1
|
Ba L, Zhao Z, Zhang C, Chu Y, Wu C. Expression and prognostic impact of hypoxia- and immune escape-related genes in triple-negative breast cancer: A comprehensive analysis. Int Immunopharmacol 2025; 146:113810. [PMID: 39689602 DOI: 10.1016/j.intimp.2024.113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks effective therapeutic options. Hypoxia and immune escape are critical factors that contribute to the progression of and resistance to therapy in patients with TNBC. Nevertheless, few studies have comprehensively analyzed hypoxia and immune escape in patients with TNBC. This study aimed to examine the expression of hypoxia- and immune escape-related genes in TNBC and their influence on prognosis. TNBC datasets were downloaded and processed from The Cancer Genome Atlas and Gene Expression Omnibus. Differential expression analysis identified 4949 differentially expressed genes, between TNBC and normal tissues. The intersection yielded 116 hypoxia- and immune escape-related differentially expressed genes (H&IERDEGs), including KIF4A, BIRC5, and BUB1. Enrichment analyses indicated that H&IERDEGs were significantly enriched in biological processes, including cell chemotaxis, leukocyte migration, and cytokine-cytokine receptor interaction. Subsequently, weighted gene co-expression network analysis identified 43 module genes that were found to define two TNBC subtypes. We constructed a prognostic risk model consisting of eight signature genes, which demonstrated a high predictive performance to predict the overall survival (OS) of patients with TNBC with an area under the curve (AUC) exceeding 0.9 at 1 year survival. This indicates that the model effectively differentiates between outcomes, reflecting its robust performance. This study investigated the roles and potential mechanisms of hypoxia- and immune escape-related genes in TNBC and constructed a prognostic risk model with a high predictive performance. These findings offer novel molecular markers and potential therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Li Ba
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Zhiyu Zhao
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Laboratory of Medical Genetics, Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin 150001, PR China
| | - Chunmei Zhang
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yinzhu Chu
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Changjun Wu
- Department of Ultrasound, First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
2
|
Wang J, Serafini A, Kuker R, Ayubcha C, Cohen G, Nadel H, McKinney A, Alavi A, Yu JQ. The State-of-the-Art PET Tracers in Glioblastoma and High-grade Gliomas and Implications for Theranostics. PET Clin 2025; 20:147-164. [PMID: 39482219 DOI: 10.1016/j.cpet.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
MR imaging is currently the main imaging modality used for the diagnosis and post therapeutic assessment of glioblastomas. Recently, several innovative PET radioactive tracers have been investigated for the evaluation of glioblastomas (GBM). These radiotracers target several biochemical and pathophysiological processes seen in tumors. These include glucose metabolism, DNA synthesis and cell proliferation, amino acid transport, cell membrane biosynthesis, specific membrane antigens such as prostatic specific membrane antigens, fibroblast activation protein inhibitor, translocator protein and hypoxia sensing agents, and antibodies targeting specific cell receptor antigen. This review aims to discuss the clinical value of these PET radiopharmaceuticals in the evaluation and treatment of GBMs.
Collapse
Affiliation(s)
- Jiaqiong Wang
- Division of Nuclear Medicine, Department of Radiology, Temple University Health System, Fox Chase Cancer Center, Philadelphia, PA 19140, USA.
| | - Aldo Serafini
- Division of Nuclear Medicine, Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Russ Kuker
- Division of Nuclear Medicine, Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gary Cohen
- Department of Radiology, Temple University Health System, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Helen Nadel
- Department of Radiology, Lucile Packard Children's Hospital at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander McKinney
- Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, FL, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Q Yu
- Division of Nuclear Medicine, Department of Radiology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
3
|
Jabbarzadeh Kaboli P, Roozitalab G, Farghadani R, Eskandarian Z, Zerrouqi A. c-MET and the immunological landscape of cancer: novel therapeutic strategies for enhanced anti-tumor immunity. Front Immunol 2024; 15:1498391. [PMID: 39664377 PMCID: PMC11632105 DOI: 10.3389/fimmu.2024.1498391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Cellular mesenchymal-epithelial transition factor (c-MET), also known as hepatocyte growth factor receptor (HGFR), is a crucial receptor tyrosine kinase implicated in various solid tumors, including lung, breast, and liver cancers. The concomitant expression of c-MET and PD-L1 in tumors, such as hepatocellular carcinoma, highlights their prognostic significance and connection to therapeutic resistance. Cancer-associated fibroblasts and mesenchymal stromal cells produce hepatocyte growth factor (HGF), activating c-MET signaling in tumor cells and myeloid-derived suppressor cells (MDSC). This activation leads to metabolic reprogramming and increased activity of enzymes like glutaminase (GLS), indoleamine 2,3-dioxygenase (IDO), and arginase 1 (ARG1), depleting essential amino acids in the tumor microenvironment that are vital for effector immune cell function. This review highlights the interplay between tumor cells and myeloid-derived suppressor cells (MDSCs) that create an immunosuppressive environment while providing targets for c-MET-focused immunotherapy. It emphasizes the clinical implications of c-MET inhibition on the behavior of immune cells such as neutrophils, macrophages, T cells, and NK cells. It explores the potential of c-MET antagonism combined with immunotherapeutic strategies to enhance cancer treatment paradigms. This review also discusses the innovative cancer immunotherapies targeting c-MET, including chimeric antigen receptor (CAR) therapies, monoclonal antibodies, and antibody-drug conjugates, while encouraging the development of a comprehensive strategy that simultaneously tackles immune evasion and enhances anti-tumor efficacy further to improve the clinical prognoses for patients with c-MET-positive malignancies. Despite the challenges and variability in efficacy across different cancer subtypes, continued research into the molecular mechanisms and the development of innovative therapeutic strategies will be crucial.
