1
|
Ha Y, Rajani K, Riviere-Cazaux C, Rahman M, Olson IE, Gharibi Loron A, Schroeder MA, Rodriguez M, Warrington AE, Burns TC. An Injury-like Signature of the Extracellular Glioma Metabolome. Cancers (Basel) 2024; 16:2705. [PMID: 39123433 PMCID: PMC11311774 DOI: 10.3390/cancers16152705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Aberrant metabolism is a hallmark of malignancies including gliomas. Intracranial microdialysis enables the longitudinal collection of extracellular metabolites within CNS tissues including gliomas and can be leveraged to evaluate changes in the CNS microenvironment over a period of days. However, delayed metabolic impacts of CNS injury from catheter placement could represent an important covariate for interpreting the pharmacodynamic impacts of candidate therapies. Intracranial microdialysis was performed in patient-derived glioma xenografts of glioma before and 72 h after systemic treatment with either temozolomide (TMZ) or a vehicle. Microdialysate from GBM164, an IDH-mutant glioma patient-derived xenograft, revealed a distinct metabolic signature relative to the brain that recapitulated the metabolic features observed in human glioma microdialysate. Unexpectedly, catheter insertion into the brains of non-tumor-bearing animals triggered metabolic changes that were significantly enriched for the extracellular metabolome of glioma itself. TMZ administration attenuated this resemblance. The human glioma microdialysate was significantly enriched for both the PDX versus brain signature in mice and the induced metabolome of catheter placement within the murine control brain. These data illustrate the feasibility of microdialysis to identify and monitor the extracellular metabolome of diseased versus relatively normal brains while highlighting the similarity between the extracellular metabolome of human gliomas and that of CNS injury.
Collapse
Affiliation(s)
- Yooree Ha
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
| | - Karishma Rajani
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
| | - Cecile Riviere-Cazaux
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
| | - Masum Rahman
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
| | - Ian E. Olson
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60208, USA
| | - Ali Gharibi Loron
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
| | - Mark A. Schroeder
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Arthur E. Warrington
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA; (Y.H.); (K.R.); (C.R.-C.); (M.R.); (I.E.O.); (A.G.L.); (M.A.S.); (A.E.W.)
| |
Collapse
|
2
|
Opitz P, Fobker M, Fabian J, Hempel G. Development and validation of a bioanalytical method for the quantification of methotrexate from serum and capillary blood using volumetric absorptive microsampling (VAMS) and on-line solid phase extraction (SPE) LC-MS. J Chromatogr A 2024; 1715:464610. [PMID: 38157584 DOI: 10.1016/j.chroma.2023.464610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
High-dose methotrexate is part of the polychemotherapy protocols for the treatment of Acute lymphoblastic leukaemia (ALL) with therapeutic drug monitoring (TDM) to adjust leucovorin rescue. An immunoassay is commonly used to analyse serum samples collected via venous blood sampling. However, immunoassays cannot distinguish between the parent drug and its metabolites. Besides, the blood volume required by venous blood sampling is high. Therefore, the aim of this project was to develop a fast, simple, reliable and cost-efficient micro sampling bioanalytical method using capillary blood to minimize the harm of children and to analyse both methotrexate and its metabolites. To achieve this aim, a LC-MS method with on-line solid phase extraction (SPE) for the simultaneous detection of methotrexate and its metabolites from capillary blood using volumetric-absorptive-microsampling (VAMS) technology was developed and fully validated. Besides, the method was also validated and modified for serum samples to compare the results with the immunoassay. A single-quadrupole MS detector was used for detection. Through the use of on-line SPE technology, a lower limit of quantitation of 0.03 µM for MTX and 7-OH-MTX and of 0.05 µM for DAMPA from a 10 μL capillary blood sample was achieved. The accuracy is between 90.0 and 104% and the precision between 4.7 and 12% for methotrexate and its metabolites, respectively. Because of the cross reactivity of the immunoassay a cross-validation was not successful. Besides, a correlation factor of 0.46 for MTX between plasma and whole-blood was found. A fast, simple, reliable and cost-efficient extraction and analysis LC-MS method could be developed and validated, which is applicable in ambulatory and clinical care.
Collapse
Affiliation(s)
- Patrick Opitz
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany
| | - Manfred Fobker
- University Hospital Münster - Central facility laboratory, Muenster, Germany
| | - Jörg Fabian
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany.
| |
Collapse
|
3
|
Riviere-Cazaux C, Rajani K, Rahman M, Oh J, Brown DA, White JF, Himes BT, Jusue-Torres I, Rodriguez M, Warrington AE, Kizilbash SH, Elmquist WF, Burns TC. Methodological and analytical considerations for intra-operative microdialysis. Fluids Barriers CNS 2023; 20:94. [PMID: 38115038 PMCID: PMC10729367 DOI: 10.1186/s12987-023-00497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Microdialysis is a technique that can be utilized to sample the interstitial fluid of the central nervous system (CNS), including in primary malignant brain tumors known as gliomas. Gliomas are mainly accessible at the time of surgery, but have rarely been analyzed via interstitial fluid collected via microdialysis. To that end, we obtained an investigational device exemption for high molecular weight catheters (HMW, 100 kDa) and a variable flow rate pump to perform microdialysis at flow rates amenable to an intra-operative setting. We herein report on the lessons and insights obtained during our intra-operative HMW microdialysis trial, both in regard to methodological and analytical considerations. METHODS Intra-operative HMW microdialysis was performed during 15 clinically indicated glioma resections in fourteen patients, across three radiographically diverse regions in each patient. Microdialysates were analyzed via targeted and untargeted metabolomics via ultra-performance liquid chromatography tandem mass spectrometry. RESULTS Use of albumin and lactate-containing perfusates impacted subsets of metabolites evaluated via global metabolomics. Additionally, focal delivery of lactate via a lactate-containing perfusate, induced local metabolic changes, suggesting the potential for intra-operative pharmacodynamic studies via reverse microdialysis of candidate drugs. Multiple peri-operatively administered drugs, including levetiracetam, cefazolin, caffeine, mannitol and acetaminophen, could be detected from one microdialysate aliquot representing 10 min worth of intra-operative sampling. Moreover, clinical, radiographic, and methodological considerations for performing intra-operative microdialysis are discussed. CONCLUSIONS Intra-operative HMW microdialysis can feasibly be utilized to sample the live human CNS microenvironment, including both metabolites and drugs, within one surgery. Certain variables, such as perfusate type, must be considered during and after analysis. Trial registration NCT04047264.
Collapse
Affiliation(s)
- Cecile Riviere-Cazaux
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Karishma Rajani
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Masum Rahman
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Juhee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Desmond A Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jaclyn F White
- Department of Neurological Surgery, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ignacio Jusue-Torres
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | | | - Arthur E Warrington
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Nduom EK, Glod J, Brown DA, Fagan M, Dalmage M, Heiss J, Steinberg SM, Peer C, Figg WD, Jackson S. Clinical protocol: Feasibility of evaluating abemaciclib neuropharmacokinetics of diffuse midline glioma using intratumoral microdialysis. PLoS One 2023; 18:e0291068. [PMID: 37682953 PMCID: PMC10490936 DOI: 10.1371/journal.pone.0291068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Diffuse midline gliomas (DMG) are the most aggressive brain tumors of childhood and young adults, with documented 2-year survival rates <10%. Treatment failure is due in part to the function of the BBB. Intratumoral microdialysis sampling is an effective tool to determine brain entry of varied agents and could help to provide a better understanding of the relationship of drug permeability to DMG treatment responsivity. This is a non-randomized, single-center, phase 1 clinical trial. Up to seven young adult (18-39 years) patients with recurrent high-grade or diffuse midline glioma will be enrolled with the goal of 5 patients completing the trial over an anticipated 24 months. All patients will take abemaciclib pre-operatively for 4.5 days at twice daily dosing. Patients will undergo resection or biopsy, placement of a microdialysis catheter, and 48 hours of dialysate sampling coupled with timed plasma collections. If intratumoral tumor or brain dialysate sampling concentrations are >10nmol/L, or tumor tissue studies demonstrate CDK inhibition, then restart of abemaciclib therapy along with temozolomide will be administered for maintenance therapy and discontinued with evidence of radiologic or clinical disease progression. The poor survival associated with diffuse midline gliomas underscore the need for improved means to evaluate efficacy of drug delivery to tumor and peritumoral tissue. The findings of this novel study, will provide real-time measurements of BBB function which have the potential to influence future prognostic and diagnostic decisions in such a lethal disease with limited treatment options. Trial registration: Clinicaltrials.gov, NCT05413304. Registered June 10, 2022, Abemaciclib Neuropharmacokinetics of Diffuse Midline Glioma Using Intratumoral Microdialysis.
Collapse
Affiliation(s)
- Edjah K. Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| | - John Glod
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Desmond A. Brown
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Margaret Fagan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mahalia Dalmage
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Cody Peer
- Clinical Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - William D. Figg
- Clinical Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Sadhana Jackson
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
5
|
Riviere-Cazaux C, Carlstrom LP, Rajani K, Munoz-Casabella A, Rahman M, Gharibi-Loron A, Brown DA, Miller KJ, White JJ, Himes BT, Jusue-Torres I, Ikram S, Ransom SC, Hirte R, Oh JH, Elmquist WF, Sarkaria JN, Vaubel RA, Rodriguez M, Warrington AE, Kizilbash SH, Burns TC. Blood-brain barrier disruption defines the extracellular metabolome of live human high-grade gliomas. Commun Biol 2023; 6:653. [PMID: 37340056 PMCID: PMC10281947 DOI: 10.1038/s42003-023-05035-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
The extracellular microenvironment modulates glioma behaviour. It remains unknown if blood-brain barrier disruption merely reflects or functionally supports glioma aggressiveness. We utilised intra-operative microdialysis to sample the extracellular metabolome of radiographically diverse regions of gliomas and evaluated the global extracellular metabolome via ultra-performance liquid chromatography tandem mass spectrometry. Among 162 named metabolites, guanidinoacetate (GAA) was 126.32x higher in enhancing tumour than in adjacent brain. 48 additional metabolites were 2.05-10.18x more abundant in enhancing tumour than brain. With exception of GAA, and 2-hydroxyglutarate in IDH-mutant gliomas, differences between non-enhancing tumour and brain microdialysate were modest and less consistent. The enhancing, but not the non-enhancing glioma metabolome, was significantly enriched for plasma-associated metabolites largely comprising amino acids and carnitines. Our findings suggest that metabolite diffusion through a disrupted blood-brain barrier may largely define the enhancing extracellular glioma metabolome. Future studies will determine how the altered extracellular metabolome impacts glioma behaviour.
