1
|
Hoffmann M, Sauer J, Book M, Ermler TF, Fischer P, Gerlach S, Beltagi K, Morgenroth A, Alexa R, Kranz J, Saar M. Mechanism of Action and Interaction of Garlic Extract and Established Therapeutics in Prostate Cancer. Int J Mol Sci 2025; 26:1777. [PMID: 40004239 PMCID: PMC11855885 DOI: 10.3390/ijms26041777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
A detailed characterization of the mechanism of action of garlic extract (GE) on prostate cancer (PCa) cells is essential to ensure its safe use as a complementary therapy, particularly when combined with established treatments. A case report highlighted the potential benefits of GE in PCa management. A patient diagnosed with PCa, presenting an initial prostate-specific antigen (PSA) of 11.8 ng/mL, maintained PSA levels between 3.5 and 6 ng/mL for over 14 years with daily GE intake. To study GE's anti-proliferative effects and interactions with established therapeutics, healthy prostate epithelial cells (PNT2) and PCa cells (LNCaP, PC3, VCaP) were treated with GE. Proliferation, Integrin β1 pattern, DNA-damage, as well as androgen receptor (AR) and Cytochrome P450 (CYP450) expression were investigated. GE reduced the proliferation of LNCaP and PC3 cells compared to healthy PNT2 cells but had contrary effects on VCaP cells. The combination of GE with standard therapies, including chemotherapy, androgen deprivation therapy (ADT), and Poly-(ADP-ribose)-Polymerase inhibitors (PARPi), reduced the efficacy of these treatments in tumor cells, potentially due to the GE-induced upregulation of the metabolic enzyme CYP2C9 in PCa cell lines. These findings indicate that while GE has anti-proliferative effects, the use of highly concentrated natural extracts must be carefully assessed by expert physicians on a case-by-case basis, especially when combined with established therapies.
Collapse
Affiliation(s)
- Marco Hoffmann
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Jana Sauer
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Marie Book
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Thomas Frank Ermler
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Petra Fischer
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sven Gerlach
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Kareem Beltagi
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Radu Alexa
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Jennifer Kranz
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Matthias Saar
- Department of Urology and Pediatric Urology, University Hospital RWTH Aachen, 52074 Aachen, Germany (T.F.E.); (K.B.); (R.A.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany;
| |
Collapse
|
2
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
3
|
Sanie-Jahromi F, Zia Z, Afarid M. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy. Chin Med 2023; 18:18. [PMID: 36803536 PMCID: PMC9936729 DOI: 10.1186/s13020-023-00725-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Garlic is one of the favorite herbs in traditional medicine that has been reported to have many medicinal features. The aim of the current study is to review the latest documents on the effect of garlic on diabetes, VEGF, and BDNF and, finally, to review the existing studies on the effect of garlic on diabetic retinopathy. MAIN TEXT The therapeutic effect of garlic on diabetes has been investigated in various studies. Diabetes, especially in advanced stages, is associated with complications such as diabetic retinopathy, which is caused by the alteration in the expression of molecular factors involved in angiogenesis, neurodegeneration, and inflammation in the retina. There are different in-vitro and in-vivo reports on the effect of garlic on each of these processes. Considering the present concept, we extracted the most related English articles from Web of Science, PubMed, and Scopus English databases from 1980 to 2022. All in-vitro and animal studies, clinical trials, research studies, and review articles in this area were assessed and classified. RESULT AND CONCLUSION According to previous studies, garlic has been confirmed to have beneficial antidiabetic, antiangiogenesis, and neuroprotective effects. Along with the available clinical evidence, it seems that garlic can be suggested as a complementary treatment option alongside common treatments for patients with diabetic retinopathy. However, more detailed clinical studies are needed in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Zahra Zia
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| |
Collapse
|
4
|
Hydrogen Sulphide-Based Therapeutics for Neurological Conditions: Perspectives and Challenges. Neurochem Res 2023; 48:1981-1996. [PMID: 36764968 PMCID: PMC10182124 DOI: 10.1007/s11064-023-03887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Central nervous system (CNS)-related conditions are currently the leading cause of disability worldwide, posing a significant burden to health systems, individuals and their families. Although the molecular mechanisms implicated in these disorders may be varied, neurological conditions have been increasingly associated with inflammation and/or impaired oxidative response leading to further neural cell damages. Therefore, therapeutic approaches targeting these defective molecular mechanisms have been vastly explored. Hydrogen sulphide (H2S) has emerged as a modulator of both inflammation and oxidative stress with a neuroprotective role, therefore, has gained interest in the treatment of neurological disorders. H2S, produced by endogenous sources, is maintained at low levels in the CNS. However, defects in the biosynthetic and catabolic routes for H2S metabolism have been identified in CNS-related disorders. Approaches to restore H2S availability using H2S-donating compounds have been recently explored in many models of neurological conditions. Nonetheless, we still need to elucidate the potential for these compounds not only to ameliorate defective biological routes, but also to better comprehend the implications on H2S delivery, dosage regimes and feasibility to successfully target CNS tissues. Here, we highlight the molecular mechanisms of H2S-dependent restoration of neurological functions in different models of CNS disease whilst summarising current administration approaches for these H2S-based compounds. We also address existing barriers in H2S donor delivery by showcasing current advances in mediating these constrains through novel biomaterial-based carriers for H2S donors.
