongoing in pediatric HGG with 2 EGFR inhibitors: cetuximab and nimotuzumab. Other novel treatment modalities under investigation include dendritic cell-based vaccinations, boron neutron capture therapy, and telomerase inhibition. While the results of these trials are keenly awaited, the current belief is that multimodal therapy holds the greatest promise. Research efforts should be directed toward building multitherapeutic regimens that are well tolerated and that offer the greatest antitumor activity in the setting of pediatric HGG.
Collapse
Affiliation(s)
- T J MacDonald
- Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory Children's Center, 2015 Uppergate Drive, Suite 442, Atlanta, GA 30322 USA.
| | | | | |
Collapse
|
26
|
Overexpression of PDGFA and its receptor during carcinogenesis of Opisthorchis viverrini-associated cholangiocarcinoma. Parasitol Int 2011; 61:145-50. [PMID: 21777692 DOI: 10.1016/j.parint.2011.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/03/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022]
Abstract
Cholangiocarcinoma (CCA) is a crucial health problem in northeastern part of Thailand, which is caused by a combination of Opisthorchis viverrini infection and nitrosamine. A better understanding of its molecular mechanism is an important step to discover and develop the new diagnostics and therapies for CCA. To reveal the involvement of potential genes in the development of CCA, the present study investigated the expression kinetics of platelet-derived growth factor alpha (Pdgfa) and its receptor (Pdgfra) during the tumorigenesis of CCA induced by O. viverrini infection with quantitative RT-PCR, and confirmed the expression with immunohistological staining. The results showed that in the hamster model of opisthorchiasis-associated CCA, the expression of Pdgfa was increased after infection plus N-nitrosodimethylamine (NDMA) administration, reached its peak at 2 months post infection, and remained at the high level until 6 months. Similarly, the expression of Pdgfra was increased time-dependently. The positive immunostaining for PDGFA proteins was observed in the cytoplasm of epithelial tumor cells of hamster CCA. Moreover, the analysis of the expression of these genes in 10 cases of human opisthorchiasis-associated CCA showed that Pdgfa was overexpressed in 80%, and Pdgfra was overexpressed in 40% cases (>3.0 folds, compared with the expressions of adjacent normal tissues). This result suggests that PDGFA is likely involved in the tumorigenesis of opisthorchiasis-associated CCA, and may be a promising candidate biomarker for diagnosis and treatment strategies of CCA.
Collapse
|
27
|
Pollack IF, Hamilton RL, Burger PC, Brat DJ, Rosenblum MK, Murdoch GH, Nikiforova MN, Holmes EJ, Zhou T, Cohen KJ, Jakacki RI. Akt activation is a common event in pediatric malignant gliomas and a potential adverse prognostic marker: a report from the Children's Oncology Group. J Neurooncol 2010; 99:155-63. [PMID: 20607350 DOI: 10.1007/s11060-010-0297-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/24/2010] [Indexed: 12/01/2022]
Abstract
Aberrant activation of Akt is a common finding in adult malignant gliomas, resulting in most cases from mutations or deletions involving PTEN, which allows constitutive Akt phosphorylation. In contrast, we have previously reported that pediatric malignant gliomas, which are morphologically similar to lesions arising in adults, have a substantially lower incidence of genomic alterations of PTEN. The objective of this study was to determine whether Akt activation was also an uncommon finding in childhood malignant gliomas and whether this feature was associated with survival. To address this issue, we examined the frequency of Akt activation, determined by overexpression of the activated phosphorylated form of Akt (Se(473)) on immunohistochemical analysis, in a series of 53 childhood malignant gliomas obtained from newly diagnosed patients treated on the Children's Oncology Group ACNS0126 and 0423 studies. The relationship between Akt activation and p53 overexpression, MIB1 labeling, and tumor histology was evaluated. The association between Akt activation and survival was also assessed. Overexpression of activated Akt was observed in 42 of 53 tumors, far in excess of the frequency of PTEN mutations we have previously observed. There was no association between Akt activation and either histology, p53 overexpression, or MIB1 proliferation indices. Although tumors that lacked Akt overexpression had a trend toward more favorable event-free survival and overall survival (p = 0.06), this association reflected that non-overexpressing tumors were significantly more likely to have undergone extensive tumor removal, which was independently associated with outcome. Activation of Akt is a common finding in pediatric malignant gliomas, although it remains uncertain whether this is an independent adverse prognostic factor. In view of the frequency of Akt activation, the evaluation of molecularly targeted therapies that inhibit this pathway warrants consideration for these tumors.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gladson CL, Prayson RA, Liu WM. The pathobiology of glioma tumors. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:33-50. [PMID: 19737106 DOI: 10.1146/annurev-pathol-121808-102109] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ongoing characterization of the genetic and epigenetic alterations in the gliomas has already improved the classification of these heterogeneous tumors and enabled the development of rodent models for analysis of the molecular pathways underlying their proliferative and invasive behavior. Effective application of the targeted therapies that are now in development will depend on pathologists' ability to provide accurate information regarding the genetic alterations and the expression of key receptors and ligands in the tumors. Here we review the mechanisms that have been implicated in the pathogenesis of the gliomas and provide examples of the cooperative nature of the pathways involved, which may influence the initial therapeutic response and the potential for development of resistance.