Collapse
Affiliation(s)
| | | | - Karishma Rajani
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Masum Rahman
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Desmond A Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kai J Miller
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jaclyn J White
- Department of Neurological Surgery, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Benjamin T Himes
- Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | | - Samar Ikram
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Seth C Ransom
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Renee Hirte
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Arthur E Warrington
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Perkins RS, Davis A, Campagne O, Owens TS, Stewart CF. CNS penetration of methotrexate and its metabolite 7-hydroxymethotrexate in mice bearing orthotopic Group 3 medulloblastoma tumors and model-based simulations for children. Drug Metab Pharmacokinet 2023; 48:100471. [PMID: 36669926 DOI: 10.1016/j.dmpk.2022.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023]
Abstract
The brain penetration of methotrexate (MTX) and its metabolite 7-hydroxymethotrexate (7OHMTX) was characterized in non-tumor bearing mice and mice bearing orthotopic Group 3 medulloblastoma. Plasma pharmacokinetic studies and cerebral and ventricular microdialysis studies were performed in animals dosed with 200 or 1000 mg/kg MTX by IV bolus. Plasma, brain/tumor extracellular fluid (ECF) and lateral ventricle cerebrospinal fluid (CSF) MTX and 7OHMTX concentration-time data were analyzed by validated LC-MS/MS methods and modeled using a population-based pharmacokinetic approach and a hybrid physiologically-based model structure for the brain compartments. Brain penetration was similar for MTX and 7OHMTX and was not significantly different between non-tumor and tumor bearing mice. Overall, mean (±SD) model-derived unbound plasma to ECF partition coefficient Kp,uu were 0.17 (0.09) and 0.17 (0.12) for MTX and 7OHMTX, respectively. Unbound plasma to CSF Kp,uu were 0.11 (0.06) and 0.18 (0.09) for MTX and 7OHMTX, respectively. The plasma and brain model were scaled to children using allometric principles and pediatric physiological parameters. Model-based simulations were adequately overlaid with digitized plasma and CSF lumbar data collected in children receiving different MTX systemic infusions. This model can be used to further explore and optimize methotrexate dosing regimens in children with brain tumors.
Collapse
Affiliation(s)
- Rachel S Perkins
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Abigail Davis
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Olivia Campagne
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Thandranese S Owens
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Clinton F Stewart
- Department of Pharmacy and Pharmaceutical Sciences, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
7
|
Bisht P, Kumar VU, Pandey R, Velayutham R, Kumar N. Role of PARP Inhibitors in Glioblastoma and Perceiving Challenges as Well as Strategies for Successful Clinical Development. Front Pharmacol 2022; 13:939570. [PMID: 35873570 PMCID: PMC9297740 DOI: 10.3389/fphar.2022.939570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiform is the most aggressive primary type of brain tumor, representing 54% of all gliomas. The average life span for glioblastoma multiform is around 14-15 months instead of treatment. The current treatment for glioblastoma multiform includes surgical removal of the tumor followed by radiation therapy and temozolomide chemotherapy for 6.5 months, followed by another 6 months of maintenance therapy with temozolomide chemotherapy (5 days every month). However, resistance to temozolomide is frequently one of the limiting factors in effective treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have recently been investigated as sensitizing drugs to enhance temozolomide potency. However, clinical use of PARP inhibitors in glioblastoma multiform is difficult due to a number of factors such as limited blood-brain barrier penetration of PARP inhibitors, inducing resistance due to frequent use of PARP inhibitors, and overlapping hematologic toxicities of PARP inhibitors when co-administered with glioblastoma multiform standard treatment (radiation therapy and temozolomide). This review elucidates the role of PARP inhibitors in temozolomide resistance, multiple factors that make development of these PARP inhibitor drugs challenging, and the strategies such as the development of targeted drug therapies and combination therapy to combat the resistance of PARP inhibitors that can be adopted to overcome these challenges.
Collapse
Affiliation(s)
- Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - V. Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| |
Collapse
|
8
|
Oesterreicher Z, Eberl S, Wulkersdorfer B, Matzneller P, Eder C, van Duijn E, Vaes WHJ, Reiter B, Stimpfl T, Jäger W, Nussbaumer-Proell A, Marhofer D, Marhofer P, Langer O, Zeitlinger M. Microdosing as a Potential Tool to Enhance Clinical Development of Novel Antibiotics: A Tissue and Plasma PK Feasibility Study with Ciprofloxacin. Clin Pharmacokinet 2022; 61:697-707. [PMID: 34997559 PMCID: PMC9095552 DOI: 10.1007/s40262-021-01091-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE In microdose studies, drug pharmacokinetics is measured in humans after administration of subtherapeutic doses. While previous microdose studies focused primarily on plasma pharmacokinetics, we set out to evaluate the feasibility of microdosing for a pharmacokinetic assessment in subcutaneous tissue and epithelial lining fluid. METHODS Healthy subjects received a single intravenous bolus injection of a microdose of [14C]ciprofloxacin (1.1 µg, 7 kBq) with (cohort A, n = 9) or without (cohort B, n = 9) a prior intravenous infusion of a therapeutic dose of unlabeled ciprofloxacin (400 mg). Microdialysis and bronchoalveolar lavage were applied for determination of subcutaneous and intrapulmonary drug concentrations. Microdose [14C]ciprofloxacin was quantified by accelerator mass spectrometry and therapeutic-dose ciprofloxacin by liquid chromatography-tandem mass spectrometry. RESULTS The pharmacokinetics of therapeutic-dose ciprofloxacin (cohort A) in plasma, subcutaneous tissue, and epithelial lining fluid was in accordance with previous data. In plasma and subcutaneous tissue, the dose-adjusted area under the concentration-time curve of microdose ciprofloxacin was similar in cohorts A and B and within an 0.8-fold to 1.1-fold range of the area under the concentration-time curve of therapeutic-dose ciprofloxacin. Penetration of microdose ciprofloxacin into subcutaneous tissue was similar in cohorts A and B and comparable to that of therapeutic-dose ciprofloxacin with subcutaneous tissue-to-plasma area under the concentration-time curve ratios of 0.44, 0.44, and 0.38, respectively. Penetration of microdose ciprofloxacin into epithelial lining fluid was highly variable and failed to predict the epithelial lining fluid penetration of therapeutic-dose ciprofloxacin. CONCLUSIONS Our study confirms the feasibility of microdosing for pharmacokinetic measurements in plasma and subcutaneous tissue. Microdosing combined with microdialysis is a potentially useful tool in clinical antimicrobial drug development, but its applicability for the assessment of pulmonary pharmacokinetics with bronchoalveolar lavage requires further studies. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03177720 (registered 6 June, 2017).
Collapse
Affiliation(s)
- Zoe Oesterreicher
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Internal Medicine 2, Gastroenterology and Hepatology and Rheumatology, University Hospital of St. Pölten, St. Pölten, Austria
| | - Sabine Eberl
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Beatrix Wulkersdorfer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Peter Matzneller
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Claudia Eder
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | - Birgit Reiter
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Alina Nussbaumer-Proell
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Daniela Marhofer
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Marhofer
- Department of Anaesthesia, General Intensive Care and Pain Therapy, Medical University of Vienna, Vienna, Austria
- Orthopaedic Hospital Speising, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
9
|
In Vitro-In Vivo Correlation of Blood-Brain Barrier Permeability of Drugs: A Feasibility Study Towards Development of Prediction Methods for Brain Drug Concentration in Humans. Pharm Res 2022; 39:1575-1586. [PMID: 35288803 DOI: 10.1007/s11095-022-03189-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE In vitro human blood-brain barrier (BBB) models in combination with central nervous system-physiologically based pharmacokinetic (CNS-PBPK) modeling, hereafter referred to as the "BBB/PBPK" method, are expected to contribute to prediction of brain drug concentration profiles in humans. As part of our ongoing effort to develop a BBB/PBPK method, we tried to clarify the relationship of in vivo BBB permeability data to those in vitro obtained from a human immortalized cell-based tri-culture BBB model (hiBBB), which we have recently created. METHODS The hiBBB models were developed and functionally characterized as previously described. The in vitro BBB permeabilities (Pe, × 10-6 cm/s) of seventeen compounds were determined by permeability assays, and in vivo BBB permeabilities (QECF) for eight drugs were estimated by CNS-PBPK modeling. The correlation of the Pe values with the QECF values was analyzed by linear regression analysis. RESULTS The hiBBB models showed intercellular barrier properties and several BBB transporter functions, which were enough to provide a wide dynamic range of Pe values from 5.7 ± 0.7 (rhodamine 123) to 2580.4 ± 781.9 (rivastigmine). Furthermore, the in vitro Pe values of the eight drugs showed a good correlation (R2 = 0.96) with their in vivo QECF values estimated from human clinical data. CONCLUSION We show that in vitro human BBB models provide clinically relevant BBB permeability that can be used as input for CNS-PBPK modeling. Therefore, our findings will encourage the development of a BBB/PBPK method as a promising approach for predicting brain drug concentration profiles in humans.
Collapse
|
10
|
The Extension of the LeiCNS-PK3.0 Model in Combination with the "Handshake" Approach to Understand Brain Tumor Pathophysiology. Pharm Res 2022; 39:1343-1361. [PMID: 35258766 PMCID: PMC9246813 DOI: 10.1007/s11095-021-03154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
Micrometastatic brain tumor cells, which cause recurrence of malignant brain tumors, are often protected by the intact blood–brain barrier (BBB). Therefore, it is essential to deliver effective drugs across not only the disrupted blood-tumor barrier (BTB) but also the intact BBB to effectively treat malignant brain tumors. Our aim is to predict pharmacokinetic (PK) profiles in brain tumor regions with the disrupted BTB and the intact BBB to support the successful drug development for malignant brain tumors. LeiCNS-PK3.0, a comprehensive central nervous system (CNS) physiologically based pharmacokinetic (PBPK) model, was extended to incorporate brain tumor compartments. Most pathophysiological parameters of brain tumors were obtained from literature and two missing parameters of the BTB, paracellular pore size and expression level of active transporters, were estimated by fitting existing data, like a “handshake”. Simultaneous predictions were made for PK profiles in extracellular fluids (ECF) of brain tumors and normal-appearing brain and validated on existing data for six small molecule anticancer drugs. The LeiCNS-tumor model predicted ECF PK profiles in brain tumor as well as normal-appearing brain in rat brain tumor models and high-grade glioma patients within twofold error for most data points, in combination with estimated paracellular pore size of the BTB and active efflux clearance at the BTB. Our model demonstrated a potential to predict PK profiles of small molecule drugs in brain tumors, for which quantitative information on pathophysiological alterations is available, and contribute to the efficient and successful drug development for malignant brain tumors.