Collapse
|
5
|
Imran KM, Ganguly A, Paul T, Powar M, Vlaisavljevich E, Cho CS, Allen IC. Magic bubbles: utilizing histotripsy to modulate the tumor microenvironment and improve systemic anti-tumor immune responses. Int J Hyperthermia 2023; 40:2244206. [PMID: 37580047 PMCID: PMC10430775 DOI: 10.1080/02656736.2023.2244206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
Focused Ultrasound (FUS) is emerging as a promising primary and adjunct therapy for the treatment of cancer. This includes histotripsy, which is a noninvasive, non-ionizing, non-thermal ultrasound guided ablation modality. As histotripsy has progressed from bench-to-bedside, it has become evident that this therapy has benefits beyond local tumor ablation. Specifically, histotripsy has the potential to shift the local tumor microenvironment from immunologically 'cold' to 'hot'. This is associated with the production of damage associated molecular patterns, the release of a selection of proinflammatory mediators, and the induction of inflammatory forms of cell death in cells just outside of the treatment zone. In addition to the induction of this innate immune response, histotripsy can also improve engagement of the adaptive immune system and promote systemic anti-tumor immunity targeting distal tumors and metastatic lesions. These tantalizing observations suggest that, in settings of widely metastatic disease burden, selective histotripsy of a limited number of accessible tumors could be a means of maximizing responsiveness to systemic immunotherapy. More work is certainly needed to optimize treatment strategies that best synergize histotripsy parameters with innate and adaptive immune responses. Likewise, rigorous clinical studies are still necessary to verify the presence and repeatability of these phenomena in human patients. As this technology nears regulatory approval for clinical use, it is our expectation that the insights and immunomodulatory mechanisms summarized in this review will serve as directional guides for rational clinical studies to validate and optimize the potential immunotherapeutic role of histotripsy tumor ablation.
Collapse
Affiliation(s)
- Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Manali Powar
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Institute for Critical and Applied Science Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, MI, USA
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Institute for Critical and Applied Science Center for Engineered Health, Virginia Tech, Blacksburg, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
6
|
Elegbeleye JA, Krishnamoorthy S, Bamidele OP, Adeyanju AA, Adebowale OJ, Agbemavor WSK. Health-promoting foods and food crops of West-Africa origin: The bioactive compounds and immunomodulating potential. J Food Biochem 2022; 46:e14331. [PMID: 36448596 DOI: 10.1111/jfbc.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022]
Abstract
The rural communities of the sub-Sahara regions in Africa are rich in diverse indigenous culinary knowledge and foods, food crops, and condiments such as roots/tubers, cereal, legumes/pulses, locust beans, and green leafy vegetables. These food crops are rich in micronutrients and phytochemicals, which have the potentials to address hidden hunger as well as promote health when consumed. Some examples of these are fermented foods such as ogi and plants such as Vernonia amygdalina (bitter leaf), Zingiber officinales (garlic), Hibiscus sabdariffa (Roselle), and condiments. Food crops from West Africa contain numerous bioactive substances such as saponins, alkaloids, tannins, phenolics, flavonoids, and monoterpenoid chemicals among others. These bioresources have proven biological and pharmacological activities due to diverse mechanisms of action such as immunomodulatory, anti-inflammatory, antipyretic, and antioxidant activities which made them suitable as candidates for nutraceuticals and pharma foods. This review seeks to explore the different processes such as fermentation applied during food preparation and food crops of West-African origin with health-promoting benefits. The different bioactive compounds present in such food or food crops are discussed extensively as well as the diverse application, especially regarding respiratory diseases. PRACTICAL APPLICATIONS: The plants and herbs summarized here are more easily accessible and affordable by therapists and others having a passion for promising medicinal properties of African-origin plants.The mechanisms and unique metabolic potentials of African food crops discussed in this article will promote their applicability as a template molecule for novel drug discoveries in treatment strategies for emerging diseases. This compilation of antiviral plants will help clinicians and researchers bring new preventive strategies in combating COVID-19 like viral diseases, ultimately saving millions of affected people.