Collapse
Affiliation(s)
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Zoya Eskandarian
- Research Institute Children’s Cancer Center, and Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abdessamad Zerrouqi
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Ren ZQ, Wang RD, Wang C, Ren XH, Li DG, Liu YL, Yu QH. Key Genes Involved in the Beneficial Mechanism of Hyperbaric Oxygen for Glioblastoma and Predictive Indicators of Hyperbaric Oxygen Prolonging Survival in Glioblastoma Patients. Curr Med Sci 2024; 44:1036-1046. [PMID: 39446287 DOI: 10.1007/s11596-024-2934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The prognosis of glioblastoma is poor, and therapy-resistance is largely attributed to intratumor hypoxia. Hyperbaric oxygen (HBO) effectively alleviates hypoxia. However, the sole role of HBO in glioblastoma remains controversial. We previously reported that HBO can promote apoptosis, shorten protrusions, and delay growth of glioblastoma, but the molecular mechanism is unclear. We aimed to test candidate genes in HBO-exposed glioblastoma cells and to analyze their correlation with the survival of glioblastoma patients. METHODS Glioblastoma cell lines exposed to repetitive HBO or normobaric air (NBA) were collected for RNA isolation and microarray data analysis. GO analysis, KEGG pathway analysis and survival analysis of the differentially expressed genes (DEGs) were performed. RESULTS HBO not only inhibited hypoxia-inducing genes including CA9, FGF11, PPFIA4, TCAF2 and SLC2A12, but also regulated vascularization by downregulating the expression of COL1A1, COL8A1, COL12A1, RHOJ and FILIP1L, ultimately attenuated hypoxic microenvironment of glioblastoma. HBO attenuated inflammatory microenvironment by reducing the expression of NLRP2, CARD8, MYD88 and CD180. HBO prevented metastasis by downregulating the expression of NTM, CXCL12, CXCL13, CXCR4, CXCR5, CDC42, IGFBP3, IGFBP5, GPC6, MMP19, ADAMTS1, EFEMP1, PTBP3, NF1 and PDCD1. HBO upregulated the expression of BAK1, PPIF, DDIT3, TP53I11 and FAS, whereas downregulated the expression of MDM4 and SIVA1, thus promoting apoptosis. HBO upregulated the expression of CDC25A, MCM2, PCNA, RFC33, DSCC1 and CDC14A, whereas downregulated the expression of ASNS, CDK6, CDKN1B, PTBP3 and MAD2L1, thus inhibiting cell cycle progression. Among these DEGs, 17 indicator-genes of HBO prolonging survival were detected. CONCLUSIONS HBO is beneficial for glioblastoma. Glioblastoma patients with these predictive indicators may prolong survival with HBO therapy. These potential therapeutic targets especially COL1A1, ADAMTS1 and PTBP3 deserve further validation.
Collapse
Affiliation(s)
- Zi-Qi Ren
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ren-Dong Wang
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Cong Wang
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiao-Hui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dong-Guo Li
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, 100069, China
| | - Ya-Ling Liu
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiu-Hong Yu
- Department of Hyperbaric Oxygen, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
5
|
Lickliter JD, Ruben J, Kichenadasse G, Jennens R, Gzell C, Mason RP, Zhou H, Becker J, Unger E, Stea B. Dodecafluoropentane Emulsion as a Radiosensitizer in Glioblastoma Multiforme. CANCER RESEARCH COMMUNICATIONS 2023; 3:1607-1614. [PMID: 37609003 PMCID: PMC10441549 DOI: 10.1158/2767-9764.crc-22-0433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023]
Abstract
Purpose Glioblastoma multiforme (GBM) is a hypoxic tumor resistant to radiotherapy. The purpose of this study was to assess the safety and efficacy of a novel oxygen therapeutic, dodecafluoropentane emulsion (DDFPe), in chemoradiation treatment of GBM. Experimental Design In this multicenter phase Ib/II dose-escalation study, patients were administered DDFPe via intravenous infusion (0.05, 0.10, or 0.17 mL/kg) while breathing supplemental oxygen prior to each 2 Gy fraction of radiotherapy (30 fractions over 6 weeks). Patients also received standard-of-care chemotherapy [temozolomide (TMZ)]. Serial MRI scans were taken to monitor disease response. Adverse events were recorded and graded. TOLD (tissue oxygenation level-dependent) contrast MRI was obtained to validate modulation of tumor hypoxia. Results Eleven patients were enrolled. DDFPe combined with radiotherapy and TMZ was well tolerated in most patients. Two patients developed delayed grade 3 radiation necrosis during dose escalation, one each at 0.1 and 0.17 mL/kg of DDFPe. Subsequent patients were treated at the 0.1 mL/kg dose level. Kaplan-Meier analysis showed a median overall survival of 19.4 months and a median progression-free survival of 9.6 months, which compares favorably to historical controls. Among 6 patients evaluable for TOLD MRI, a statistically significant reduction in tumor T1 was observed after DDFPe treatment. Conclusions This trial, although small, showed that the use of DDFPe as a radiosensitizer in patients with GBM was generally safe and may provide a survival benefit. This is also the first time than TOLD MRI has shown reversal of tumor hypoxia in a clinical trial in patients. The recommended dose for phase II evaluation is 0.1 mL/kg DDFPe.Trial Registration: NCT02189109. Significance This study shows that DDFPe can be safely administered to patients, and it is the first-in-human study to show reversal of hypoxia in GBM as measured by TOLD MRI. This strategy is being used in a larger phase II/III trial which will hopefully show a survival benefit by adding DDFPe during the course of fractionated radiation and concurrent chemotherapy.
Collapse
Affiliation(s)
| | - Jeremy Ruben
- Monash University, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Ganessan Kichenadasse
- Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Ross Jennens
- Epworth Healthcare, Richmond, Victoria, Australia
| | - Cecelia Gzell
- Genesis Care, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | - Heling Zhou
- Department of Radiology, UT Southwestern, Dallas, Texas
| | | | | | - Baldassarre Stea
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
7
|
Yan VC, Pham CD, Ballato ES, Yang KL, Arthur K, Khadka S, Barekatain Y, Shrestha P, Tran T, Poral AH, Washington M, Raghavan S, Czako B, Pisaneschi F, Lin YH, Satani N, Hammoudi N, Ackroyd JJ, Georgiou DK, Millward SW, Muller FL. Prodrugs of a 1-Hydroxy-2-oxopiperidin-3-yl Phosphonate Enolase Inhibitor for the Treatment of ENO1-Deleted Cancers. J Med Chem 2022; 65:13813-13832. [PMID: 36251833 PMCID: PMC9620261 DOI: 10.1021/acs.jmedchem.2c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancers harboring homozygous deletion of the glycolytic enzyme enolase 1 (ENO1) are selectively vulnerable to inhibition of the paralogous isoform, enolase 2 (ENO2). A previous work described the sustained tumor regression activities of a substrate-competitive phosphonate inhibitor of ENO2, 1-hydroxy-2-oxopiperidin-3-yl phosphonate (HEX) (5), and its bis-pivaloyoxymethyl prodrug, POMHEX (6), in an ENO1-deleted intracranial orthotopic xenograft model of glioblastoma [Nature Metabolism 2020, 2, 1423-1426]. Due to poor pharmacokinetics of bis-ester prodrugs, this study was undertaken to identify potential non-esterase prodrugs for further development. Whereas phosphonoamidate esters were efficiently bioactivated in ENO1-deleted glioma cells, McGuigan prodrugs were not. Other strategies, including cycloSal and lipid prodrugs of 5, exhibited low micromolar IC50 values in ENO1-deleted glioma cells and improved stability in human serum over 6. The activity of select prodrugs was also probed using the NCI-60 cell line screen, supporting its use to examine the relationship between prodrugs and cell line-dependent bioactivation.