Collapse
|
11
|
Ye X, Schreck KC, Ozer BH, Grossman SA. High-grade glioma therapy: adding flexibility in trial design to improve patient outcomes. Expert Rev Anticancer Ther 2022; 22:275-287. [PMID: 35130447 DOI: 10.1080/14737140.2022.2038138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Outcomes for patients with high grade gliomas have changed little over the past thirty years. This realization prompted renewed efforts to increase flexibility in the design and conduct of clinical brain tumor trials. AREAS COVERED This manuscript reviews the development of clinical trial methods, challenges and considerations of flexible clinical trial designs, approaches to improve identification and testing of active agents for high grade gliomas, and evaluation of their delivery to the central nervous system. EXPERT OPINION Flexibility can be introduced in clinical trials in several ways. Flexible designs tout smaller sample sizes, adaptive modifications, fewer control arms, and inclusion of multiple arms in one study. Unfortunately, modifications in study designs cannot address two challenges that are largely responsible for the lack of progress in treating high grade gliomas: 1) the identification of active pharmaceutical agents and 2) the delivery of these agents to brain tumor tissue in therapeutic concentrations. To improve the outcomes of patients with high grade gliomas efforts must be focused on the pre-clinical screening of drugs for activity, the ability of these agents to achieve therapeutic concentrations in non-enhancing tumors, and a willingness to introduce novel compounds in minimally pre-treated patient populations.
Collapse
Affiliation(s)
- Xiaobu Ye
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore MD, USA
| | - Karisa C Schreck
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore MD, USA
| | - Byram H Ozer
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore MD, USA
| | - Stuart A Grossman
- The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore MD, USA
| |
Collapse
|
12
|
A scoping review of pediatric microdialysis: A missed opportunity for microdialysis in the pediatric neuro-oncology setting. Neurooncol Adv 2022; 4:vdac171. [DOI: 10.1093/noajnl/vdac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Brain microdialysis is a minimally invasive technique for monitoring analytes, metabolites, drugs, neurotransmitters, and/or cytokines. Studies to date have centered on adults with traumatic brain injury, with a limited number of pediatric studies performed. This scoping review details past use of brain microdialysis in children and identifies potential use for future neuro-oncology trials.
Methods
In December 2020, Cochrane Library: CENTRAL, Embase, PubMed, Scopus, and Web of Science: Core Collection were searched. Two reviewers screened all articles by title and abstract review and then full study texts, using microdialysis in patients less than 18 yo.
Results
Of the 1171 articles screened, 49 were included. The 49 studies included 472 pediatric patients (age range 0–17 years old), in the brain (21), abdominal (16), and musculoskeletal (12) regions. Intracerebral microdialysis was performed in 64 collective patients, with a median age of 11 years old, and predominance in metabolic evaluations.
Conclusion
Historically, pediatric microdialysis was safely performed within the brain in varied neurologic conditions, except neuro-oncology. Adult brain tumor studies using intratumoral/peritumoral microdialysis sampling can inform future pediatric studies to advance diagnosis and treatment options for such aggressive tumors.
Collapse
|
13
|
Ambady P, Doolittle ND, Fox CP. Relapsed and refractory primary CNS lymphoma: treatment approaches in routine practice. ANNALS OF LYMPHOMA 2021; 5:23. [PMID: 35253010 PMCID: PMC7612457 DOI: 10.21037/aol-21-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite recent therapeutic progress and improved survival for many patients with primary central nervous system lymphoma (PCNSL), up to 50% of patients will experience refractory or relapsed disease following first-line treatment with high dose methotrexate (HD-MTX) based regimens. The majority of such events occur within 2 years of diagnosis although, unlike their systemic counterpart, the risk of PCNSL relapse remains, even for patients in radiologic complete response at 10 years following diagnosis. Currently, there are no approved therapies, and no widely accepted 'standard-of-care' approaches for the treatment of refractory or recurrent primary central nervous system lymphoma (rrPCNSL). Re-treatment with HD-MTX based regimens, use of non-cross resistant chemotherapy regimens, high-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT), and brain irradiation all remain important therapeutic approaches for rrPCNSL. However, the survival outcomes for patients with rrPCNSL remain extremely poor and the vast majority of patients will die of their disease. Increasingly, novel treatment approaches are being investigated in early phase clinical studies. Importantly, such therapies need to be evaluated in the context of both refractory and relapsed disease; in older patients and those with co-morbid conditions; and those with neurocognitive dysfunction. A deeper understanding of the molecular genetic mechanisms underpinning rrPCNSL and its unique tumor microenvironment is urgently needed to inform biologically rational and effective therapies. rrPCNSL remains a clear unmet clinical need and a high priority area for clinical research that will require national and international collaborative studies with embedded translational science in order to improve outcomes for patients.
Collapse
Affiliation(s)
- Prakash Ambady
- Department of Neurology, Neuro-Oncology and Blood Brain Barrier Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Nancy D. Doolittle
- Department of Neurology, Neuro-Oncology and Blood Brain Barrier Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Christopher P. Fox
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Vazi EPG, Holanda F, Santos NA, Cardoso CV, Martins MFM, Bondan EF. Short-term systemic methotrexate administration in rats induces astrogliosis and microgliosis. Res Vet Sci 2021; 138:39-48. [PMID: 34091228 DOI: 10.1016/j.rvsc.2021.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Methotrexate (MTX), an antifolate drug, is widely used in chemotherapeutic protocols for metastatic and primary brain tumors and some autoimmune diseases. Its efficacy for brain tumors is limited by the high incidence of central nervous system (CNS) complications. This investigation aimed to observe the morphological effects, including astroglial and microglial responses, following systemic short-term MTX administration in adult rats. Male Wistar rats received 5 or 10 mg/kg/day of MTX by intraperitoneal route for 4 consecutive days (respectively, MTX5 and MTX10 groups) or the same volume of 0.9% saline solution (control group). On the 5th day, brain samples were collected for hematoxylin-eosin and luxol fast blue staining techniques, as well as for immunohistochemical staining for glial fibrillary acidic protein (GFAP) expression in astrocytes and Iba1 (ionized calcium binding adaptor molecule 1) for microglia in the frontal cortex, hippocampus, hypothalamus and molecular/granular layers of the cerebellum. Morphometric analyses were performed using Image Pro-Plus software. Brain levels of the proinflammatory cytokines TNF-α and IL-1β were determined by ELISA. No signs of neuronal loss or demyelination were observed in all groups. Increased GFAP and Iba1 expression was found in all areas from the MTX groups, although it was slightly higher in the MTX10 group compared to the MTX5. Both TNF-α and IL-1β levels were decreased in the MTX5 group compared to controls. In the MTX10 group, TNF-α decreased, although IL-1β was increased relative to controls. MTX administration induced microglial reaction and astrogliosis in several CNS areas. In the MTX5 group, it apparently occurred in the presence of decreased proinflammatory cytokines.
Collapse
Affiliation(s)
- E P G Vazi
- Graduate Program in Environmental and Experimental Pathology, University Paulista, São Paulo, SP, Brazil
| | - F Holanda
- Department of Veterinary Medicine, University Cruzeiro do Sul, São Paulo, SP, Brazil
| | - N A Santos
- Graduate Program in Environmental and Experimental Pathology, University Paulista, São Paulo, SP, Brazil
| | - C V Cardoso
- Graduate Program in Environmental and Experimental Pathology, University Paulista, São Paulo, SP, Brazil
| | - M F M Martins
- Department of Veterinary Medicine, University Cruzeiro do Sul, São Paulo, SP, Brazil
| | - E F Bondan
- Graduate Program in Environmental and Experimental Pathology, University Paulista, São Paulo, SP, Brazil; Department of Veterinary Medicine, University Cruzeiro do Sul, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Grossman SA, Romo CG, Rudek MA, Supko J, Fisher J, Nabors LB, Wen PY, Peereboom DM, Ellingson BM, Elmquist W, Barker FG, Kamson D, Sarkaria JN, Timmer W, Bindra RS, Ye X. Baseline requirements for novel agents being considered for phase II/III brain cancer efficacy trials: conclusions from the Adult Brain Tumor Consortium's first workshop on CNS drug delivery. Neuro Oncol 2021; 22:1422-1424. [PMID: 32506123 DOI: 10.1093/neuonc/noaa142] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | - Jeffrey Supko
- Massachusetts General Hospital, Boston, Massachusetts
| | - Joy Fisher
- Johns Hopkins University, Baltimore, Maryland
| | - L Burt Nabors
- University of Alabama Birmingham, Birmingham, Alabama
| | | | | | | | | | - Fred G Barker
- Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | - Xiaobu Ye
- Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
16
|
Vogelbaum MA, Krivosheya D, Borghei-Razavi H, Sanai N, Weller M, Wick W, Soffietti R, Reardon DA, Aghi MK, Galanis E, Wen PY, van den Bent M, Chang S. Phase 0 and window of opportunity clinical trial design in neuro-oncology: a RANO review. Neuro Oncol 2021; 22:1568-1579. [PMID: 32598442 DOI: 10.1093/neuonc/noaa149] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is a devastating disease with poor prognosis. Few effective chemotherapeutics are currently available, and much effort has been expended to identify new drugs capable of slowing tumor progression. The phase 0 trial design was developed to facilitate early identification of promising agents for cancer that should undergo accelerated approval. This design features an early in-human study that enrolls a small number of patients who receive subtherapeutic doses of medication with the goals of describing pharmacokinetics through drug blood level measurements and determining intratumoral concentrations of the investigational compound as well as pharmacodynamics by studying the biochemical and physiological effects of drugs. In neuro-oncology, however, the presence of the blood-brain barrier and difficulty in obtaining brain tumor tissue warrant a separate set of considerations. In this paper, we critically reviewed the protocols used in all brain tumor related in-human phase 0 and phase 0-like ("window of opportunity") studies between 1993 and 2018, as well as ongoing clinical trials, and identified major challenges in trial design as applied to central nervous system tumors that include surgical specimen collection and storage, brain tumor drug level analysis, and confirmation of drug action. We therefore propose that phase 0 trials in neuro-oncology should include (i) only patients in whom a resection of the tumor is planned, (ii) use of clinical doses of an investigational agent, (iii) tissue sampling from enhancing and non-enhancing portions of the tumor, and (iv) assessment of drug-specific target effects. Standardization of clinical protocols for phase 0/window of opportunity studies can help accelerate the development of effective treatments for glioblastoma.
Collapse
Affiliation(s)
| | - Daria Krivosheya
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wolfgang Wick
- Department of Neurology Heidelberg University Hospital and German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science, Turin, Italy
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | | | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam
| | - Susan Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Abstract
Cancer treatment remains a challenge due to a high level of intra- and intertumoral heterogeneity and the rapid development of chemoresistance. In the brain, this is further hampered by the blood-brain barrier that reduces passive diffusion of drugs to a minimum. Tumors grow invasively and form new blood vessels, also in brain tissue where remodeling of pre-existing vasculature is substantial. The cancer-associated vessels in the brain are considered leaky and thus could facilitate the transport of chemotherapeutic agents. Yet, brain tumors are extremely difficult to treat, and, in this review, we will address how different aspects of the vasculature in brain tumors contribute to this.