Collapse
Affiliation(s)
- Candece L Gladson
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
29
|
Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, Albrecht S, Hiner RL, Gall S, Huse JT, Jabado N, MacDonald TJ, Holland EC. Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res 2010; 70:2548-57. [PMID: 20197468 DOI: 10.1158/0008-5472.can-09-2503] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brainstem gliomas (BSG) are a rare group of central nervous system tumors that arise mostly in children and usually portend a particularly poor prognosis. We report the development of a genetically engineered mouse model of BSG using the RCAS/tv-a system and its implementation in preclinical trials. Using immunohistochemistry, we found that platelet-derived growth factor (PDGF) receptor alpha is overexpressed in 67% of pediatric BSGs. Based on this observation, we induced low-grade BSGs by overexpressing PDGF-B in the posterior fossa of neonatal nestin tv-a mice. To generate high-grade BSGs, we overexpressed PDGF-B in combination with Ink4a-ARF loss, given that this locus is commonly lost in high-grade pediatric BSGs. We show that the likely cells of origin for these mouse BSGs exist on the floor of the fourth ventricle and cerebral aqueduct. Irradiation of these high-grade BSGs shows that although single doses of 2, 6, and 10 Gy significantly increased the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei, only 6 and 10 Gy significantly induce cell cycle arrest. Perifosine, an inhibitor of AKT signaling, significantly induced TUNEL-positive nuclei in this high-grade BSG model, but in combination with 10 Gy, it did not significantly increase the percent of TUNEL-positive nuclei relative to 10 Gy alone at 6, 24, and 72 hours. Survival analysis showed that a single dose of 10 Gy significantly prolonged survival by 27% (P = 0.0002) but perifosine did not (P = 0.92). Perifosine + 10 Gy did not result in a significantly increased survival relative to 10 Gy alone (P = 0.23). This PDGF-induced BSG model can serve as a preclinical tool for the testing of novel agents.
Collapse
Affiliation(s)
- Oren J Becher
- Departments of Cancer Biology and Genetics, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
High-grade gliomas and diffuse brainstem gliomas carry a very poor prognosis despite current therapies, and account together for the largest number of deaths in children with brain tumors. Many of these tumors have been found to overexpress the EGF receptor (EGFR). Nimotuzumab (h-R3) is a humanized monoclonal antibody against the EGFR, and consequently inhibits tyrosine kinase activation. In vitro and in vivo studies have supported the antiproliferative, antiangiogenic, pro-apoptotic and radiosensitizing activities of nimotuzumab. Emerging trials suggest a promising role for nimotuzumab as a therapeutic agent in patients with high-grade gliomas. This review attempts to provide a context for the evolving interest and evidence for nimotuzumab in pediatric glioma.