Collapse
Affiliation(s)
- Victoria C. Yan
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States,. Twitter: @victoriacyanide
| | - Cong-Dat Pham
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Elliot S. Ballato
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Kristine L. Yang
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Kenisha Arthur
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sunada Khadka
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States,Department
of Cancer Biology, University of Texas MD
Anderson Cancer Center, Houston, Texas 77054, United States
| | - Yasaman Barekatain
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States,Department
of Cancer Biology, University of Texas MD
Anderson Cancer Center, Houston, Texas 77054, United States
| | - Prakriti Shrestha
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Theresa Tran
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Anton H. Poral
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Mykia Washington
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Sudhir Raghavan
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Barbara Czako
- Institute
of Applied Cancer Science, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Federica Pisaneschi
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Yu-Hsi Lin
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Nikunj Satani
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Naima Hammoudi
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Jeffrey J. Ackroyd
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Dimitra K. Georgiou
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Steven W. Millward
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Florian L. Muller
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| |
Collapse
|
8
|
Chinn HK, Gardell JL, Matsumoto LR, Labadie KP, Mihailovic TN, Lieberman NAP, Davis A, Pillarisetty VG, Crane CA. Hypoxia-inducible lentiviral gene expression in engineered human macrophages. J Immunother Cancer 2022; 10:jitc-2021-003770. [PMID: 35728871 PMCID: PMC9214393 DOI: 10.1136/jitc-2021-003770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Human immune cells, including monocyte-derived macrophages, can be engineered to deliver proinflammatory cytokines, bispecific antibodies, and chimeric antigen receptors to support immune responses in different disease settings. When gene expression is regulated by constitutively active promoters, lentiviral payload gene expression is unregulated, and can result in potentially toxic quantities of proteins. Regulated delivery of lentivirally encoded proteins may allow localized or conditional therapeutic protein expression to support safe delivery of adoptively transferred, genetically modified cells with reduced capacity for systemic toxicities. Methods In this study, we engineered human macrophages to express genes regulated by hypoxia responsive elements included in the lentiviral promoter region to drive conditional lentiviral gene expression only under hypoxic conditions. We tested transduced macrophages cultured in hypoxic conditions for the transient induced expression of reporter genes and the secreted cytokine, interleukin-12. Expression of hypoxia-regulated genes was investigated both transcriptionally and translationally, and in the presence of human tumor cells in a slice culture system. Finally, hypoxia-regulated gene expression was evaluated in a subcutaneous humanized-mouse cancer model. Results Engineered macrophages were shown to conditionally and tranisently express lentivirally encoded gene protein products, including IL-12 in hypoxic conditions in vitro. On return to normoxic conditions, lentiviral payload expression returned to basal levels. Reporter genes under the control of hypoxia response elements were upregulated under hypoxic conditions in the presence of human colorectal carcinoma cells and in the hypoxic xenograft model of glioblastoma, suggesting utility for systemic engineered cell delivery capable of localized gene delivery in cancer. Conclusions Macrophages engineered to express hypoxia-regulated payloads have the potential to be administered systemically and conditionally express proteins in tissues with hypoxic conditions. In contrast to immune cells that function or survive poorly in hypoxic conditions, macrophages maintain a proinflammatory phenotype that may support continued gene and protein expression when regulated by conditional hypoxia responsive elements and naturally traffic to hypoxic microenvironments, making them ideal vehicles for therapeutic payloads to hypoxic tissues, such as solid tumors. With the ability to fine-tune delivery of potent proteins in response to endogenous microenvironments, macrophage-based cellular therapies may therefore be designed for different disease settings.
Collapse
Affiliation(s)
- Harrison K Chinn
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jennifer L Gardell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Mozart Therapeutics, Seattle, Washington, USA
| | - Lisa R Matsumoto
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kevin P Labadie
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Tara N Mihailovic
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Amira Davis
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
9
|
Herrera-Campos AB, Zamudio-Martinez E, Delgado-Bellido D, Fernández-Cortés M, Montuenga LM, Oliver FJ, Garcia-Diaz A. Implications of Hyperoxia over the Tumor Microenvironment: An Overview Highlighting the Importance of the Immune System. Cancers (Basel) 2022; 14:2740. [PMID: 35681719 PMCID: PMC9179641 DOI: 10.3390/cancers14112740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperoxia is used in order to counteract hypoxia effects in the TME (tumor microenvironment), which are described to boost the malignant tumor phenotype and poor prognosis. The reduction of tumor hypoxic state through the formation of a non-aberrant vasculature or an increase in the toxicity of the therapeutic agent improves the efficacy of therapies such as chemotherapy. Radiotherapy efficacy has also improved, where apoptotic mechanisms seem to be implicated. Moreover, hyperoxia increases the antitumor immunity through diverse pathways, leading to an immunopermissive TME. Although hyperoxia is an approved treatment for preventing and treating hypoxemia, it has harmful side-effects. Prolonged exposure to high oxygen levels may cause acute lung injury, characterized by an exacerbated immune response, and the destruction of the alveolar-capillary barrier. Furthermore, under this situation, the high concentration of ROS may cause toxicity that will lead not only to cell death but also to an increase in chemoattractant and proinflammatory cytokine secretion. This would end in a lung leukocyte recruitment and, therefore, lung damage. Moreover, unregulated inflammation causes different consequences promoting tumor development and metastasis. This process is known as protumor inflammation, where different cell types and molecules are implicated; for instance, IL-1β has been described as a key cytokine. Although current results show benefits over cancer therapies using hyperoxia, further studies need to be conducted, not only to improve tumor regression, but also to prevent its collateral damage.
Collapse
Affiliation(s)
- Ana Belén Herrera-Campos
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
| | - Esteban Zamudio-Martinez
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Mónica Fernández-Cortés
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Luis M. Montuenga
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
- Program in Solid Tumors, CIMA-University of Navarra, 31008 Pamplona, Spain
- Navarra Health Research Institute (IDISNA), 31008 Pamplona, Spain
| | - F. Javier Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Angel Garcia-Diaz
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain; (A.B.H.-C.); (E.Z.-M.); (D.D.-B.); (M.F.-C.)