Collapse
Affiliation(s)
- Casper Hempel
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| | - Kasper B Johnsen
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Serhii Kostrikov
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thomas L Andresen
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
18
|
Longuespée R, Theile D, Fresnais M, Burhenne J, Weiss J, Haefeli WE. Approaching sites of action of drugs in clinical pharmacology: New analytical options and their challenges. Br J Clin Pharmacol 2020; 87:858-874. [PMID: 32881012 DOI: 10.1111/bcp.14543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical pharmacology is an important discipline for drug development aiming to define pharmacokinetics (PK), pharmacodynamics (PD) and optimum exposure to drugs, i.e. the concentration-response relationship and its modulators. For this purpose, information on drug concentrations at the anatomical, cellular and molecular sites of action is particularly valuable. In pharmacological assays, the limited accessibility of target cells in readily available samples (i.e. blood) often hampers mass spectrometry-based monitoring of the absolute quantity of a compound and the determination of its molecular action at the cellular level. Recently, new sample collection methods have been developed for the specific capture of rare circulating cells, especially for the diagnosis of circulating tumour cells. In parallel, new advances and developments in mass spectrometric instrumentation now allow analyses to be scaled down to the cellular level. Together, these developments may permit the monitoring of minute drug quantities and show their effect at the cellular level. In turn, such PK/PD associations on a cellular level would not only enrich our pharmacological knowledge of a given compound but also expand the basis for PK/PD simulations. In this review, we describe novel concepts supporting clinical pharmacology at the anatomical, cellular and molecular sites of action, and highlight the new challenges in mass spectrometry-based monitoring. Moreover, we present methods to tackle these challenges and define future needs.
Collapse
Affiliation(s)
- Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Margaux Fresnais
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK)-German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Walter E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Portnow J, Badie B, Suzette Blanchard M, Kilpatrick J, Tirughana R, Metz M, Mi S, Tran V, Ressler J, D'Apuzzo M, Aboody KS, Synold TW. Feasibility of intracerebrally administering multiple doses of genetically modified neural stem cells to locally produce chemotherapy in glioma patients. Cancer Gene Ther 2020; 28:294-306. [PMID: 32895489 PMCID: PMC8843788 DOI: 10.1038/s41417-020-00219-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are tumor tropic and can be genetically modified to produce anti-cancer therapies locally in the brain. In a prior first-in-human study we demonstrated that a single dose of intracerebrally administered allogeneic NSCs, which were retrovirally transduced to express cytosine deaminase (CD), tracked to glioma sites and converted oral 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU). The next step in the clinical development of this NSC-based anti-cancer strategy was to assess the feasibility of administering multiple intracerebral doses of CD-expressing NSCs (CD-NSCs) in patients with recurrent high grade gliomas. CD-NSCs were given every 2 weeks using an indwelling brain catheter, followed each time by a 7-day course of oral 5-FC (and leucovorin in the final patient cohort). Fifteen evaluable patients received a median of 4 (range 2–10) intracerebral CD-NSC doses; doses were escalated from 50 x 106 to 150 x 106 CD-NSCs. Neuropharmacokinetic data confirmed that CD-NSCs continuously produced 5-FU in the brain during the course of 5-FC. There were no clinical signs of immunogenicity, and only three patients developed anti-NSC antibodies. Our results suggest intracerebral administration of serial doses of CD-NSCs is safe and feasible and identified a recommended dose for phase II testing of 150 x 106 CD-NSCs.
Collapse
Affiliation(s)
- Jana Portnow
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - Behnam Badie
- Department of Surgery, Division of Neurosurgery, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - M Suzette Blanchard
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Julie Kilpatrick
- Department of Clinical Research, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Revathiswari Tirughana
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.,Office of IND Development and Regulatory Affairs, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Marianne Metz
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Shu Mi
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Vivi Tran
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Julie Ressler
- Department of Diagnostic Radiology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Karen S Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| |
Collapse
|
20
|
Pierce CF, Kwasnicki A, Lakka SS, Engelhard HH. Cerebral Microdialysis as a Tool for Assessing the Delivery of Chemotherapy in Brain Tumor Patients. World Neurosurg 2020; 145:187-196. [PMID: 32890850 DOI: 10.1016/j.wneu.2020.08.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/27/2022]
Abstract
The development of curative treatment for glioblastoma has been extremely challenging. Chemotherapeutic agents that have seemed promising have failed in clinical trials. Drugs that can successfully target cancer cells within the brain must first traverse the brain interstitial fluid. Cerebral microdialysis (CMD) is an invasive technique in which interstitial fluid can be directly sampled. CMD has primarily been used clinically in the setting of head trauma and subarachnoid hemorrhage. Our goal was to review the techniques, principles, and new data pertaining to CMD to highlight its use in neuro-oncology. We conducted a literature search using the PubMed database and selected studies in which the investigators had used CMD in either animal brain tumor models or clinical trials. The references were reviewed for additional information. Studies of CMD have shown its importance as a neurosurgical technique. CMD allows for the collection of pharmacokinetic data on drug penetrance across the blood-brain barrier and metabolic data to characterize the response to chemotherapy. Although no complications have been reported, the current CMD technique (as with any procedure) has risks and limitations, which we have described in the present report. Animal CMD experiments have been used to exclude central nervous system drug candidates from progressing to clinical trials. At present, patients undergoing CMD have been monitored in the intensive care unit, owing to the requisite tethering to the apparatus. This can be expected to change soon because of advances in microminiaturization. CMD is an extremely valuable, yet underused, technique. Future CMD applications will have central importance in assessing drug delivery to tumor cells in vivo, allowing a pathway to successful therapy for malignant brain tumors.
Collapse
Affiliation(s)
- Charles F Pierce
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amanda Kwasnicki
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sajani S Lakka
- Department of Medicine, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, The University of Illinois at Chicago, Chicago, Illinois, USA; Department of Bioengineering, The University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
21
|
Wulkersdorfer B, Bauer M, Karch R, Stefanits H, Philippe C, Weber M, Czech T, Menet MC, Declèves X, Hainfellner JA, Preusser M, Hacker M, Zeitlinger M, Müller M, Langer O. Assessment of brain delivery of a model ABCB1/ABCG2 substrate in patients with non-contrast-enhancing brain tumors with positron emission tomography. EJNMMI Res 2019; 9:110. [PMID: 31832814 PMCID: PMC6908538 DOI: 10.1186/s13550-019-0581-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) are two efflux transporters expressed at the blood-brain barrier which effectively restrict the brain distribution of the majority of currently known anticancer drugs. High-grade brain tumors often possess a disrupted blood-brain tumor barrier (BBTB) leading to enhanced accumulation of magnetic resonance imaging contrast agents, and possibly anticancer drugs, as compared to normal brain. In contrast to high-grade brain tumors, considerably less information is available with respect to BBTB integrity in lower grade brain tumors. MATERIALS AND METHODS We performed positron emission tomography imaging with the radiolabeled ABCB1 inhibitor [11C]tariquidar, a prototypical ABCB1/ABCG2 substrate, in seven patients with non-contrast -enhancing brain tumors (WHO grades I-III). In addition, ABCB1 and ABCG2 levels were determined in surgically resected tumor tissue of four patients using quantitative targeted absolute proteomics. RESULTS Brain distribution of [11C]tariquidar was found to be very low across the whole brain and not significantly different between tumor and tumor-free brain tissue. Only one patient showed a small area of enhanced [11C]tariquidar uptake within the brain tumor. ABCG2/ABCB1 ratios in surgically resected tumor tissue (1.4 ± 0.2) were comparable to previously reported ABCG2/ABCB1 ratios in isolated human micro-vessels (1.3), which suggested that no overexpression of ABCB1 or ABCG2 occurred in the investigated tumors. CONCLUSIONS Our data suggest that the investigated brain tumors had an intact BBTB, which is impermeable to anticancer drugs, which are dual ABCB1/ABCG2 substrates. Therefore, effective drugs for antitumor treatment should have high passive permeability and lack ABCB1/ABCG2 substrate affinity. TRIAL REGISTRATION European Union Drug Regulating Authorities Clinical Trials Database (EUDRACT), 2011-004189-13. Registered on 23 February 2012, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2011-004189-13.
Collapse
Affiliation(s)
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Karch
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Harald Stefanits
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Marie-Claude Menet
- Inserm, U1144, Paris, France.,Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Xavier Declèves
- Inserm, U1144, Paris, France.,Université Paris Descartes, UMR-S 1144, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Müller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria. .,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria. .,Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.
| |
Collapse
|
22
|
Miller TW, Traphagen NA, Li J, Lewis LD, Lopes B, Asthagiri A, Loomba J, De Jong J, Schiff D, Patel SH, Purow BW, Fadul CE. Tumor pharmacokinetics and pharmacodynamics of the CDK4/6 inhibitor ribociclib in patients with recurrent glioblastoma. J Neurooncol 2019; 144:563-572. [PMID: 31399936 DOI: 10.1007/s11060-019-03258-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION We conducted a phase Ib study (NCT02345824) to determine whether ribociclib, an inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), penetrates tumor tissue and modulates downstream signaling pathways including retinoblastoma protein (Rb) in patients with recurrent glioblastoma (GBM). METHODS Study participants received ribociclib (600 mg QD) for 8-21 days before surgical resection of their recurrent GBM. Total and unbound concentrations of ribociclib were measured in samples of tumor tissue, plasma, and cerebrospinal fluid (CSF). We analyzed tumor specimens obtained from the first (initial/pre-study) and second (recurrent/on-study) surgery by immunohistochemistry for Rb status and downstream signaling of CDK4/6 inhibition. Participants with Rb-positive recurrent tumors continued ribociclib treatment on a 21-day-on, 7-day-off schedule after surgery, and were monitored for toxicity and disease progression. RESULTS Three participants with recurrent Rb-positive GBM participated in this study. Mean unbound (pharmacologically active) ribociclib concentrations in plasma, CSF, MRI-enhancing, MRI-non-enhancing, and tumor core regions were 0.337 μM, 0.632 μM, 1.242 nmol/g, 0.484 nmol/g, and 1.526 nmol/g, respectively, which exceeded the in vitro IC50 (0.04 μM) for inhibition of CDK4/6 in cell-free assay. Modulation of pharmacodynamic markers of ribociclib CDK 4/6 inhibition in tumor tissues were inconsistent between study participants. No participants experienced serious adverse events, but all experienced early disease progression. CONCLUSIONS This study suggests that ribociclib penetrated recurrent GBM tissue at concentrations predicted to be therapeutically beneficial. Our study was unable to demonstrate tumor pharmacodynamic correlates of drug activity. Although well tolerated, ribociclib monotherapy seemed ineffective for the treatment of recurrent GBM.