Collapse
Affiliation(s)
| | - Srinivasan Krishnamoorthy
- Department of Technology Dissemination, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | | | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | | | - Wisdom Selorm Kofi Agbemavor
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon Accra, Ghana
| |
Collapse
|
7
|
Qi X, Jha SK, Jha NK, Dewanjee S, Dey A, Deka R, Pritam P, Ramgopal K, Liu W, Hou K. Antioxidants in brain tumors: current therapeutic significance and future prospects. Mol Cancer 2022; 21:204. [PMID: 36307808 PMCID: PMC9615186 DOI: 10.1186/s12943-022-01668-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Brain cancer is regarded among the deadliest forms of cancer worldwide. The distinct tumor microenvironment and inherent characteristics of brain tumor cells virtually render them resistant to the majority of conventional and advanced therapies. Oxidative stress (OS) is a key disruptor of normal brain homeostasis and is involved in carcinogenesis of different forms of brain cancers. Thus, antioxidants may inhibit tumorigenesis by preventing OS induced by various oncogenic factors. Antioxidants are hypothesized to inhibit cancer initiation by endorsing DNA repair and suppressing cancer progression by creating an energy crisis for preneoplastic cells, resulting in antiproliferative effects. These effects are referred to as chemopreventive effects mediated by an antioxidant mechanism. In addition, antioxidants minimize chemotherapy-induced nonspecific organ toxicity and prolong survival. Antioxidants also support the prooxidant chemistry that demonstrate chemotherapeutic potential, particularly at high or pharmacological doses and trigger OS by promoting free radical production, which is essential for activating cell death pathways. A growing body of evidence also revealed the roles of exogenous antioxidants as adjuvants and their ability to reverse chemoresistance. In this review, we explain the influences of different exogenous and endogenous antioxidants on brain cancers with reference to their chemopreventive and chemotherapeutic roles. The role of antioxidants on metabolic reprogramming and their influence on downstream signaling events induced by tumor suppressor gene mutations are critically discussed. Finally, the review hypothesized that both pro- and antioxidant roles are involved in the anticancer mechanisms of the antioxidant molecules by killing neoplastic cells and inhibiting tumor recurrence followed by conventional cancer treatments. The requirements of pro- and antioxidant effects of exogenous antioxidants in brain tumor treatment under different conditions are critically discussed along with the reasons behind the conflicting outcomes in different reports. Finally, we also mention the influencing factors that regulate the pharmacology of the exogenous antioxidants in brain cancer treatment. In conclusion, to achieve consistent clinical outcomes with antioxidant treatments in brain cancers, rigorous mechanistic studies are required with respect to the types, forms, and stages of brain tumors. The concomitant treatment regimens also need adequate consideration.
Collapse
Affiliation(s)
- Xuchen Qi
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.,Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India. .,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India. .,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700032, India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kritika Ramgopal
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China.
| | - Kaijian Hou
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China. .,School of Public Health, Shantou University, Shantou, 515000, Guangdong, China.
| |
Collapse
|
8
|
Tian Y, Ge Z, Xu M, Ge X, Zhao M, Ding F, Yin J, Wang X, You Y, Shi Z, Qian X. Diallyl trisulfide sensitizes radiation therapy on glioblastoma through directly targeting thioredoxin 1. Free Radic Biol Med 2022; 189:157-168. [PMID: 35921994 DOI: 10.1016/j.freeradbiomed.2022.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy is a standard-of-care treatment approach for glioblastoma (GBM) patients, but therapeutic resistance to radiotherapy remains a major challenge. Here we demonstrate that diallyl trisulfide (DATS) directly conjugates with cysteine (C) 32 and C35 (C32/35) residues of thioredoxin 1 (Trx1) through Michael addition reactions. Due to localizing in activity center of Trx1, the conjugation between DATS and C32/35 results in inhibition of Trx1 activity, therefore disturbing thioredoxin system and leading to accumulated levels of reactive oxygen species (ROS). High levels of Trx1 expression are correlated with poor prognosis of glioma patients. Notably, we reveal that DATS synergistically enhances irradiation (IR)-induced ROS accumulation, apoptosis, DNA damage, as well as inhibition of tumor growth of GBM cells. These findings highlight the potential benefits of DATS in sensitizing radiotherapy of GBM patients.