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain;
| |
Collapse
|
10
|
Shi Y, Wu M, Liu Y, Hu L, Wu H, Xie L, Liu Z, Wu A, Chen L, Xu C. ITGA5 Predicts Dual-Drug Resistance to Temozolomide and Bevacizumab in Glioma. Front Oncol 2021; 11:769592. [PMID: 34976814 PMCID: PMC8719456 DOI: 10.3389/fonc.2021.769592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Anti-angiotherapy (Bevacizumab) is currently regarded as a promising option for glioma patients who are resistant to temozolomide (TMZ) treatment. But ongoing clinical research failed to meet therapeutic expectations. This study aimed to explore the pivotal genetic feature responsible for TMZ and Bevacizumab resistance in glioma patients. METHODS We downloaded the transcriptomic and methylation data of glioma patients from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases and grouped these patients into resistant and non-resistant groups based on their clinical profiles. Differentially expressed genes and pathways were identified and exhibited with software in R platform. A TMZ-resistant cell line was constructed for validating the expression change of the candidate gene, ITGA5. An ITGA5-overexpressing cell line was also constructed to investigate its biological function using the CCK8 assay, Western blot, periodic acid-Schiff (PAS) staining, and transcriptional sequencing. RESULTS Change of the cell morphology and polarity was closely associated with TMZ mono-resistance and TMZ/Bevacizumab dual resistance in glioma patients. The expression level of ITGA5 was effective in determining drug resistance and the outcome of glioma patients, which is regulated by methylation on two distinct sites. ITGA5 was augmented in TMZ-resistant glioma cells, while overexpressing ITGA5 altered the cell-promoted TMZ resistance through enhancing vascular mimicry (VM) formation correspondingly. CONCLUSIONS Both the epigenetic and transcriptional levels of ITGA5 are effective in predicting TMZ and Bevacizumab resistance, indicating that ITGA5 may serve as a predictor of the treatment outcomes of glioma patients.
Collapse
Affiliation(s)
- Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengwan Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Yuyang Liu
- Chinese People’s Liberation Army (PLA) Institute of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Lanlin Hu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Hong Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Lei Xie
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiwei Liu
- The Center for Advanced Semiconductor & Integrated Micro-System, University of Electronic Science and Technology of China, Chengdu, China
| | - Anhua Wu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Chen
- Chinese People’s Liberation Army (PLA) Institute of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| |
Collapse
|
11
|
Ristescu AI, Tiron CE, Tiron A, Grigoras I. Exploring Hyperoxia Effects in Cancer-From Perioperative Clinical Data to Potential Molecular Mechanisms. Biomedicines 2021; 9:1213. [PMID: 34572400 PMCID: PMC8470547 DOI: 10.3390/biomedicines9091213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Increased inspiratory oxygen concentration is constantly used during the perioperative period of cancer patients to prevent the potential development of hypoxemia and to provide an adequate oxygen transport to the organs, tissues and cells. Although the primary tumours are surgically removed, the effects of perioperative hyperoxia exposure on distal micro-metastases and on circulating cancer cells can potentially play a role in cancer progression or recurrence. In clinical trials, hyperoxia seems to increase the rate of postoperative complications and, by delaying postoperative recovery, it can alter the return to intended oncological treatment. The effects of supplemental oxygen on the long-term mortality of surgical cancer patients offer, at this point, conflicting results. In experimental studies, hyperoxia effects on cancer biology were explored following multiple pathways. In cancer cell cultures and animal models, hyperoxia increases the production of reactive oxygen species (ROS) and increases the oxidative stress. These can be followed by the induction of the expression of Brain-derived neurotrophic factor (BDNF) and other molecules involved in angiogenesis and by the promotion of various degrees of epithelial mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Anca Irina Ristescu
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Crina Elena Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Adrian Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Ioana Grigoras
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
12
|
Jaroch K, Modrakowska P, Bojko B. Glioblastoma Metabolomics-In Vitro Studies. Metabolites 2021; 11:315. [PMID: 34068300 PMCID: PMC8153257 DOI: 10.3390/metabo11050315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
In 2016, the WHO introduced new guidelines for the diagnosis of brain gliomas based on new genomic markers. The addition of these new markers to the pre-existing diagnostic methods provided a new level of precision for the diagnosis of glioma and the prediction of treatment effectiveness. Yet, despite this new classification tool, glioblastoma (GBM), a grade IV glioma, continues to have one of the highest mortality rates among central nervous system tumors. Metabolomics is a particularly promising tool for the analysis of GBM tumors and potential methods of treating them, as it is the only "omics" approach that is capable of providing a metabolic signature of a tumor's phenotype. With careful experimental design, cell cultures can be a useful matrix in GBM metabolomics, as they ensure stable conditions and, under proper conditions, are capable of capturing different tumor phenotypes. This paper reviews in vitro metabolomic profiling studies of high-grade gliomas, with a particular focus on sample-preparation techniques, crucial metabolites identified, cell culture conditions, in vitro-in vivo extrapolation, and pharmacometabolomics. Ultimately, this review aims to elucidate potential future directions for in vitro GBM metabolomics.
Collapse
Affiliation(s)
| | | | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, dr A. Jurasza 2 Street, 85-089 Bydgoszcz, Poland; (K.J.); (P.M.)
| |
Collapse
|
13
|
Luo L, Wang J, Ding D, Hasan MN, Yang SS, Lin SH, Schreppel P, Sun B, Yin Y, Erker T, Sun D. Role of NKCC1 Activity in Glioma K + Homeostasis and Cell Growth: New Insights With the Bumetanide-Derivative STS66. Front Physiol 2020; 11:911. [PMID: 32848856 PMCID: PMC7413028 DOI: 10.3389/fphys.2020.00911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/08/2020] [Indexed: 12/01/2022] Open
Abstract
Introduction: Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) is important in regulating intracellular K+ and Cl− homeostasis and cell volume. In this study, we investigated a role of NKCC1 in regulating glioma K+ influx and proliferation in response to apoptosis inducing chemotherapeutic drug temozolomide (TMZ). The efficacy of a new bumetanide (BMT)-derivative NKCC1 inhibitor STS66 [3-(butylamino)-2-phenoxy-5-[(2, 2, 2-trifluoroethylamino) methyl] benzenesulfonamide] in blocking NKCC1 activity was compared with well-established NKCC1 inhibitor BMT. Methods: NKCC1 activity in cultured mouse GL26 and SB28-GFP glioma cells was measured by Rb+ (K+) influx. The WNK1-SPAK/OSR1-NKCC1 signaling and AKT/ERK-mTOR signaling protein expression and activation were assessed by immunoblotting. Cell growth was determined by bromodeoxyuridine (BrdU) incorporation assay, MTT proliferation assay, and cell cycle analysis. Impact of STS66 and BMT on cell Rb+ influx and growth was measured in glioma cells treated with or without TMZ. Results: Rb+ influx assay showed that 10 μM BMT markedly decreased the total Rb+ influx and no additional inhibition detected at >10 μM BMT. In contrast, the maximum effects of STS66 on Rb+ influx inhibition were at 40–60 μM. Both BMT and STS66 reduced TMZ-mediated NKCC1 activation and protein upregulation. Glioma cell growth can be reduced by STS66. The most robust inhibition of glioma growth, cell cycle, and AKT/ERK signaling was achieved by the TMZ + STS66 treatment. Conclusion: The new BMT-derivative NKCC1 inhibitor STS66 is more effective than BMT in reducing glioma cell growth in part by inhibiting NKCC1-mediated K+ influx. TMZ + STS66 combination treatment reduces glioma cell growth via inhibiting cell cycle and AKT-ERK signaling.