Collapse
Affiliation(s)
- Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Nicole A Traphagen
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Jing Li
- Pharmacology Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Lionel D Lewis
- Section of Clinical Pharmacology, Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine At Dartmouth, Lebanon, NH, USA
| | - Beatriz Lopes
- Department of Pathology, Divisions of Neuropathology and Molecular Diagnostics, University of Virginia Health System, Charlottesville, VA, USA
| | - Ashok Asthagiri
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Johanna Loomba
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Jenny De Jong
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA
| | - Sohil H Patel
- Department of Radiology and Medical Imaging, Division of Neuroradiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Benjamin W Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA
| | - Camilo E Fadul
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800432, Charlottesville, VA, 22908, USA.
| |
Collapse
|
23
|
Bartelink IH, Jones EF, Shahidi‐Latham SK, Lee PRE, Zheng Y, Vicini P, van ‘t Veer L, Wolf D, Iagaru A, Kroetz DL, Prideaux B, Cilliers C, Thurber GM, Wimana Z, Gebhart G. Tumor Drug Penetration Measurements Could Be the Neglected Piece of the Personalized Cancer Treatment Puzzle. Clin Pharmacol Ther 2019; 106:148-163. [PMID: 30107040 PMCID: PMC6617978 DOI: 10.1002/cpt.1211] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
Precision medicine aims to use patient genomic, epigenomic, specific drug dose, and other data to define disease patterns that may potentially lead to an improved treatment outcome. Personalized dosing regimens based on tumor drug penetration can play a critical role in this approach. State-of-the-art techniques to measure tumor drug penetration focus on systemic exposure, tissue penetration, cellular or molecular engagement, and expression of pharmacological activity. Using in silico methods, this information can be integrated to bridge the gap between the therapeutic regimen and the pharmacological link with clinical outcome. These methodologies are described, and challenges ahead are discussed. Supported by many examples, this review shows how the combination of these techniques provides enhanced patient-specific information on drug accessibility at the tumor tissue level, target binding, and downstream pharmacology. Our vision of how to apply tumor drug penetration measurements offers a roadmap for the clinical implementation of precision dosing.
Collapse
Affiliation(s)
- Imke H. Bartelink
- Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Clinical Pharmacology, Pharmacometrics and DMPK (CPD)MedImmuneSouth San FranciscoCaliforniaUSA
- Department of Clinical Pharmacology and PharmacyAmsterdam UMCVrije Universiteit AmsterdamThe Netherlands
| | - Ella F. Jones
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | | | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine of the UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yanan Zheng
- Clinical Pharmacology, Pharmacometrics and DMPK (CPD)MedImmuneSouth San FranciscoCaliforniaUSA
| | - Paolo Vicini
- Clinical Pharmacology, Pharmacometrics and DMPK (CPD)MedImmuneCambridgeUK
| | - Laura van ‘t Veer
- Department of Laboratory Medicine of the UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Denise Wolf
- Department of Laboratory Medicine of the UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging at Stanford Health CareStanfordCaliforniaUSA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences (BTS)School of PharmacyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Brendan Prideaux
- Rutgers New Jersey Medical SchoolPublic Health Research InstituteRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Cornelius Cilliers
- Departments of Chemical Engineering and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Greg M. Thurber
- Departments of Chemical Engineering and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Zena Wimana
- Institut Jules BordetUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Geraldine Gebhart
- Institut Jules BordetUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| |
Collapse
|
24
|
Triarico S, Maurizi P, Mastrangelo S, Attinà G, Capozza MA, Ruggiero A. Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers (Basel) 2019; 11:cancers11060824. [PMID: 31200562 PMCID: PMC6627959 DOI: 10.3390/cancers11060824] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) may be considered as a sanctuary site, protected from systemic chemotherapy by the meninges, the cerebrospinal fluid (CSF) and the blood-brain barrier (BBB). Consequently, parenchymal and CSF exposure of most antineoplastic agents following intravenous (IV) administration is lower than systemic exposure. In this review, we describe the different strategies developed to improve delivery of antineoplastic agents into the brain in primary and metastatic CNS tumors. We observed that several methods, such as BBB disruption (BBBD), intra-arterial (IA) and intracavitary chemotherapy, are not routinely used because of their invasiveness and potentially serious adverse effects. Conversely, intrathecal (IT) chemotherapy has been safely and widely practiced in the treatment of pediatric primary and metastatic tumors, replacing the neurotoxic cranial irradiation for the treatment of childhood lymphoma and acute lymphoblastic leukemia (ALL). IT chemotherapy may be achieved through lumbar puncture (LP) or across the Ommaya intraventricular reservoir, which are both described in this review. Additionally, we overviewed pharmacokinetics and toxic aspects of the main IT antineoplastic drugs employed for primary or metastatic childhood CNS tumors (such as methotrexate, cytosine arabinoside, hydrocortisone), with a concise focus on new and less used IT antineoplastic agents.
Collapse
Affiliation(s)
- Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
25
|
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK, Swanson KR, Kaufmann TJ, Brown PD, Agar NYR, Galanis E, Buckner JC, Elmquist WF. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 2019; 20:184-191. [PMID: 29016900 DOI: 10.1093/neuonc/nox175] [Citation(s) in RCA: 419] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier (BBB) excludes the vast majority of cancer therapeutics from normal brain. However, the importance of the BBB in limiting drug delivery and efficacy is controversial in high-grade brain tumors, such as glioblastoma (GBM). The accumulation of normally brain impenetrant radiographic contrast material in essentially all GBM has popularized a belief that the BBB is uniformly disrupted in all GBM patients so that consideration of drug distribution across the BBB is not relevant in designing therapies for GBM. However, contrary to this view, overwhelming clinical evidence demonstrates that there is also a clinically significant tumor burden with an intact BBB in all GBM, and there is little doubt that drugs with poor BBB permeability do not provide therapeutically effective drug exposures to this fraction of tumor cells. This review provides an overview of the clinical literature to support a central hypothesis: that all GBM patients have tumor regions with an intact BBB, and cure for GBM will only be possible if these regions of tumor are adequately treated.
Collapse
Affiliation(s)
- Jann N Sarkaria
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Leland S Hu
- Mayo Clinic, Scottsdale, Arizona (L.S.H., K.R.S.)
| | - Ian F Parney
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Deanna H Pafundi
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Debra H Brinkmann
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Nadia N Laack
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Caterina Giannini
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Terence C Burns
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Sani H Kizilbash
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Janice K Laramy
- University of Minnesota, Minneapolis, Minnesota (J.K.L., W.F.E.)
| | | | - Timothy J Kaufmann
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Paul D Brown
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | | | - Evanthia Galanis
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - Jan C Buckner
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| | - William F Elmquist
- Mayo Clinic, Rochester, Minnesota (J.N.S., I.F.P., D.H.P., D.H.B., N.N.L., C.G., T.C.B., S.H.K., T.J.K., P.D.B., E.G., J.C.B.)
| |
Collapse
|
26
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Jackson S, Weingart J, Nduom EK, Harfi TT, George RT, McAreavey D, Ye X, Anders NM, Peer C, Figg WD, Gilbert M, Rudek MA, Grossman SA. The effect of an adenosine A 2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 2018; 15:2. [PMID: 29332604 PMCID: PMC5767971 DOI: 10.1186/s12987-017-0088-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/26/2017] [Indexed: 01/29/2023] Open
Abstract
Background The blood–brain barrier (BBB) severely limits the entry of systemically administered drugs including chemotherapy to the brain. In rodents, regadenoson activation of adenosine A2A receptors causes transient BBB disruption and increased drug concentrations in normal brain. This study was conducted to evaluate if activation of A2A receptors would increase intra-tumoral temozolomide concentrations in patients with glioblastoma. Methods Patients scheduled for a clinically indicated surgery for recurrent glioblastoma were eligible. Microdialysis catheters (MDC) were placed intraoperatively, and the positions were documented radiographically. On post-operative day #1, patients received oral temozolomide (150 mg/m2). On day #2, 60 min after oral temozolomide, patients received one intravenous dose of regadenoson (0.4 mg). Blood and MDC samples were collected to determine temozolomide concentrations. Results Six patients were enrolled. Five patients had no complications from the MDC placement or regadenoson and had successful collection of blood and dialysate samples. The mean plasma AUC was 16.4 ± 1.4 h µg/ml for temozolomide alone and 16.6 ± 2.87 h µg/ml with addition of regadenoson. The mean dialysate AUC was 2.9 ± 1.2 h µg/ml with temozolomide alone and 3.0 ± 1.7 h µg/ml with regadenoson. The mean brain:plasma AUC ratio was 18.0 ± 7.8 and 19.1 ± 10.7% for temozolomide alone and with regadenoson respectively. Peak concentration and Tmax in brain were not significantly different. Conclusions Although previously shown to be efficacious in rodents to increase varied size agents to cross the BBB, our data suggest that regadenoson does not increase temozolomide concentrations in brain. Further studies exploring alternative doses and schedules are needed; as transiently disrupting the BBB to facilitate drug entry is of critical importance in neuro-oncology. Electronic supplementary material The online version of this article (10.1186/s12987-017-0088-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sadhana Jackson
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA. .,Neuro-Oncology Branch, NCI/NIH, 9030 Old Georgetown Rd, Building 82, Bethesda, MD, 20892, USA.
| | - Jon Weingart
- School of Medicine, Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Edjah K Nduom
- Surgical Neurology Branch, NINDS/NIH, 10 Center Drive, 3D20, Bethesda, MD, 20814, USA
| | - Thura T Harfi
- David Heart & Lung Research Institute, The Ohio State University, 374 12th Avenue, Suite 200, Columbus, OH, 43210, USA
| | - Richard T George
- Heart and Vascular Institute, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower, Baltimore, MD, 21287, USA
| | - Dorothea McAreavey
- Critical Care Medicine Department, Nuclear Cardiology Section, NIH Clinical Center, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Xiaobu Ye
- School of Medicine, Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Nicole M Anders
- Cancer Chemical and Structural Biology and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Cody Peer
- Clinical Pharmacology, NCI/NIH, 10 Center Drive, 5A01, Bethesda, MD, 20814, USA
| | - William D Figg
- Clinical Pharmacology, NCI/NIH, 10 Center Drive, 5A01, Bethesda, MD, 20814, USA
| | - Mark Gilbert
- Neuro-Oncology Branch, NCI/NIH, 9030 Old Georgetown Rd, Building 82, Bethesda, MD, 20892, USA
| | - Michelle A Rudek
- Cancer Chemical and Structural Biology and Analytical Pharmacology Core Laboratory, Johns Hopkins University, Bunting-Blaustein Cancer Research Building I, 1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD, 21231, USA
| | - Stuart A Grossman
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
| |
Collapse
|
28
|
Schorzman AN, Lucas AT, Kagel JR, Zamboni WC. Methods and Study Designs for Characterizing the Pharmacokinetics and Pharmacodynamics of Carrier-Mediated Agents. Methods Mol Biol 2018; 1831:201-228. [PMID: 30051434 DOI: 10.1007/978-1-4939-8661-3_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Major advances in carrier-mediated agents (CMAs), which include nanoparticles, nanosomes, and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure, and delivery to the site of action over their small molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery, and pharmacologic effects (efficacy and toxicity) of these agents. In this chapter, we focus on the analytical and phenotypic methods required to design a study that characterizes the pharmacokinetics (PK) and pharmacodynamics (PD) of all forms of these nanoparticle-based drug agents. These methods include separation of encapsulated and released drugs, ultrafiltration for measurement of non-protein bound active drug, microdialysis to measure intra-tumor drug concentrations, immunomagnetic separation and flow cytometry for sorting cell types, and evaluation of spatial distribution of drug forms relative to tissue architecture by mass spectrometry imaging and immunohistochemistry.