Collapse
Affiliation(s)
- Yangyang Tian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Miao Xu
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Mengjie Zhao
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Fangshu Ding
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianxing Yin
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiuxing Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; National Health Commission Key Laboratory of Antibody Technologies, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhumei Shi
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
9
|
Abouzed TK, Althobaiti F, Omran AF, Eldomany EB, El-Shazly SA, Alharthi F, Elkattawy AM, Kahilo KAA, Dorghamm DA. The chemoprevention of spirulina platensis and garlic against diethylnitrosamine induced liver cancer in rats via amelioration of inflammatory cytokines expression and oxidative stress. Toxicol Res (Camb) 2022; 11:22-31. [PMID: 35237408 PMCID: PMC8882791 DOI: 10.1093/toxres/tfab118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 10/29/2023] Open
Abstract
Natural antioxidant products play a vital role in the treatment and prevention of cancer disease because they have no side effects. This study aimed to compare the chemoprotective effect of Spirulina platensis (SP) and garlic against hepatocellular carcinoma (HCC) in rats. This study was being done by using 60 male Wistar rats and divided into four groups. Group (I): normal group. Group (II): HCC group induced by injection of a single dose of DEN (200 mg/kg/I.P) and after 14 days injected CCl4 (1 mg/kg/I.P) 3 times/week/six weeks. Group (III): HCC group received SP orally at a dose (500 mg/kg). Group (IV): HCC group received garlic (250 mg/kg) orally. The results revealed that the Spirulina and garlic treatment have a significant decrease in Glutamate pyruvate transaminase, Glutamate oxaloacetate transaminase, GGT, LDH, and the Malondialdehyde (MDA) activity, and furthermore, a significant increase in the total protein level, the superoxide dismutase (SOD), and Catalase (CAT) activity nearly to normal activity. Furthermore, the hepatic expression of tumor necrosis factor (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase, transforming growth factor-beta (TGF-β1), Heat Shock Protein glycoprotein 96 (HSPgp96), and Glypican 3 (GP3) were down regulated by the Spirulina and garlic treatment in comparison with those in HCC group. All findings reported that the chemoprotective of both Spirulina and garlic that have nearly the same effect may be due to antioxidant activity and inhibition of lipid peroxidation, amelioration of pro-inflammatory cytokine, HSPgp96, and GP3.
Collapse
Affiliation(s)
- Tarek Kamal Abouzed
- Biochemistry Department, Faculty of Veterinary, Medicine Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Fayez Althobaiti
- Biotechnology Department, College of Science, Taif University, Taif 21995, Saudi Arabia
| | - Alaa Faik Omran
- Biochemistry Department, Faculty of Veterinary, Medicine Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ehab Bedir Eldomany
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni Suef University, Beni Suef 62511, Egypt
| | - Samir Ahmed El-Shazly
- Biochemistry Department, Faculty of Veterinary, Medicine Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Fahad Alharthi
- Department of Biology, Collage of Science, Taif University, Taif 21995, Saudi Arabia
| | - Azza Mansour Elkattawy
- Biochemistry Department, Faculty of Veterinary, Medicine Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Khaled Abd Aleim Kahilo
- Biochemistry Department, Faculty of Veterinary, Medicine Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Doaa Abdallha Dorghamm
- Biochemistry Department, Faculty of Veterinary, Medicine Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
10
|
Nanostructured lipid base carrier for specific delivery of garlic oil through blood brain barrier against aggressiveness of glioma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Lu X, Wang C, Zhao M, Wu J, Niu Z, Zhang X, Simal-Gandara J, Süntar I, Jafari SM, Qiao X, Tang X, Han Z, Xiao J, Ningyang L. Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology. Crit Rev Food Sci Nutr 2021; 62:8467-8496. [PMID: 34058922 DOI: 10.1080/10408398.2021.1929058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review highlights main bioactive compounds and important biological functions especially anticancer effects of the garlic. In addition, we review current literature on the stability and bioavailability of garlic components. Finally, this review aims to provide a potential strategy for using nanotechnology to increase the stability and solubility of garlic components, providing guidelines for the qualities of garlic products to improve their absorption and prevent their early degradation, and extend their circulation time in the body. The application of nanotechnology to improve the bioavailability and targeting of garlic compounds are expected to provide a theoretical basis for the functional components of garlic to treat human health. We review the improvement of bioavailability and bioactivity of garlic bioactive compounds via nanotechnology, which could promisingly overcome the limitations of conventional garlic products, and would be used to prevent and treat cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Xiaoming Lu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chaofan Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Meng Zhao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jinxiang Wu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonglu Niu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain
| | - Ipek Süntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaozhen Tang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Ourense, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Li Ningyang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
12
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
13
|
Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C. Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther 2020; 220:107721. [PMID: 33144118 DOI: 10.1016/j.pharmthera.2020.107721] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults, and the most lethal form of glioma, characterized by variable histopathology, aggressiveness and poor clinical outcome and prognosis. GBMs constitute a challenge for oncologists because of their molecular heterogeneity, extensive invasion, and tendency to relapse. Glioma cells demonstrate a variety of deregulated genomic pathways and extensive interplay with epigenetic alterations. Epigenetic modifications have emerged as essential players in GBM research, with biomarker potential for tumor classification and prognosis and for drug targeting. Histone posttranslational modifications (PTMs) are crucial regulators of chromatin architecture and gene expression, playing a pivotal role in malignant transformation, tumor development and progression. Alteration in the expression of genes coding for lysine and arginine methyltransferases (G9a, SUV39H1 and SETDB1) and acetyltransferases and deacetylases (KAT6A, SIRT2, SIRT7, HDAC4, 6, 9) contribute to GBM pathogenesis. In addition, proteins of the sumoylation pathway are upregulated in GBM cell lines, including E1 (SAE1), E2 (Ubc9) components, and a SUMO-specific protease (SENP1). Preclinical and clinical studies are currently in progress targeting epigenetic enzymes in gliomas, including a new generation of histone deacetylase (HDAC), protein arginine methyltransferase (PRMT) and bromodomain (BRD) inhibitors. Herein, we provide an update on recent advances in glioma epigenetic research, focusing on the role of histone modifications and the use of epigenetic therapy as a valid treatment option for glioblastoma.