Collapse
Affiliation(s)
- Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Jun Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dawei Ding
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Philipp Schreppel
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Baoshan Sun
- Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, I.P., Quinta da Almoinha, Dois Portos, Portugal
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Thomas Erker
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Abstract
IMPACT STATEMENT Tumor hypoxia promotes cancer cell aggressiveness, and is strongly associated with poor prognosis across multiple tumor types. The hypoxic microenvironments inside tumors also limit the effectiveness of radiotherapy, chemotherapy, and immunotherapy. Several approaches to eliminate hypoxic state in tumors have been proposed to delay cancer progression and improve therapeutic efficacies. This review will summarize current knowledge on hyperoxia, used alone or in combination with other therapeutic modalities, in cancer treatment. Molecular mechanisms and undesired side effects of hyperoxia will also be discussed.
Collapse
Affiliation(s)
- Sei W Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - In K Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang H Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
15
|
Kiang KMY, Zhang P, Li N, Zhu Z, Jin L, Leung GKK. Loss of cytoskeleton protein ADD3 promotes tumor growth and angiogenesis in glioblastoma multiforme. Cancer Lett 2020; 474:118-126. [PMID: 31958485 DOI: 10.1016/j.canlet.2020.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Adducin 3 (ADD3) is a crucial assembly factor in the actin cytoskeleton and has been found to be aberrantly expressed in various cancers, including glioblastoma multiforme (GBM). It has previously been studied in array-based studies with controversial findings as to its functional role in glioma. In microarray analyses of 452 glioma specimens, we found significant downregulation of ADD3 in GBM, but not in less malignant gliomas, compared to normal brain tissue, which suggests that its downregulation might underlie critical events during malignant progression. We also found that ADD3 was functionally dependent on cell-matrix interaction. In our in vivo study, the proliferative and angiogenic capacity of ADD3-depleted GBM cells was promoted, possibly through PCNA, while p53 and p21 expression was suppressed, and pro-angiogenic signals were induced through VEGF-VEGFR-2-mediated activation in endothelial cells. With correlative in vitro, in vivo, and clinical data, we provide compelling evidence on the putative tumor-suppressive role of ADD3 in modulating GBM growth and angiogenesis. As a preclinical study, our research offers a better understanding of the pathogenesis of glioma malignant progression for the benefit of future investigations.
Collapse
Affiliation(s)
- Karrie Mei-Yee Kiang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Pingde Zhang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ning Li
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Zhiyuan Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Lei Jin
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Gilberto Ka-Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.
| |
Collapse
|
16
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
17
|
Mild thermotherapy and hyperbaric oxygen enhance sensitivity of TMZ/PSi nanoparticles via decreasing the stemness in glioma. J Nanobiotechnology 2019; 17:47. [PMID: 30935403 PMCID: PMC6442425 DOI: 10.1186/s12951-019-0483-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background Glioma is a common brain tumor with a high mortality rate. A small population of cells expressing stem-like cell markers in glioma contributes to drug resistance and tumor recurrence. Methods Porous silicon nanoparticles (PSi NPs) as photothermal therapy (PTT) agents loaded with TMZ (TMZ/PSi NPs), was combined with hyperbaric oxygen (HBO) therapy in vitro and in vivo. To further investigate underlying mechanism, we detected the expression of stem-like cell markers and hypoxia related molecules in vitro and in vivo after treatment of TMZ/PSi NPs in combination with PTT and HBO. Results NCH-421K and C6 cells were more sensitive to the combination treatment. Moreover, the expression of stem-like cell markers and hypoxia related molecules were decreased after combination treatment. The in vivo results were in line with in vitro. The combination treatment presents significant antitumor effects in mice bearing C6 tumor compared with the treatment of TMZ, PTT or TMZ/PSi NPs only. Conclusion These results suggested the TMZ/PSi NPs combined with HBO and PTT could be a potential therapeutic strategy for glioma. Electronic supplementary material The online version of this article (10.1186/s12951-019-0483-1) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Zembrzuska K, Ostrowski RP, Matyja E. Hyperbaric oxygen increases glioma cell sensitivity to antitumor treatment with a novel isothiourea derivative in vitro. Oncol Rep 2019; 41:2703-2716. [PMID: 30896865 PMCID: PMC6448092 DOI: 10.3892/or.2019.7064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Tumor hypoxia is a pivotal factor responsible for the progression of this malignant glioma, and its resistance to radiation and chemotherapy. Thus, improved tumor tissue oxygenation may promote greater sensitivity to anticancer treatment. Protein kinase D1 (PKD1) protects cells from oxidative stress, and its abnormal activity serves an important role in multiple malignancies. The present study examined the effects of various oxygen conditions on the cytotoxic potential of the novel isothiourea derivate N,N′-dimethyl-S-(2,3,4,5,6-pentabromobenzyl)- isothiouronium bromide (ZKK-3) against the T98G GBM cell line. ZKK-3 was applied at concentrations of 10, 25 and 50 µM, and cells were maintained under conditions of normoxia, anoxia, hypoxia, hyperbaric oxygen (HBO), hypoxia/hypoxia and hypoxia/HBO. The proliferation and viability of neoplastic cells, and protein expression levels of hypoxia-inducible factor 1α (HIF-1α), PKD1, phosphorylated (p)PKD1 (Ser 916) and pPKD1 (Ser 744/748) kinases were evaluated. Oxygen deficiency, particularly regarding hypoxia, could diminish the cytotoxic effect of ZKK-3 at 25 and 50 µM and improve T98G cell survival compared with normoxia. HBO significantly reduced cell proliferation and increased T98G cell sensitivity to ZKK-3 when compared with normoxia. HIF-1α expression levels were increased under hypoxia compared with normoxia and decreased under HBO compared with hypoxia/hypoxia at 0, 10 and 50 µM ZKK-3, suggesting that HBO improved oxygenation of the cells. ZKK-3 exhibited inhibitory activity against pPKD1 (Ser 916) kinase; however, the examined oxygen conditions did not appear to significantly influence the expression of this phosphorylated form in cells treated with the tested compound. Regarding pPKD1 (Ser 744/748), a significant difference in expression was observed only for cells treated with 10 µM ZKK-3 and hypoxia/hypoxia compared with normoxia. However, there were significant differences in the expression levels of both phosphorylated forms of PKD1 under different oxygen conditions in the controls. In conclusion, the combination of isothiourea derivatives and hyperbaric oxygenation appears to be a promising therapeutic approach for malignant glioma treatment.