Collapse
Affiliation(s)
- Allison N Schorzman
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew T Lucas
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John R Kagel
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William C Zamboni
- Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Lab, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
El-Khouly FE, van Vuurden DG, Stroink T, Hulleman E, Kaspers GJL, Hendrikse NH, Veldhuijzen van Zanten SEM. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates. Front Oncol 2017; 7:254. [PMID: 29164054 PMCID: PMC5670105 DOI: 10.3389/fonc.2017.00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG), patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB). We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED) may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment) of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%)-carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole-are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG.
Collapse
Affiliation(s)
- Fatma E El-Khouly
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands.,Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, Netherlands
| | - Dannis G van Vuurden
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Thom Stroink
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Esther Hulleman
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - N Harry Hendrikse
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands
| | | |
Collapse
|
30
|
Li J, Wu J, Bao X, Honea N, Xie Y, Kim S, Sparreboom A, Sanai N. Quantitative and Mechanistic Understanding of AZD1775 Penetration across Human Blood-Brain Barrier in Glioblastoma Patients Using an IVIVE-PBPK Modeling Approach. Clin Cancer Res 2017; 23:7454-7466. [PMID: 28928160 DOI: 10.1158/1078-0432.ccr-17-0983] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Purpose: AZD1775, a first-in-class, small-molecule inhibitor of the Wee1 tyrosine kinase, is under evaluation as a potential chemo- and radiosensitizer for treating glioblastoma. This study was to prospectively, quantitatively, and mechanistically investigate the penetration of AZD1775 across the human blood-brain barrier (BBB).Experimental Design: AZD1775 plasma and tumor pharmacokinetics were evaluated in 20 patients with glioblastoma. The drug metabolism, transcellular passive permeability, and interactions with efflux and uptake transporters were determined using human derived in vitro systems. A whole-body physiologically based pharmacokinetic (PBPK) model integrated with a four-compartment permeability-limited brain model was developed for predicting the kinetics of AZD1775 BBB penetration and assessing the factors modulating this process.Results: AZD1775 exhibited good tumor penetration in patients with glioblastoma, with the unbound tumor-to-plasma concentration ratio ranging from 1.3 to 24.4 (median, 3.2). It was a substrate for ABCB1, ABCG2, and OATP1A2, but not for OATP2B1 or OAT3. AZD1775 transcellular passive permeability and active efflux clearance across MDCKII-ABCB1 or MDCKII-ABCG2 cell monolayers were dependent on the basolateral pH. The PBPK model well predicted observed drug plasma and tumor concentrations in patients. The extent and rate of drug BBB penetration were influenced by BBB integrity, efflux and uptake active transporter activity, and drug binding to brain tissue.Conclusions: In the relatively acidic tumor microenvironment where ABCB1/ABCG2 transporter-mediated efflux clearance is reduced, OATP1A2-mediated active uptake becomes dominant, driving AZD1775 penetration into brain tumor. Variations in the brain tumor regional pH, transporter expression/activity, and BBB integrity collectively contribute to the heterogeneity of AZD1775 penetration into brain tumors. Clin Cancer Res; 23(24); 7454-66. ©2017 AACRSee related commentary by Peer et al., p. 7437.
Collapse
Affiliation(s)
- Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.
| | - Jianmei Wu
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Xun Bao
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Norissa Honea
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Youming Xie
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Seongho Kim
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Alex Sparreboom
- College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Nader Sanai
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
| |
Collapse
|
31
|
The Impact of Liposomal Formulations on the Release and Brain Delivery of Methotrexate: An In Vivo Microdialysis Study. J Pharm Sci 2017; 106:2606-2613. [DOI: 10.1016/j.xphs.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/16/2023]
|
32
|
Iorio AL, Ros MD, Fantappiè O, Lucchesi M, Facchini L, Stival A, Becciani S, Guidi M, Favre C, Martino MD, Genitori L, Sardi I. Blood-Brain Barrier and Breast Cancer Resistance Protein: A Limit to the Therapy of CNS Tumors and Neurodegenerative Diseases. Anticancer Agents Med Chem 2017; 16:810-5. [PMID: 26584727 PMCID: PMC4997940 DOI: 10.2174/1871520616666151120121928] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/22/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022]
Abstract
The treatment of brain tumors and neurodegenerative diseases, represents an ongoing challenge. In Central Nervous System (CNS) the achievement of therapeutic concentration of chemical agents is complicated by the presence of distinct set of efflux proteins, such as ATP-Binding Cassette (ABC) transporters localized on the Blood-Brain Barrier (BBB). The activity of ABC transporters seems to be a common mechanism that underlies the poor response of CNS diseases to therapies. The molecular characterization of Breast Cancer Resistance Protein (BCRP/ABCG2), as an ABC transporter conferring multidrug resistance (MDR), has stimulated many studies to investigate its activity on the BBB, its involvement in physiology and CNS diseases and its role in limiting the delivery of drugs in CNS. In this review, we highlight the activity and localization of BCRP on the BBB and the action that this efflux pump has on many conventional drugs or latest generation molecules used for the treatment of CNS tumors and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Iacopo Sardi
- Neuro-oncology Unit, Department of Pediatric Medicine, Meyer Children's Hospital. Viale G.Pieraccini 24, 50139 Florence, Italy.
| |
Collapse
|
33
|
Evaluation of [ 14C] and [ 13C]Sucrose as Blood-Brain Barrier Permeability Markers. J Pharm Sci 2017; 106:1659-1669. [PMID: 28238901 DOI: 10.1016/j.xphs.2017.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
Nonspecific quantitation of [14C]sucrose in blood and brain has been routinely used as a quantitative measure of the in vivo blood-brain barrier (BBB) integrity. However, the reported apparent brain uptake clearance (Kin) of the marker varies widely (∼100-fold). We investigated the accuracy of the use of the marker in comparison with a stable isotope of sucrose ([13C]sucrose) measured by a specific liquid chromatography-tandem mass spectrometry method. Rats received single doses of each marker, and the Kin values were determined. Surprisingly, the Kin value of [13C]sucrose was 6- to 7-fold lower than that of [14C]sucrose. Chromatographic fractionation after in vivo administration of [14C]sucrose indicated that the majority of the brain content of radioactivity belonged to compounds other than the intact [14C]sucrose. However, mechanistic studies failed to reveal any substantial metabolism of the marker. The octanol:water partition coefficient of [14C]sucrose was >2-fold higher than that of [13C]sucrose, indicating the presence of lipid-soluble impurities in the [14C]sucrose solution. Our data indicate that [14C]sucrose overestimates the true BBB permeability to sucrose. We suggest that specific quantitation of the stable isotope (13C) of sucrose is a more accurate alternative to the current widespread use of the radioactive sucrose as a BBB marker.
Collapse
|
34
|
Portnow J, Synold TW, Badie B, Tirughana R, Lacey SF, D'Apuzzo M, Metz MZ, Najbauer J, Bedell V, Vo T, Gutova M, Frankel P, Chen M, Aboody KS. Neural Stem Cell-Based Anticancer Gene Therapy: A First-in-Human Study in Recurrent High-Grade Glioma Patients. Clin Cancer Res 2016; 23:2951-2960. [PMID: 27979915 DOI: 10.1158/1078-0432.ccr-16-1518] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Human neural stem cells (NSC) are inherently tumor tropic, making them attractive drug delivery vehicles. Toward this goal, we retrovirally transduced an immortalized, clonal NSC line to stably express cytosine deaminase (HB1.F3.CD.C21; CD-NSCs), which converts the prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU).Experimental Design: Recurrent high-grade glioma patients underwent intracranial administration of CD-NSCs during tumor resection or biopsy. Four days later, patients began taking oral 5-FC every 6 hours for 7 days. Study treatment was given only once. A standard 3 + 3 dose escalation schema was used to increase doses of CD-NSCs from 1 × 107 to 5 × 107 and 5-FC from 75 to 150 mg/kg/day. Intracerebral microdialysis was performed to measure brain levels of 5-FC and 5-FU. Serial blood samples were obtained to assess systemic drug concentrations as well as to perform immunologic correlative studies.Results: Fifteen patients underwent study treatment. We saw no dose-limiting toxicity (DLT) due to the CD-NSCs. There was 1 DLT (grade 3 transaminitis) possibly related to 5-FC. We did not see development of anti-CD-NSC antibodies and did not detect CD-NSCs or replication-competent retrovirus in the systemic circulation. Intracerebral microdialysis revealed that CD-NSCs produced 5-FU locally in the brain in a 5-FC dose-dependent manner. Autopsy data indicate that CD-NSCs migrated to distant tumor sites and were nontumorigenic.Conclusions: Collectively, our results from this first-in-human study demonstrate initial safety and proof of concept regarding the ability of NSCs to target brain tumors and locally produce chemotherapy. Clin Cancer Res; 23(12); 2951-60. ©2016 AACR.
Collapse
Affiliation(s)
- Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California.
| | | | - Behnam Badie
- Division of Neurosurgery, City of Hope, Duarte, California
| | | | - Simon F Lacey
- Clinical Immunobiology Correlative Studies Laboratory, City of Hope, Duarte, California
| | | | - Marianne Z Metz
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Joseph Najbauer
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | | | - Tien Vo
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Margarita Gutova
- Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| | - Paul Frankel
- Division of Biostatistics, City of Hope, Duarte, California
| | - Mike Chen
- Division of Neurosurgery, City of Hope, Duarte, California
| | - Karen S Aboody
- Division of Neurosurgery, City of Hope, Duarte, California.,Department of Developmental & Stem Cell Biology, City of Hope, Duarte, California
| |
Collapse
|
35
|
In vivo online magnetic resonance quantification of absolute metabolite concentrations in microdialysate. Sci Rep 2016; 6:36080. [PMID: 27811972 PMCID: PMC5095764 DOI: 10.1038/srep36080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
In order to study metabolic processes in animal models of diseases and in patients, microdialysis probes have evolved as powerful tools that are minimally invasive. However, analyses of microdialysate, performed remotely, do not provide real-time monitoring of microdialysate composition. Microdialysate solutions can theoretically be analyzed online inside a preclicinal or clinical MRI scanner using MRS techniques. Due to low NMR sensitivity, acquisitions of real-time NMR spectra on very small solution volumes (μL) with low metabolite concentrations (mM range) represent a major issue. To address this challenge we introduce the approach of combining a microdialysis probe with a custom-built magnetic resonance microprobe that allows for online metabolic analysis (1H and 13C) with high sensitivity under continuous flow conditions. This system is mounted inside an MRI scanner and allows performing simultaneously MRI experiments and rapid MRS metabolic analysis of the microdialysate. The feasibility of this approach is demonstrated by analyzing extracellular brain cancer cells (glioma) in vitro and brain metabolites in an animal model in vivo. We expect that our approach is readily translatable into clinical settings and can be used for a better and precise understanding of diseases linked to metabolic dysfunction.