Collapse
Affiliation(s)
- Elena Kunadis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| |
Collapse
|
14
|
Miękus N, Marszałek K, Podlacha M, Iqbal A, Puchalski C, Świergiel AH. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020; 25:molecules25173804. [PMID: 32825600 PMCID: PMC7503525 DOI: 10.3390/molecules25173804] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
The broad spectrum of the mechanism of action of immune-boosting natural compounds as well as the complex nature of the food matrices make researching the health benefits of various food products a complicated task. Moreover, many routes are involved in the action of most natural compounds that lead to the inhibition of chronic inflammation, which results in a decrease in the ability to remove a pathogen asymptomatically and is connected to various pathological events, such as cancer. A number of cancers have been associated with inflammatory processes. The current review strives to answer the question of whether plant-derived sulfur compounds could be beneficial in cancer prevention and therapy. This review focuses on the two main sources of natural sulfur compounds: alliaceous and cruciferous vegetables. Through the presentation of scientific data which deal with the study of the chosen compounds in cancer (cell lines, animal models, and human studies), the discussion of food processing’s influence on immune-boosting food content is presented. Additionally, it is demonstrated that there is still a need to precisely demonstrate the bioavailability of sulfur-containing compounds from various types of functional food, since the inappropriate preparation of vegetables can significantly reduce the content of beneficial sulfur compounds. Additionally, there is an urgent need to carry out more epidemiological studies to reveal the benefits of several natural compounds in cancer prevention and therapy.
Collapse
Affiliation(s)
- Natalia Miękus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532 Warsaw, Poland
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, College of Natural Science, University of Rzeszow, Zelwerowicza 2D, 35-601 Rzeszow, Poland
- Correspondence: ; Tel.: +48-22606-36-03
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Aamir Iqbal
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Czesław Puchalski
- Department of Bioenergetics and Food Analysis, Faculty of Bogy and Agriculture, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszow, Poland;
| | - Artur H. Świergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, 36 Rakowiecka, 02-532 Warsaw, Poland
| |
Collapse
|
15
|
Chen R, Zhang M, Zhou Y, Guo W, Yi M, Zhang Z, Ding Y, Wang Y. The application of histone deacetylases inhibitors in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:138. [PMID: 32682428 PMCID: PMC7368699 DOI: 10.1186/s13046-020-01643-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The epigenetic abnormality is generally accepted as the key to cancer initiation. Epigenetics that ensure the somatic inheritance of differentiated state is defined as a crucial factor influencing malignant phenotype without altering genotype. Histone modification is one such alteration playing an essential role in tumor formation, progression, and resistance to treatment. Notably, changes in histone acetylation have been strongly linked to gene expression, cell cycle, and carcinogenesis. The balance of two types of enzyme, histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines the stage of histone acetylation and then the architecture of chromatin. Changes in chromatin structure result in transcriptional dysregulation of genes that are involved in cell-cycle progression, differentiation, apoptosis, and so on. Recently, HDAC inhibitors (HDACis) are identified as novel agents to keep this balance, leading to numerous researches on it for more effective strategies against cancers, including glioblastoma (GBM). This review elaborated influences on gene expression and tumorigenesis by acetylation and the antitumor mechanism of HDACis. Besdes, we outlined the preclinical and clinical advancement of HDACis in GBM as monotherapies and combination therapies.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yangmei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjing Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yanpeng Ding
- Department of Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430030, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
16
|
Adewole KE. Nigerian antimalarial plants and their anticancer potential: A review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:92-113. [DOI: 10.1016/j.joim.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
|
17
|
Das A, Alshareef M, Henderson F, Martinez Santos JL, Vandergrift WA, Lindhorst SM, Varma AK, Infinger L, Patel SJ, Cachia D. Ganoderic acid A/DM-induced NDRG2 over-expression suppresses high-grade meningioma growth. Clin Transl Oncol 2019; 22:1138-1145. [PMID: 31732915 DOI: 10.1007/s12094-019-02240-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022]
Abstract
PURPOSE N-myc downstream-regulated gene 2 (NDRG2) is down-regulated in grade-III meningioma [anaplastic meningioma (AM)] and associated with clinically aggressive behavior. Current therapies in the treatment of high-grade meningioma are lacking with limited success. This study aims to validate the effect of NDRG2-targeted therapy using structurally related bioactive triterpene compounds derived from the edible mushroom Ganoderma lucidum (ganoderic acid A:GA-A/ganoderic acid DM:GA-DM) in human AM in relevant pre-clinical models. METHODS Tissue samples from the AM tumor regions of three human patients and control non-tumor samples were used to analyze the expression pattern of NDRG2. In vitro cell culture and in vivo cell-line-derived orthotopic xenograft animal models of AM were utilized to assess efficacy of treatment with GA-A/DM. RESULTS Downregulation of NDRG2 expression was observed in