Collapse
Affiliation(s)
- Katarzyna Zembrzuska
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| | - Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| |
Collapse
|
19
|
Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine 2018; 13:6049-6058. [PMID: 30323592 PMCID: PMC6177375 DOI: 10.2147/ijn.s140462] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia exists to some degree in most solid tumors due to inadequate oxygen delivery of the abnormal vasculature which cannot meet the demands of the rapidly proliferating cancer cells. The levels of oxygenation within the same tumor are highly variable from one area to another and can change over time. Tumor hypoxia is an important impediment to effective cancer therapy. In radiotherapy, the primary mechanism is the creation of reactive oxygen species; hypoxic tumors are therefore radiation resistant. A number of chemotherapeutic drugs have been shown to be less effective when exposed to a hypoxic environment which can lead to further disease progression. Hypoxia is also a potent barrier to effective immunotherapy in cancer treatment. Because of the recognition of hypoxia as an important barrier to cancer treatment, a variety of approaches have been undertaken to overcome or reverse tumor hypoxia. Such approaches have included breathing hyperbaric oxygen, artificial hemoglobins, allosteric hemoglobin modifiers, hypoxia activated prodrugs and fluorocarbons (FCs). These approaches have largely failed due to limited efficacy and/or adverse side effects. Oxygen therapeutics, based on liquid FCs, can potentially increase the oxygen-carrying capacity of the blood to reverse tumor hypoxia. Currently, at least two drugs are in clinical trials to reverse tumor hypoxia; one of these is designed to improve permeability of oxygen into the tumor tissue and the other is based upon a low boiling point FC that transports higher amounts of oxygen per gram than previously tested FCs.
Collapse
|
20
|
Wang YG, Long J, Shao DC, Song H. Hyperbaric oxygen inhibits production of CD3+ T cells in the thymus and facilitates malignant glioma cell growth. J Int Med Res 2018; 46:2780-2791. [PMID: 29785863 PMCID: PMC6124287 DOI: 10.1177/0300060518767796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Hyperbaric oxygen (HBO) is an emerging complementary alternative medical approach in glioma treatment. However, its mode of action is unknown, so this was investigated in the present study. Methods We constructed an intracranial glioma model of congenic C57BL/6J mice. Glioma growth under HBO stimulation was assessed by bioluminescent imaging and magnetic resonance imaging. Flow cytometry assessed direct effects of HBO on reactive oxygen species (ROS) signaling of transplanted glioma cells and organs, and quantified mature T cells and subgroups in tumors, the brain, and blood. Results HBO promoted the growth of transplanted GL261-Luc glioma in the intracranial glioma mouse model. ROS signaling of glioma cells and brain cells was significantly downregulated under HBO stimulation, but thymus ROS levels were significantly upregulated. CD3+ T cells were significantly downregulated, while both Ti/Th cells (CD3+CD4+) and Ts/Tc cells (CD3+CD8+) were inhibited in tumors of the HBO group. The percentage of regulatory T cells in Ti/Th (CD3+CD4+) cells was elevated in the tumors and thymuses of the HBO group. Conclusion HBO induced ROS signaling in the thymus, inhibited CD3+ T cell generation, and facilitated malignant glioma cell growth in vivo in the intracranial glioma mouse model.
Collapse
Affiliation(s)
- Yong-Gang Wang
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jiang Long
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dong-Chuan Shao
- 2 Department of Neurosurgery, First People's Hospital of Kunming, Kunming, Yunnan 650032, China
| | - Hai Song
- 1 Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
21
|
Feldman LA, Fabre MS, Grasso C, Reid D, Broaddus WC, Lanza GM, Spiess BD, Garbow JR, McConnell MJ, Herst PM. Perfluorocarbon emulsions radiosensitise brain tumors in carbogen breathing mice with orthotopic GL261 gliomas. PLoS One 2017; 12:e0184250. [PMID: 28873460 PMCID: PMC5584944 DOI: 10.1371/journal.pone.0184250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/21/2017] [Indexed: 01/02/2023] Open
Abstract
Background Tumour hypoxia limits the effectiveness of radiation therapy. Delivering normobaric or hyperbaric oxygen therapy elevates pO2 in both tumour and normal brain tissue. However, pO2 levels return to baseline within 15 minutes of stopping therapy. Aim To investigate the effect of perfluorocarbon (PFC) emulsions on hypoxia in subcutaneous and intracranial mouse gliomas and their radiosensitising effect in orthotopic gliomas in mice breathing carbogen (95%O2 and 5%CO2). Results PFC emulsions completely abrogated hypoxia in both subcutaneous and intracranial GL261 models and conferred a significant survival advantage orthotopically (Mantel Cox: p = 0.048) in carbogen breathing mice injected intravenously (IV) with PFC emulsions before radiation versus mice receiving radiation alone. Carbogen alone decreased hypoxia levels substantially and conferred a smaller but not statistically significant survival advantage over and above radiation alone. Conclusion IV injections of PFC emulsions followed by 1h carbogen breathing, radiosensitises GL261 intracranial tumors.
Collapse
Affiliation(s)
- Lisa A Feldman
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA United States of America.,Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Marie-Sophie Fabre
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Carole Grasso
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Dana Reid
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - William C Broaddus
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA United States of America
| | - Gregory M Lanza
- Division of Cardiovascular Diseases, Washington University School of Medicine, St. Louis, MO United States of America
| | - Bruce D Spiess
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL United States of America
| | - Joel R Garbow
- Mallinckrodt Institute, Washington University School of Medicine, St. Louis, MO United States of America
| | - Melanie J McConnell
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Patries M Herst
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| |
Collapse
|
22
|
Hannen R, Hauswald M, Bartsch JW. A Rationale for Targeting Extracellular Regulated Kinases ERK1 and ERK2 in Glioblastoma. J Neuropathol Exp Neurol 2017; 76:838-847. [DOI: 10.1093/jnen/nlx076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Avril T, Vauléon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 2017; 6:e373. [PMID: 28846078 PMCID: PMC5608920 DOI: 10.1038/oncsis.2017.72] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress. During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply) challenges, with which they must cope to survive. Moreover, chemotherapy represents an additional extrinsic challenge that cancer cells are facing and to which they adapt in the case of resistance. As of today, resistance to chemotherapy and targeted therapies is one of the important issues that oncologists have to deal with for treating cancer patients. In this review, we first describe the key molecular mechanisms controlling the UPR and their implication in solid cancers. Then, we review the literature that connects cancer chemotherapy resistance mechanisms and activation of the UPR. Finally, we discuss the possible applications of targeting the UPR to bypass drug resistance.