Collapse
|
36
|
Perillyl Alcohol and Its Drug-Conjugated Derivatives as Potential Novel Methods of Treating Brain Metastases. Int J Mol Sci 2016; 17:ijms17091463. [PMID: 27598140 PMCID: PMC5037741 DOI: 10.3390/ijms17091463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/02/2022] Open
Abstract
Metastasis to the central nervous system remains difficult to treat, and such patients are faced with a dismal prognosis. The blood-brain barrier (BBB), despite being partially compromised within malignant lesions in the brain, still retains much of its barrier function and prevents most chemotherapeutic agents from effectively reaching the tumor cells. Here, we review some of the recent developments aimed at overcoming this obstacle in order to more effectively deliver chemotherapeutic agents to the intracranial tumor site. These advances include intranasal delivery to achieve direct nose-to-brain transport of anticancer agents and covalent modification of existing drugs to support enhanced penetration of the BBB. In both of these areas, use of the natural product perillyl alcohol, a monoterpene with anticancer properties, contributed to promising new results, which will be discussed here.
Collapse
|
37
|
Quist SR, Quist J, Birkenmaier J, Stauch T, Gollnick HP. Pharmacokinetic profile of methotrexate in psoriatic skin via the oral or subcutaneous route using dermal microdialysis showing higher methotrexate bioavailability in psoriasis plaques than in non-lesional skin. J Eur Acad Dermatol Venereol 2016; 30:1537-43. [PMID: 27005005 DOI: 10.1111/jdv.13656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/11/2016] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this pilot study was to use microdialysis to evaluate levels of Methotrexate (MTX) directly in psoriatic skin following oral or subcutaneous administration of MTX to elaborate a complete pharmacokinetic profile within the dermal skin. METHODS Six patients with chronic plaque psoriasis on the arm undergoing treatment with MTX were included in a mono-centre clinical trial. Patients were under treatment with p.o. or s.c. MTX (7.5 and 15 mg) for at least 3 months. Interstitial fluid was collected ex vivo via dermal microdialysis from lesional or non-lesional skin and via intravenous microdialysis as well as blood serum every hour up to 10 h after methotrexate administration every hour. MTX was analysed via liquid chromatography. RESULTS The area under the curve (AUC) of methotrexate from peripheral blood was up to four times higher than from microdiaylsis, which detection of free unbound MTX. The AUC from dialysates in psoriatic lesional skin was higher than in non-lesional psoriatic skin, and the AUC levels from i.v. microdialysis were non-significantly higher than those from lesional psoriatic skin. Pharmacokinetic profiles were individually quite different and did not primarily depend on the dose or the means (p.o. vs. s.c.) in which it was administered. CONCLUSION Dermal microdialysis is a valid tool to evaluate levels of methotrexate in the skin of psoriasis patients. Drug levels and bioavailability of methotrexate were higher in lesional than non-lesional psoriatic skin. The individual AUC of MTX was not primarily dependent on the route or dose of administration.
Collapse
Affiliation(s)
- S R Quist
- Clinic of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Germany
| | - J Quist
- Clinic of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Germany
| | - J Birkenmaier
- Laboratory Volkmann, Central Medical Laboratory, Karlsruhe, Germany
| | - T Stauch
- Laboratory Volkmann, Central Medical Laboratory, Karlsruhe, Germany
| | - H P Gollnick
- Clinic of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
38
|
Jacus MO, Daryani VM, Harstead KE, Patel YT, Throm SL, Stewart CF. Pharmacokinetic Properties of Anticancer Agents for the Treatment of Central Nervous System Tumors: Update of the Literature. Clin Pharmacokinet 2016; 55:297-311. [PMID: 26293618 PMCID: PMC4761278 DOI: 10.1007/s40262-015-0319-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite significant improvement in outcomes for patients with hematologic malignancies and solid tumors over the past 10 years, patients with primary or metastatic brain tumors continue to have a poor prognosis. A primary reason for this is the inability of many chemotherapeutic drugs to penetrate into the brain and brain tumors at concentrations high enough to exert an antitumor effect because of unique barriers and efflux transporters. Several studies have been published recently examining the central nervous system pharmacokinetics of various anticancer drugs in patients with primary and metastatic brain tumors. To summarize recent advances in the field, this review critically presents studies published within the last 9 years examining brain and cerebrospinal fluid penetration of clinically available anticancer agents for patients with central nervous system tumors.
Collapse
Affiliation(s)
- Megan O Jacus
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Vinay M Daryani
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - K Elaine Harstead
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yogesh T Patel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stacy L Throm
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
39
|
Parrish KE, Cen L, Murray J, Calligaris D, Kizilbash S, Mittapalli RK, Carlson BL, Schroeder MA, Sludden J, Boddy AV, Agar NYR, Curtin NJ, Elmquist WF, Sarkaria JN. Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System. Mol Cancer Ther 2015; 14:2735-43. [PMID: 26438157 DOI: 10.1158/1535-7163.mct-15-0553] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
PARP inhibition can enhance the efficacy of temozolomide and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with temozolomide and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with temozolomide was highly effective in vitro in short-term explant cultures derived from GBM12, and, similarly, the combination of rucaparib and temozolomide (dosed for 5 days every 28 days for 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of temozolomide in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b(-/-)Bcrp1(-/-) knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain is associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared with normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with temozolomide in GBM.
Collapse
Affiliation(s)
- Karen E Parrish
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Ling Cen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - James Murray
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Calligaris
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sani Kizilbash
- Department of Medical Oncology Mayo Clinic, Rochester, Minnesota
| | | | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Alan V Boddy
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Jann N Sarkaria
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
40
|
Fang L, Sun X, Song Y, Zhang Y, Li F, Xu Y, Ma S, Lin N. Whole-brain radiation fails to boost intracerebral gefitinib concentration in patients with brain metastatic non-small cell lung cancer: a self-controlled, pilot study. Cancer Chemother Pharmacol 2015; 76:873-7. [DOI: 10.1007/s00280-015-2847-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022]
|
41
|
Poulin P, Chen YH, Ding X, Gould SE, Hop CE, Messick K, Oeh J, Liederer BM. Prediction of Drug Distribution in Subcutaneous Xenografts of Human Tumor Cell Lines and Healthy Tissues in Mouse: Application of the Tissue Composition-Based Model to Antineoplastic Drugs. J Pharm Sci 2015; 104:1508-21. [DOI: 10.1002/jps.24336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
|
42
|
Parrish KE, Sarkaria JN, Elmquist WF. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clin Pharmacol Ther 2015; 97:336-46. [PMID: 25669487 DOI: 10.1002/cpt.71] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022]
Abstract
Brain tumor diagnosis has an extremely poor prognosis, due in part to the blood-brain barrier (BBB) that prevents both early diagnosis and effective drug delivery. The infiltrative nature of primary brain tumors and the presence of micro-metastases lead to tumor cells that reside behind an intact BBB. Recent genomic technologies have identified many genetic mutations present in glioma and other central nervous system (CNS) tumors, and this information has been instrumental in guiding the development of molecularly targeted therapies. However, the majority of these agents are unable to penetrate an intact BBB, leading to one mechanism by which the invasive brain tumor cells effectively escape treatment. The diagnosis and treatment of a brain tumor remains a serious challenge and new therapeutic agents that either penetrate the BBB or disrupt mechanisms that limit brain penetration, such as endothelial efflux transporters or tight junctions, are required in order to improve patient outcomes in this devastating disease.
Collapse
Affiliation(s)
- K E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
43
|
Azeredo FJ, Dalla Costa T, Derendorf H. Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions. Clin Pharmacokinet 2014; 53:205-212. [PMID: 24452811 DOI: 10.1007/s40262-014-0131-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diagnostic and therapeutic decisions in medical practice are still generally based on blood concentrations of drugs and/or biomolecules despite the knowledge that biochemical events and pharmacological effects usually take place in tissue rather than in the bloodstream. Microdialysis is a semi-invasive technique that is able to measure concentrations of the free, active drug or endogenous compounds in almost all human tissues and organs. It is currently being used to monitor brain metabolic processes and quantify tissue biomarkers, and determine transdermal drug distribution and tissue pharmacokinetics, confirming its importance as a widely used sampling technique in clinical drug monitoring and drug development as well as therapy and disease follow-up, contributing to rationalizing drug dosing regimens and influencing the clinical decision-making process.
Collapse
Affiliation(s)
| | - Teresa Dalla Costa
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, Brazil
| | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA.
| |
Collapse
|
44
|
Perioperative microdialysis in meningioma surgery: correlation of cerebral metabolites with clinical outcome. Acta Neurochir (Wien) 2014; 156:2275-82; discussion 2282. [PMID: 25305088 DOI: 10.1007/s00701-014-2242-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Brain tumour resection requires surgical manoeuvres that may cause an ischaemic injury to peritumoral tissue. The aim of the present study was to examine whether putative alterations in peritumoral tissue biochemistry, monitored by microdialysis, correlate with clinical outcome in patients undergoing craniotomy for meningioma resection. METHODS In 34 patients undergoing meningioma resection (35 % male; mean age ± SD: 54.3 ± 12.1 years), microdialysis measurements were taken perioperatively from peritumoral brain parenchyma. Standard metabolites (glucose, lactate, pyruvate, glycerol and the lactate:pyruvate ratio) were quantified in relation to clinical outcome assessed by the Glasgow Coma Scale (GCS) and the Karnofsky Performance Status scale. RESULTS Higher postoperative glucose and pyruvate levels were found in patients with a favourable outcome (GCS not deteriorated or Karnofsky score > 80). Multiple logistic regression analysis (age, preoperative physical status, metabolite levels as independent variables) showed that lower postoperative glucose and pyruvate levels as well as higher lactate:pyruvate ratio values were independently associated with an unfavourable outcome as defined by Karnofsky score <80 [(OR: 0.084, 95 % CI: 0.01-0.98, p = 0.049), (OR: 0.97, 95 % CI: 0.95-0.99, p = 0.050), (OR: 1.21, 95 % CI: 1.04-1.42, p = 0.015) respectively], as well as with death [(OR: 0.08, 95 % CI: 0.01-0.97, p = 0.046), (OR: 0.94, 95 % CI: 0.89-0.99, p = 0.016), (OR: 1.07, 95 % CI: 1.00-1.15, p = 0.05) respectively]. CONCLUSIONS Postoperative levels of glucose and pyruvate and the lactate:pyruvate ratio appear to correlate with clinical outcome in patients undergoing meningioma resection. The present findings provide support for the utility of microdialysis as a prognostic tool in brain tumour surgery.