surgically resected high-grade meningiomas compared to normal brain. These results prompt us to use NDRG2-targeting agents GA-A/DM. In vitro results showed that 72-h treatments of 25 µM GA-A/DM induced AM cell death, upregulate NDRG2 protein expression, downregulate NDRG2 promoter methylation in meningioma cells as compared to azacitidine and decitabine, the most commonly used demethylating agents. Our results also demonstrated that GA-A/DM does not have any detrimental effect on normal human neurons and arachnoid cells. GA-A/DM promoted apoptotic factors (Bax) while suppressing MMP-9, p-P13K, p-AKT, p-mTOR, and Wnt-2 protein expression. RNAi-mediated knockdown of NDRG2 protein expression increased tumor proliferation, while forced expression of wt-NDRG2 decreased proliferation in an in vitro model. Magnetic resonance (MR) imaging and Hematoxylin (H&E) staining demonstrated gross reduction of tumor volume in GA-A/DM treated mice at 5 weeks when compared with saline-treated orthotopic AM xenografted controls. There was an overall decrease in tumor cell proliferation with increased survival in GA-A/DM-treated animals. Enzyme assays showed that GA-A/DM did not negatively impact hepatic function. CONCLUSION GA-A/DM may be a promising natural therapeutic reagent in the treatment of AM by suppressing growth via NDRG2 modulation and altering of intracellular signal pathways. We have shown it could potentially be an effective treatment for AM with decreased cellular proliferation in vitro, decreased tumor volume and increased survival in vivo.
Collapse
Affiliation(s)
- A Das
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - M Alshareef
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - F Henderson
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - J L Martinez Santos
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - W A Vandergrift
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - S M Lindhorst
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - A K Varma
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - L Infinger
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - S J Patel
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - D Cachia
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
18
|
Salehi B, Zucca P, Orhan IE, Azzini E, Adetunji CO, Mohammed SA, Banerjee SK, Sharopov F, Rigano D, Sharifi-Rad J, Armstrong L, Martorell M, Sureda A, Martins N, Selamoğlu Z, Ahmad Z. Allicin and health: A comprehensive review. Trends Food Sci Technol 2019; 86:502-516. [DOI: 10.1016/j.tifs.2019.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Huang D, Cui L, Ahmed S, Zainab F, Wu Q, Wang X, Yuan Z. An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs. Food Chem Toxicol 2019; 123:574-594. [DOI: 10.1016/j.fct.2018.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
20
|
Yelton CJ, Ray SK. Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. ACTA ACUST UNITED AC 2018; 5. [PMID: 30701185 PMCID: PMC6348296 DOI: 10.20517/2347-8659.2018.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM), which is the most common primary central nervous system malignancy in adults, has long presented a formidable challenge to researchers and clinicians alike. Dismal 5-year survival rates of the patients with these tumors and the ability of the recurrent tumors to evade primary treatment strategies have prompted a need for alternative therapies in the treatment of GBM. Histone deacetylase (HDAC) inhibitors are currently a potential epigenetic therapy modality under investigation for use in GBM with mixed results. While these agents show promise through a variety of proposed mechanisms in the pre-clinical realm, only several of these agents have shown this same promise when translated into the clinical arena, either as monotherapy or for use in combination regimens. This review will examine the current state of use of HDAC inhibitors in GBM, the mechanistic rationale for use of HDAC inhibitors in GBM, and then examine an exciting new mechanistic revelation of certain HDAC inhibitors that promote antitumor immunity in GBM. The details of this antitumor immunity will be discussed with an emphasis on application of this antitumor immunity towards developing alternative therapies for treatment of GBM. The final section of this article will provide an overview of the current state of immunotherapy targeted specifically to GBM.
Collapse
Affiliation(s)
- Caleb J Yelton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
21
|
Anwar A, Gould E, Tinson R, Iqbal J, Hamilton C. Redox Modulation at Work: Natural Phytoprotective Polysulfanes From Alliums Based on Redox-Active Sulfur. ACTA ACUST UNITED AC 2018; 4:397-407. [PMID: 30416940 PMCID: PMC6208768 DOI: 10.1007/s40495-018-0153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose of review This article provides a brief overview of natural phytoprotective products of allium with a special focus on the therapeutic potential of diallyl polysulfanes from garlic, their molecular targets and their fate in the living organisms. A comprehensive overview of antimicrobial and anticancer properties of published literature is presented for the reader to understand the effective concentrations of polysulfanes and their sensitivity towards different human pathogenic microbes, fungi, and cancer cell lines. Recent findings The article finds polysulfanes potentials as new generation novel antibiotics and chemo preventive agent. The effective dose rates of polysulfanes for antimicrobial properties are in the range of 0.5-40 mg/L and for anticancer 20-100 μM. The molecular targets for these redox modulators are mainly cellular thiols as well as inhibition and/or activation of certain cellular proteins in cancer cell lines. Summary Antimicrobial and anticancer activities of polysulfanes published in the literature indicate that with further development, they could be promising candidates for cancer prevention due to their selectivity towards abnormal cells.