Collapse
Affiliation(s)
- T Avril
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - E Vauléon
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - E Chevet
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| |
Collapse
|
24
|
HIF1α regulates glioma chemosensitivity through the transformation between differentiation and dedifferentiation in various oxygen levels. Sci Rep 2017; 7:7965. [PMID: 28801626 PMCID: PMC5554160 DOI: 10.1038/s41598-017-06086-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy plays a significant role in glioma treatment; however, it has limited effectiveness in extending the life expectancies of glioma patients. Traditional studies have attributed this lack of efficacy to glioma stem cells (GSCs) and their high resistance to chemotherapy, and hypoxia worsens this issue. In contrast, hyperoxia effectively alleviates hypoxia in glioma and sensitizes glioma cells to chemotherapy. In a summary of traditional studies, the majority of researchers overlooked the influence of hypoxia on differentiated cells because they only focused on the maintenance of GSCs stemness, which thus resulted in chemoresistance. Because of this background, we hypothesized that GSCs may be induced through dedifferentiation under hypoxic conditions, and hypoxia maintains GSCs stemness, which thus leads to resistance to chemotherapy. In contrast, hyperoxia inhibits the dedifferentiation process and promotes GSCs differentiation, which increases the sensitization of glioma cells to chemotherapy. Hypoxia-inducible factor-1α (HIF1α) contributes substantially to the stemness maintenance of GSCs and resistance of glioma to chemotherapy; thus, we investigated whether HIF1α regulates the resistance or sensitization of glioma cells to chemotherapy in different oxygen levels. It highlights a novel viewpoint on glioma chemosensitivity from the transformation between dedifferentiation and differentiation in different oxygen levels.
Collapse
|
25
|
Sun S, Kiang KMY, Ho ASW, Lee D, Poon MW, Xu FF, Pu JKS, Kan ANC, Lee NPY, Liu XB, Man K, Day PJR, Lui WM, Fung CF, Leung GKK. Endoplasmic reticulum chaperone prolyl 4-hydroxylase, beta polypeptide (P4HB) promotes malignant phenotypes in glioma via MAPK signaling. Oncotarget 2017; 8:71911-71923. [PMID: 29069756 PMCID: PMC5641099 DOI: 10.18632/oncotarget.18026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) chaperone Prolyl 4-hydroxylase, beta polypeptide (P4HB) has previously been identified as a novel target for chemoresistance in glioblastoma multiforme (GBM). Yet its functional roles in glioma carcinogenesis remain elusive. In clinical analysis using human glioma specimens and Gene Expression Omnibus (GEO) profiles, we found that aberrant expression of P4HB was correlated with high-grade malignancy and an angiogenic phenotype in glioma. Furthermore, P4HB upregulation conferred malignant characteristics including proliferation, invasion, migration and angiogenesis in vitro, and increased tumor growth in vivo via the mitogen-activated protein kinase (MAPK) signaling pathway. Pathway analysis suggested genetic and pharmacologic inhibition of P4HB suppressed MAPK expression and its downstream targets were involved in angiogenesis and invasion. This is the first study that demonstrates the oncogenic roles of P4HB and its underlying mechanism in glioma. Since tumor invasion and Vascularisation are typical hallmarks in malignant glioma, our findings uncover a promising anti-glioma mechanism through P4HB-mediated retardation of MAPK signal transduction.
Collapse
Affiliation(s)
- Stella Sun
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Karrie M Y Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Amy S W Ho
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Derek Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Ming-Wai Poon
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Fei-Fan Xu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Jenny K S Pu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Amanda N C Kan
- Department of Pathology and Clinical Biochemistry, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Nikki P Y Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Xiao-Bing Liu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Philip J R Day
- The Manchester Institute of Biotechnology, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Wai-Man Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Ching-Fai Fung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gilberto K K Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
26
|
Pandey V, Bhaskara VK, Babu PP. Implications of mitogen-activated protein kinase signaling in glioma. J Neurosci Res 2015; 94:114-27. [PMID: 26509338 DOI: 10.1002/jnr.23687] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/22/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
Gliomas are the most common primary central nervous system tumors. Gliomas originate from astrocytes, oligodendrocytes, and neural stem cells or their precursors. According to WHO classification, gliomas are classified into four different malignant grades ranging from grade I to grade IV based on histopathological features and related molecular aberrations. The induction and maintenance of these tumors can be attributed largely to aberrant signaling networks. In this regard, the mitogen-activated protein kinase (MAPK) network has been widely studied and is reported to be severely altered in glial tumors. Mutations in MAPK pathways most frequently affect RAS and B-RAF in the ERK, c-Jun N-terminal kinase (JNK), and p38 pathways leading to malignant transformation. Also, it is linked to both inherited and sequential accumulations of mutations that control receptor tyrosine kinase (RTK)-activated signal transduction pathways, cell cycle growth arrest pathways, and nonresponsive cell death pathways. Genetic alterations that modulate RTK signaling can also alter several downstream pathways, including RAS-mediated MAP kinases along with JNK pathways, which ultimately regulate cell proliferation and cell death. The present review focuses on recent literature regarding important deregulations in the RTK-activated MAPK pathway during gliomagenesis and progression.
Collapse
Affiliation(s)
- Vimal Pandey
- Laboratory of Neuroscience, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, AP, India
| | - Vasantha Kumar Bhaskara
- Laboratory of Neuroscience, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, AP, India
| | - Phanithi Prakash Babu
- Laboratory of Neuroscience, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, AP, India
| |
Collapse
|
27
|
WANG YONGGANG, ZHAN YIPING, PAN SHUYI, WANG HAIDONG, ZHANG DUNXIAO, GAO KAI, QI XUELING, YU CHUNJIANG. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis. Oncol Lett 2015; 10:189-195. [PMID: 26170997 PMCID: PMC4487135 DOI: 10.3892/ol.2015.3244] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/13/2015] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.
Collapse
Affiliation(s)
- YONG-GANG WANG
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - YI-PING ZHAN
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - SHU-YI PAN
- Department of Hyperbaric Oxygen, Navy General Hospital, Beijing 100048, P.R. China
| | - HAI-DONG WANG
- Department of Hyperbaric Oxygen, Navy General Hospital, Beijing 100048, P.R. China
| | - DUN-XIAO ZHANG
- Department of Hyperbaric Oxygen, Navy General Hospital, Beijing 100048, P.R. China
| | - KAI GAO
- Institute of Laboratory Animal Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - XUE-LING QI
- Department of Pathology, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - CHUN-JIANG YU
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
28
|
Lee D, Sun S, Zhang XQ, Zhang PD, Ho ASW, Kiang KMY, Fung CF, Lui WM, Leung GKK. MicroRNA-210 and Endoplasmic Reticulum Chaperones in the Regulation of Chemoresistance in Glioblastoma. J Cancer 2015; 6:227-32. [PMID: 25663939 PMCID: PMC4317757 DOI: 10.7150/jca.10765] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the commonest primary brain tumour in adults characterized by relentless recurrence due to resistance towards the standard chemotherapeutic agent temozolomide (TMZ). Prolyl 4-hydroxylase, beta polypeptide (P4HB), an endoplasmic reticulum (ER) chaperone, is known to be upregulated in TMZ-resistant GBM cells. MicroRNAs (miRNAs) are non-protein-coding transcripts that may play important roles in GBM chemoresistance. We surmised that miRNA dysregulations may contribute to P4HB upregulation, hence chemoresistance. We found that miRNA-210 (miR-210) was P4HB-targeting and was highly downregulated in TMZ-resistant GBM cells. Forced overexpression of miR-210 led to P4HB downregulation and a reduction in TMZ-resistance. A reciprocal relationship between their expressions was also verified in clinical glioma specimens. Our study is the first to demonstrate a potential link between miR-210 and ER chaperone in determining chemosensitivity in GBM. The findings have important translational implications in suggesting new directions of future studies.