Collapse
Affiliation(s)
- Catherine Lam
- The Hospital for Sick Children, Division for Haematology/Oncology, Toronto, Canada
| | | | | |
Collapse
|
31
|
Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C, Collins VP, Van Meter T, Picard D, Zhou L, Boutros PC, Modena P, Liang ML, Scherer SW, Bouffet E, Rutka JT, Pomeroy SL, Lau CC, Taylor MD, Gajjar A, Dirks PB, Hawkins CE, Huang A. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 2009; 16:533-46. [PMID: 19962671 PMCID: PMC3431561 DOI: 10.1016/j.ccr.2009.10.025] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 08/03/2009] [Accepted: 10/23/2009] [Indexed: 12/19/2022]
Abstract
We discovered a high-level amplicon involving the chr19q13.41 microRNA (miRNA) cluster (C19MC) in 11/45 ( approximately 25%) primary CNS-PNET, which results in striking overexpression of miR-517c and 520g. Constitutive expression of miR-517c or 520g promotes in vitro and in vivo oncogenicity, modulates cell survival, and robustly enhances growth of untransformed human neural stem cells (hNSCs) in part by upregulating WNT pathway signaling and restricting differentiation of hNSCs. Remarkably, the C19MC amplicon, which is very rare in other brain tumors (1/263), identifies an aggressive subgroup of CNS-PNET with distinct gene-expression profiles, characteristic histology, and dismal survival. Our data implicate miR-517c and 520g as oncogenes and promising biological markers for CNS-PNET and provide important insights into oncogenic properties of the C19MC locus.
Collapse
Affiliation(s)
- Meihua Li
- Division of Hematology-Oncology, Hospital for Sick Children, Toronto, ON M5G 0A3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hargrave D. Paediatric high and low grade glioma: the impact of tumour biology on current and future therapy. Br J Neurosurg 2009; 23:351-63. [DOI: 10.1080/02688690903158809] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Martinho O, Longatto-Filho A, Lambros MBK, Martins A, Pinheiro C, Silva A, Pardal F, Amorim J, Mackay A, Milanezi F, Tamber N, Fenwick K, Ashworth A, Reis-Filho JS, Lopes JM, Reis RM. Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. Br J Cancer 2009; 101:973-82. [PMID: 19707201 PMCID: PMC2743351 DOI: 10.1038/sj.bjc.6605225] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/21/2009] [Accepted: 07/08/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Malignant gliomas are the most prevalent type of primary brain tumours but the therapeutic armamentarium for these tumours is limited. Platelet-derived growth factor (PDGF) signalling has been shown to be a key regulator of glioma development. Clinical trials evaluating the efficacy of anti-PDGFRA therapies on gliomas are ongoing. In this study, we intended to analyse the expression of PDGFA and its receptor PDGFRA, as well as the underlying genetic (mutations and amplification) mechanisms driving their expression in a large series of human gliomas. METHODS PDGFA and PDGFRA expression was evaluated by immunohistochemistry in a series of 160 gliomas of distinct World Health Organization (WHO) malignancy grade. PDGFRA-activating gene mutations (exons 12, 18 and 23) were assessed in a subset of 86 cases by PCR-single-strand conformational polymorphism (PCR-SSCP), followed by direct sequencing. PDGFRA gene amplification analysis was performed in 57 cases by quantitative real-time PCR (QPCR) and further validated in a subset of cases by chromogenic in situ hybridisation (CISH) and microarray-based comparative genomic hybridisation (aCGH). RESULTS PDGFA and PDGFRA expression was found in 81.2% (130 out of 160) and 29.6% (48 out of 160) of gliomas, respectively. Its expression was significantly correlated with histological type of the tumours; however, no significant association between the expression of the ligand and its receptor was observed. The absence of PDGFA expression was significantly associated with the age of patients and with poor prognosis. Although PDGFRA gene-activating mutations were not found, PDGFRA gene amplification was observed in 21.1% (12 out of 57) of gliomas. No association was found between the presence of PDGFRA gene amplification and expression, excepting for grade II diffuse astrocytomas. CONCLUSION The concurrent expression of PDGFA and PDGFRA in different subtypes of gliomas, reinforce the recognised significance of this signalling pathway in gliomas. PDGFRA gene amplification rather than gene mutation may be the underlying genetic mechanism driving PDGFRA overexpression in a portion of gliomas. Taken together, our results could provide in the future a molecular basis for PDGFRA-targeted therapies in gliomas.