Collapse
Affiliation(s)
- Awais Anwar
- Ecospray Limited, Grange Farm, Hilborough, Thetford, Norfolk, IP26 5BT UK.,2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Emma Gould
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Ryan Tinson
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Javaid Iqbal
- 3Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Chris Hamilton
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
22
|
Petrovic V, Nepal A, Olaisen C, Bachke S, Hira J, Søgaard CK, Røst LM, Misund K, Andreassen T, Melø TM, Bartsova Z, Bruheim P, Otterlei M. Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress. Nutrients 2018; 10:nu10040450. [PMID: 29621132 PMCID: PMC5946235 DOI: 10.3390/nu10040450] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
The use of garlic and garlic-based extracts has been linked to decreased incidence of cancer in epidemiological studies. Here we examine the molecular and cellular activities of a simple homemade ethanol-based garlic extract (GE). We show that GE inhibits growth of several different cancer cells in vitro, as well as cancer growth in vivo in a syngeneic orthotopic breast cancer model. Multiple myeloma cells were found to be especially sensitive to GE. The GE was fractionated using solid-phase extractions, and we identified allicin in one GE fraction; however, growth inhibitory activities were found in several additional fractions. These activities were lost during freeze or vacuum drying, suggesting that the main anti-cancer compounds in GE are volatile. The anti-cancer activity was stable for more than six months in −20 °C. We found that GE enhanced the activities of chemotherapeutics, as well as MAPK and PI3K inhibitors. Furthermore, GE affected hundreds of proteins involved in cellular signalling, including changes in vital cell signalling cascades regulating proliferation, apoptosis, and the cellular redox balance. Our data indicate that the reduced proliferation of the cancer cells treated by GE is at least partly mediated by increased endoplasmic reticulum (ER) stress.
Collapse
Affiliation(s)
- Voin Petrovic
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Anala Nepal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Camilla Olaisen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Siri Bachke
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Jonathan Hira
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Lisa M Røst
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Trygve Andreassen
- MR core facility, Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Torun M Melø
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Zdenka Bartsova
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|
23
|
Jurkowska H, Wróbel M, Kaczor-Kamińska M, Jasek-Gajda E. A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity. Amino Acids 2017; 49:1855-1866. [PMID: 28852876 PMCID: PMC5646106 DOI: 10.1007/s00726-017-2484-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/18/2017] [Indexed: 01/15/2023]
Abstract
The study was conducted to elucidate the mechanism of antiproliferative and antioxidative action of diallyl trisulfide (DATS), a garlic-derived organosulfur compound. Changes in the l-cysteine desulfuration, and the levels of cystathionine and non-protein thiols in DATS-treated human glioblastoma (U87MG) and neuroblastoma (SH-SY5Y) cells were investigated. The inhibition of proliferation of the investigated cells by DATS was correlated with an increase in the inactivated form of Bcl-2. In U87MG cells, an increased level of sulfane sulfur and an increased activity of 3-mercaptopyruvate sulfurtransferase (MPST) and rhodanese, the enzymes involved in sulfane sulfur generation and transfer, suggest that DATS can function as a donor of sulfane sulfur atom, transferred by sulfurtransferases, to sulfhydryl groups of cysteine residues of Bcl-2 and in this way lower the level of active form of Bcl-2 by S-sulfuration. Diallyl trisulfide antioxidative effects result from an increased level of cystathionine, a precursor of cysteine, and an increased glutathione level. MPST and rhodanese, the level of which is increased in the presence of DATS, can serve as antioxidant proteins.
Collapse
Affiliation(s)
- Halina Jurkowska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland.
| | - Maria Wróbel
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 7 Kopernika St, 31-034, Kraków, Poland
| |
Collapse
|
24
|
Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of glioma cells by inactivating Wnt/β-catenin signaling. Cell Tissue Res 2017; 370:379-390. [PMID: 28815294 DOI: 10.1007/s00441-017-2678-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Aberrant activation of Wnt/β-catenin signaling leads to increased cell proliferation and survival and promotes the development of various human tumors, including glioma, one of the most common primary brain tumors. The treatment efficacy of many anticancer drugs remains limited or unsatisfactory and it is urgently necessary to develop effective and low-toxicity anticancer drugs or strategies, especially for glioma. Here, we report that diallyl trisulfide suppresses survival, migration, invasion and angiogenesis in glioma cells. These effects were associated with inhibition of the Wnt/β-catenin signaling cascade, which was accompanied by decreased expression of LRP6, TRIM29 and Pygo2. A dual-luciferase reporter assay confirmed that DATS treatment decreased TCF/LEF-mediated transcription. Finally, a nude mouse tumorigenicity model was used to examine the biological effect of diallyl trisulfide in vivo. Consistent with the previous results, diallyl trisulfide inhibited proliferation, invasion and angiogenesis in glioma cells by suppressing Wnt/β-catenin signaling.