Collapse
Affiliation(s)
- Derek Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Stella Sun
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Xiao Qin Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Ping De Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Amy S W Ho
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Karrie M Y Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Ching Fai Fung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Wai Man Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gilberto K K Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
29
|
LRIG1 Improves Chemosensitivity Through Inhibition of BCL-2 and MnSOD in Glioblastoma. Cell Biochem Biophys 2014; 71:27-33. [DOI: 10.1007/s12013-014-0139-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Zhang J, Lou X, Jin L, Zhou R, Liu S, Xu N, Liao DJ. Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions. Oncoscience 2014; 1:407-22. [PMID: 25594039 PMCID: PMC4284620 DOI: 10.18632/oncoscience.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022] Open
Abstract
Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development.
Collapse
Affiliation(s)
- Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Longyu Jin
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Rongjia Zhou
- Department of Genetics & Center for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Academy of Medical Science, Beijing, P.R. China
| | - D. Joshua Liao
- Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
31
|
Zhang X, Lv H, Zhou Q, Elkholi R, Chipuk JE, Reddy MVR, Reddy EP, Gallo JM. Preclinical pharmacological evaluation of a novel multiple kinase inhibitor, ON123300, in brain tumor models. Mol Cancer Ther 2014; 13:1105-16. [PMID: 24568969 DOI: 10.1158/1535-7163.mct-13-0847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ON123300 is a low molecular weight multikinase inhibitor identified through a series of screens that supported further analyses for brain tumor chemotherapy. Biochemical assays indicated that ON123300 was a strong inhibitor of Ark5 and CDK4, as well as growth factor receptor tyrosine kinases such as β-type platelet-derived growth factor receptor (PDGFRβ). ON123300 inhibited U87 glioma cell proliferation with an IC(50) 3.4 ± 0.1 μmol/L and reduced phosphorylation of Akt, yet it also unexpectedly induced Erk activation, both in a dose- and time-dependent manner that subsequently was attributed to relieving Akt-mediated C-Raf S259 inactivation and activating a p70S6K-initiated PI3K-negative feedback loop. Cotreatment with the EGFR inhibitor gefitinib produced synergistic cytotoxic effects. Pursuant to the in vitro studies, in vivo pharmacokinetic and pharmacodynamic studies of ON123300 were completed in mice bearing intracerebral U87 tumors following intravenous doses of 5 and 25 mg/kg alone, and also at the higher dose concurrently with gefitinib. ON123300 showed high brain and brain tumor accumulation based on brain partition coefficient values of at least 2.5. Consistent with the in vitro studies, single agent ON123300 caused a dose-dependent suppression of phosphorylation of Akt as well as activation of Erk in brain tumors, whereas addition of gefitinib to the ON123300 regimen significantly enhanced p-Akt inhibition and prevented Erk activation. In summary, ON123300 demonstrated favorable pharmacokinetic characteristics, and future development for brain tumor therapy would require use of combinations, such as gefitinib, that mitigate its Erk activation and enhance its activity.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Authors' Affiliations: Departments of Pharmacology and Systems Therapeutics and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Department of Pharmaceutical Science, University of South Florida, Tampa, Florida
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chiang MF, Chou PY, Wang WJ, Sze CI, Chang NS. Tumor Suppressor WWOX and p53 Alterations and Drug Resistance in Glioblastomas. Front Oncol 2013; 3:43. [PMID: 23459853 PMCID: PMC3586680 DOI: 10.3389/fonc.2013.00043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/17/2013] [Indexed: 12/27/2022] Open
Abstract
Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs) and appears to contribute, in part, to resistance to temozolomide (TMZ) and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1) is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.
Collapse
Affiliation(s)
- Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital Taipei, Taiwan ; Graduate Institute of Injury Prevention and Control, Taipei Medical University Taipei, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Sun S, Lee D, Ho ASW, Pu JKS, Zhang XQ, Lee NP, Day PJR, Lui WM, Fung CF, Leung GKK. Inhibition of prolyl 4-hydroxylase, beta polypeptide (P4HB) attenuates temozolomide resistance in malignant glioma via the endoplasmic reticulum stress response (ERSR) pathways. Neuro Oncol 2013; 15:562-77. [PMID: 23444257 DOI: 10.1093/neuonc/not005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM), the most aggressive malignant primary brain tumor of the central nervous system, is characterized by a relentless disease recurrence despite continued advancement in surgery, radiotherapy, and chemotherapy. Resistance to temozolomide (TMZ), a standard chemotherapeutic agent for GBM, remains a major challenge. Understanding the mechanisms behind TMZ resistance can direct the development of novel strategies for the prevention, monitoring, and treatment of tumor relapse. METHODS AND RESULTS Our research platform, based on the establishment of 2 pairs of TMZ-sensitive/resistant GBM cells (D54-S and D54-R; U87-S and U87-R), has successfully identified prolyl 4-hydroxylase, beta polypeptide (P4HB) over-expression to be associated with an increased IC50 of TMZ. Elevated P4HB expression was verified using in vivo xenografts developed from U87-R cells. Clinically, we found that P4HB was relatively up-regulated in the recurrent GBM specimens that were initially responsive to TMZ but later developed acquired resistance, when compared with treatment-naive tumors. Functionally, P4HB inhibition by RNAi knockdown and bacitracin inhibition could sensitize D54-R and U87-R cells to TMZ in vitro and in vivo, whereas over-expression of P4HB in vitro conferred resistance to TMZ in both D54-S and U87-S cells. Moreover, targeting P4HB blocked its protective function and sensitized glioma cells to TMZ through the PERK arm of the endoplasmic reticulum stress response. CONCLUSIONS Our study identified a novel target together with its functional pathway in the development of TMZ resistance. P4HB inhibition may be used alone or in combination with TMZ for the treatment of TMZ-resistant GBM.
Collapse
Affiliation(s)
- Stella Sun
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, People’s Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|