Collapse
Affiliation(s)
- O Martinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
| | - A Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
- Instituto Adolfo Lutz, 355-01246-902 São Paulo, Brazil
| | - M B K Lambros
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - A Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
| | - C Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
| | - A Silva
- Department of Pathology, S. Marcos Hospital, 4710 Braga, Portugal
| | - F Pardal
- Department of Pathology, S. Marcos Hospital, 4710 Braga, Portugal
| | - J Amorim
- Department of Oncology, S. Marcos Hospital, 4710 Braga, Portugal
| | - A Mackay
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - F Milanezi
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
- IPATIMUP, 4200 Porto, Portugal
| | - N Tamber
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - K Fenwick
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - A Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - J S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - J M Lopes
- IPATIMUP, 4200 Porto, Portugal
- Medical Faculties of Porto University, 4200 Porto, Portugal
| | - R M Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
| |
Collapse
|
34
|
Bax DA, Gaspar N, Little SE, Marshall L, Perryman L, Regairaz M, Viana-Pereira M, Vuononvirta R, Sharp SY, Reis-Filho JS, Stávale JN, Al-Sarraj S, Reis RM, Vassal G, Pearson AD, Hargrave D, Ellison DW, Workman P, Jones C. EGFRvIII Deletion Mutations in Pediatric High-Grade Glioma and Response to Targeted Therapy in Pediatric Glioma Cell Lines. Clin Cancer Res 2009; 15:5753-61. [DOI: 10.1158/1078-0432.ccr-08-3210] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Baruchel S, Sharp JR, Bartels U, Hukin J, Odame I, Portwine C, Strother D, Fryer C, Halton J, Egorin MJ, Reis RM, Martinho O, Stempak D, Hawkins C, Gammon J, Bouffet E. A Canadian paediatric brain tumour consortium (CPBTC) phase II molecularly targeted study of imatinib in recurrent and refractory paediatric central nervous system tumours. Eur J Cancer 2009; 45:2352-9. [PMID: 19505817 DOI: 10.1016/j.ejca.2009.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/16/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the safety, efficacy and pharmacokinetics of imatinib in children with recurrent or refractory central nervous system (CNS) tumours expressing KIT and/or PDGFRA. METHODS Nineteen patients aged 2-18 years, with recurrent or refractory CNS tumours expressing either of the target receptors KIT and/or PDGFRA (by immunohistochemistry) were eligible. Participants received imatinib orally at a dose of 440 mg/m(2)/day and toxicities and tumour responses were monitored. Serial blood and cerebrospinal fluid samples for pharmacokinetics were obtained in a subset of consenting patients. Frozen tumour samples were analysed retrospectively for KIT and PDGFRA gene amplification in a subset of patients for whom samples were available. RESULTS Common toxicities were lymphopaenia, neutropaenia, leucopaenia, elevated serum transaminases and vomiting. No intratumoural haemorrhages were observed. Although there were no objective responses to imatinib, four patients had long-term stable disease (SD) (38-104 weeks). Our results suggest a possible relationship between KIT expression and maintenance of SD with imatinib treatment; KIT immunopositivity was seen in only 58% (11/19) of study participants overall, but in 100% of patients with SD at 38 weeks. All patient tumours showed PDGFRA expression. Pharmacokinetic data showed a high interpatient variability, but corresponded with previously reported values. CONCLUSIONS Imatinib at 440 mg/m(2)/day is relatively safe in children with recurrent CNS tumours, but induced no objective responses. Demonstration of SD in previously progressing patients (KIT-expressing) suggests cytostatic activity of imatinib.
Collapse
Affiliation(s)
- Sylvain Baruchel
- Department of Paediatrics Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Wong VCH, Ma J, Hawkins CE. Telomerase inhibition induces acute ATM-dependent growth arrest in human astrocytomas. Cancer Lett 2008; 274:151-9. [PMID: 18945545 DOI: 10.1016/j.canlet.2008.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 07/15/2008] [Accepted: 09/09/2008] [Indexed: 11/18/2022]
Abstract
The purpose of the study was to examine the degree of hTERT, the catalytic subunit of telomerase, expression in paediatric high-grade astrocytoma and to explore the potential of telomerase inhibition as a therapy for these tumours. hTERT was expressed at high levels in 36 of 44 paediatric astrocytomas. Telomerase inhibition induced acute DNA damage and ATM-pathway-dependent G2/M cell cycle arrest in astrocytomas in vitro, both occurring prior to telomere shortening itself. Our data suggest that telomerase inhibition could be a useful adjuvant therapy for high-grade astrocytomas, potentially inducing tumour growth arrest following short-term treatment.
Collapse
Affiliation(s)
- Vincent C H Wong
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ont., Canada M5G 1X8
| | | | | |
Collapse
|