Collapse
|
45
|
Gynther M, Kääriäinen TM, Hakkarainen JJ, Jalkanen AJ, Petsalo A, Lehtonen M, Peura L, Kurkipuro J, Samaranayake H, Ylä-Herttuala S, Rautio J, Forsberg MM. Brain pharmacokinetics of ganciclovir in rats with orthotopic BT4C glioma. Drug Metab Dispos 2014; 43:140-6. [PMID: 25349125 DOI: 10.1124/dmd.114.059840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ganciclovir (GCV) is an essential part of the Herpes simplex virus thymidine kinase (HSV-tk) gene therapy of malignant gliomas. The purpose of this study was to investigate the brain pharmacokinetics and tumor uptake of GCV in the BT4C rat glioma model. GCV's brain and tumor uptakes were investigated by in vivo microdialysis in rats with orthotopic BT4C glioma. In addition, the ability of GCV to cross the blood-brain barrier and tumor vasculature was assessed with in situ rat brain perfusion. Finally, the extent to which GCV could permeate across the BT4C glioma cell membrane was assessed in vitro. The areas under the concentration curve of unbound GCV in blood, brain extracellular fluid (ECF), and tumor ECF were 6157, 1658, and 4834 μM⋅min, respectively. The apparent maximum unbound concentrations achieved within 60 minutes were 46.9, 11.8, and 25.8 μM in blood, brain, and tumor, respectively. The unbound GCV concentrations in brain and tumor after in situ rat brain perfusion were 0.41 and 1.39 nmol/g, respectively. The highly polar GCV likely crosses the fenestrated tumor vasculature by paracellular diffusion. Thus, GCV is able to reach the extracellular space around the tumor at higher concentrations than that in healthy brain. However, GCV uptake into BT4C cells at 100 μM was only 2.1 pmol/mg of protein, and no active transporter-mediated disposition of GCV could be detected in vitro. In conclusion, the limited efficacy of HSV-tk/GCV gene therapy may be due to the poor cellular uptake and rapid elimination of GCV.
Collapse
Affiliation(s)
- Mikko Gynther
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Tiina M Kääriäinen
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Jenni J Hakkarainen
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Aaro J Jalkanen
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Aleksanteri Petsalo
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Lauri Peura
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Jere Kurkipuro
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Haritha Samaranayake
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Jarkko Rautio
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| | - Markus M Forsberg
- Faculty of Health Sciences, School of Pharmacy (M.G., T.M.K., J.J.H., A.J.J., A.P., M.L., L.P., J.R., M.M.F.) and A. I. Virtanen Institute for Molecular Sciences (J.K., H.S., S.Y.-H.), University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
46
|
Liu L, Zhang X, Lou Y, Rao Y, Zhang X. Cerebral microdialysis in glioma studies, from theory to application. J Pharm Biomed Anal 2014; 96:77-89. [PMID: 24747145 DOI: 10.1016/j.jpba.2014.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022]
Abstract
Despite recent advances in the treatment of solid tumors, there are few effective treatments for malignant gliomas due to the infiltrative nature, and the protective shield of blood-brain barrier or blood-tumor barriers that restrict the passage of chemotherapy drugs into the brain. Imaging techniques, such as PET and MRI, have allowed the assessment of tumor function in vivo, but they are indirect measures of activity and do not easily allow continuous repeated evaluations. Because the biology of glioma on a cellular and molecular level is fairly unknown, especially in relation to various treatments, the development of novel therapeutic approaches to this devastating condition requires a strong need for a deeper understanding of the tumor's pathophysiology and biochemistry. Cerebral microdialysis, a probe-based sampling technique, allows a discrete volume of the brain to be sampled for neurochemical analysis of neurotransmitters, metabolites, biomarkers, and chemotherapy drugs, which has been employed in studying brain tumors, and is significant for improving the treatment of glioma. In this review, the current concepts of cerebral microdialysis for glioma are elucidated, with a special emphasis on its application to neurochemistry and pharmacokinetic studies.
Collapse
Affiliation(s)
- Lin Liu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangyi Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yan Lou
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuefeng Rao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xingguo Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
47
|
A pilot microdialysis study in brain tumor patients to assess changes in intracerebral cytokine levels after craniotomy and in response to treatment with a targeted anti-cancer agent. J Neurooncol 2014; 118:169-77. [PMID: 24634191 DOI: 10.1007/s11060-014-1415-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/21/2014] [Indexed: 12/24/2022]
Abstract
Intracerebral microdialysis enables continuous measurement of changes in brain biochemistry. In this study intracerebral microdialysis was used to assess changes in cytokine levels after tumor resection and in response to treatment with temsirolimus. Brain tumor patients undergoing craniotomy participated in this non-therapeutic study. A 100 kDa molecular weight cut-off microdialysis catheter was placed in peritumoral tissue at the time of resection. Cohort 1 underwent craniotomy only. Cohort 2 received a 200 mg dose of intravenous temsirolimus 48 h after surgery. Dialysate samples were collected continuously for 96 h and analyzed for the presence of 30 cytokines. Serial blood samples were collected to measure systemic cytokine levels. Dialysate samples were obtained from six patients in cohort 1 and 4 in cohort 2. Seventeen cytokines could be recovered in dialysate samples from at least 8 of 10 patients. Concentrations of interleukins and chemokines were markedly elevated in peritumoral tissue, and most declined over time, with IL-8, IP-10, MCP-1, MIP1β, IL-6, IL-12p40/p70, MIP1α, IFN-α, G-CSF, IL-2R, and vascular endothelial growth factor significantly (p < 0.05) decreasing over 96 h following surgery. No qualitative changes in intracerebral or serum cytokine concentrations were detected after temsirolimus administration. This is the first intracerebral microdialysis study to evaluate the time course of changes in macromolecule levels in the peritumoral microenvironment after a debulking craniotomy. Initial elevations of peritumoral interleukins and chemokines most likely reflected an inflammatory response to both tumor and surgical trauma. These findings have implications for development of cellular therapies that are administered intracranially at the time of surgery.
Collapse
|
48
|
Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions. Clin Pharmacokinet 2014. [PMID: 24452811 DOI: 10.1007/s40262–014-0131–8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Diagnostic and therapeutic decisions in medical practice are still generally based on blood concentrations of drugs and/or biomolecules despite the knowledge that biochemical events and pharmacological effects usually take place in tissue rather than in the bloodstream. Microdialysis is a semi-invasive technique that is able to measure concentrations of the free, active drug or endogenous compounds in almost all human tissues and organs. It is currently being used to monitor brain metabolic processes and quantify tissue biomarkers, and determine transdermal drug distribution and tissue pharmacokinetics, confirming its importance as a widely used sampling technique in clinical drug monitoring and drug development as well as therapy and disease follow-up, contributing to rationalizing drug dosing regimens and influencing the clinical decision-making process.
Collapse
|
49
|
Sane R, Wu SP, Zhang R, Gallo JM. The effect of ABCG2 and ABCC4 on the pharmacokinetics of methotrexate in the brain. Drug Metab Dispos 2014; 42:537-40. [PMID: 24464805 DOI: 10.1124/dmd.113.055228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Methotrexate (MTX) is the cornerstone of chemotherapy for primary central nervous system lymphoma, yet how the blood-brain barrier (BBB) efflux transporters ABCG2 and ABCC4 influence the required high-dose therapy is unknown. To evaluate their role, we used four mouse strains, C57BL/6 (wild-type; WT), Abcg2(-/-), Abcc4(-/-), and Abcg2(-/-);Abcc4(-/-) (double knockout; DKO) to conduct brain microdialysis studies after single intravenous MTX doses of 50 mg/kg. When the area under the concentration-time curve for plasma (AUC(plasma)) was used to assess systemic exposure to MTX, the rank order was Abcc4(-/-) < WT < Abcg2(-/-) < Abcg2(-/-)Abcc4(-/-). Only the DKO exposure was significantly higher than that of the WT group (P < 0.01), a reflection of the role of Abcg2 in biliary excretion and Abcc4 in renal excretion. MTX brain interstitial fluid concentrations obtained by microdialysis were used to calculate the area under the concentration-time curve for the brain (AUC(brain)), which found the rank order of exposure to be WT < Abcc4(-/-) < Abcg2(-/-) < Abcg2(-/-)Abcc4(-/-) with the largest difference being 4-fold: 286.13 ± 130 μg*min/ml (DKO) versus 66.85 ± 26 (WT). Because the transporters affected the systemic disposition of MTX, particularly in the DKO group, the ratio of the AUC(brain)/AUC(plasma) or the brain/plasma partition coefficient Kp was calculated, revealing that the DKO strain had a significantly higher value (0.23 ± 0.09) than the WT strain (0.11 ± 0.05). Both Abcg2 and Abcc4 limited BBB penetration of MTX; however, only when both drug efflux pumps were negated did the brain accumulation of MTX significantly increase. These findings indicate a contributory role of both ABCG2 and ABCC4 to limiting MTX distribution in patients.
Collapse
Affiliation(s)
- Ramola Sane
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | | | | | | |
Collapse
|
50
|
Prediction of methotrexate CNS distribution in different species - influence of disease conditions. Eur J Pharm Sci 2014; 57:11-24. [PMID: 24462766 DOI: 10.1016/j.ejps.2013.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 01/05/2023]
Abstract
Children and adults with malignant diseases have a high risk of prevalence of the tumor in the central nervous system (CNS). As prophylaxis treatment methotrexate is often given. In order to monitor methotrexate exposure in the CNS, cerebrospinal fluid (CSF) concentrations are often measured. However, the question is in how far we can rely on CSF concentrations of methotrexate as appropriate surrogate for brain target site concentrations, especially under disease conditions. In this study, we have investigated the spatial distribution of unbound methotrexate in healthy rat brain by parallel microdialysis, with or without inhibition of Mrp/Oat/Oatp-mediated active transport processes by a co-administration of probenecid. Specifically, we have focused on the relationship between brain extracellular fluid (brainECF) and CSF concentrations. The data were used to develop a systems-based pharmacokinetic (SBPK) brain distribution model for methotrexate. This model was subsequently applied on literature data on methotrexate brain distribution in other healthy and diseased rats (brainECF), healthy dogs (CSF) and diseased children (CSF) and adults (brainECF and CSF). Important differences between brainECF and CSF kinetics were found, but we have found that inhibition of Mrp/Oat/Oatp-mediated active transport processes does not significantly influence the relationship between brainECF and CSF fluid methotrexate concentrations. It is concluded that in parallel obtained data on unbound brainECF, CSF and plasma concentrations, under dynamic conditions, combined with advanced mathematical modeling is a most valid approach to develop SBPK models that allow for revealing the mechanisms underlying the relationship between brainECF and CSF concentrations in health and disease.
Collapse
|