Collapse
|
25
|
Puccinelli MT, Stan SD. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment. Int J Mol Sci 2017; 18:ijms18081645. [PMID: 28788092 PMCID: PMC5578035 DOI: 10.3390/ijms18081645] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS), a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Michael T Puccinelli
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Silvia D Stan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
26
|
Choi YH. Diallyl trisulfide induces apoptosis and mitotic arrest in AGS human gastric carcinoma cells through reactive oxygen species-mediated activation of AMP-activated protein kinase. Biomed Pharmacother 2017; 94:63-71. [PMID: 28753455 DOI: 10.1016/j.biopha.2017.07.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/01/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Diallyl trisulfide (DATS), one of the principal constituents of garlic oil, is a kind of organosulfur compound with high anti-cancer activity. Although inhibition of cancer cell proliferation by DATS is known to be associated with the induction of apoptosis and cell cycle arrest related to reactive oxygen species (ROS) production, it is still necessary to study the detailed mechanisms. In this study, we investigated the role of ROS on the activation of AMP-activated protein kinase (AMPK) in DATS-induced apoptosis and cell cycle arrest in AGS human gastric carcinoma cells. The results of the present study indicate that DATS inhibited proliferation of AGS cells by promoting apoptosis, and accumulating cellular portion of G2/M phase via the induction of cyclin B1 and cyclin-dependent kinase p21(WAF1/CIP1). The phosphorylation of histone H3 was also markedly increased following treatment with DATS, revealing that DATS stimulated a mitotic arrest, not the G2 phase. Furthermore, we found that DATS concurrently induced phosphorylation of AMPK; however, chemical inhibition of AMPK by compound C, an AMPK inhibitor, significantly blocked apoptosis induced by DATS, suggesting that DATS induces cytotoxicity of AGS cells through the AMPK-dependent pathway. Moreover, DATS provoked intracellular ROS generation and the loss of mitochondrial membrane potential, and in particular, when ROS production was blocked by antioxidant N-acety-l-cysteine, both AMPK activation and growth inhibition by DATS were completely abolished. Collectively, these findings suggest that DATS inhibited growth of AGS cells, which was mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis, and cell cycle arrest, through a ROS-dependent activation of AMPK pathway.
Collapse
Affiliation(s)
- Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea; Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 47340, Republic of Korea.
| |
Collapse
|
27
|
Wei Z, Shan Y, Tao L, Liu Y, Zhu Z, Liu Z, Wu Y, Chen W, Wang A, Lu Y. Diallyl trisulfides, a natural histone deacetylase inhibitor, attenuate HIF-1α synthesis, and decreases breast cancer metastasis. Mol Carcinog 2017; 56:2317-2331. [DOI: 10.1002/mc.22686] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Zhonghong Wei
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| | - Yunlong Shan
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| | - Li Tao
- Department of Pharmacy; College of Medicine, Yangzhou University; Yang zhou Jiangsu province China
| | - Yuping Liu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| | - Zhijie Zhu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| | - Zhaoguo Liu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| | - Yuanyuan Wu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| | - Wenxing Chen
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| | - Aiyun Wang
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| | - Yin Lu
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica; Nanjing Jiangsu Province China
| |
Collapse
|
28
|
Hall A, Troupin A, Londono-Renteria B, Colpitts TM. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection. Viruses 2017. [PMID: 28644404 PMCID: PMC5537651 DOI: 10.3390/v9070159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.
Collapse
Affiliation(s)
- Alex Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
29
|
Abstract
Cancer remains one of the leading causes of death around the world. Initially it is recognized as a genetic disease, but now it is known to involve epigenetic abnormalities along with genetic alterations. Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. It includes changes in DNA methylation, histone modifications, and RNA interference. Although it is heritable, environmental factors such as diet could directly influence epigenetic mechanisms in humans. This article will focus on the role of dietary patterns and phytochemicals that have been demonstrated to influence the epigenome and more precisely histone and non-histone proteins modulation by acetylation that helps to induce apoptosis and phosphorylation inhibition, which counteracts with cells proliferation. Recent developments discussed here enhance our understanding of how dietary intervention could be beneficial in preventing or treating cancer and improving health outcomes.
Collapse
Affiliation(s)
- Wissam Zam
- a Department of Analytical and Food Chemistry , Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Al-Quadmous , Tartous , Syrian Arab Republic
| | - Aziz Khadour
- b Department of Microbiology , Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Al-Quadmous , Tartous , Syrian Arab Republic
| |
Collapse
|
30
|
Jiang X, Zhu X, Liu N, Xu H, Zhao Z, Li S, Li S, Cai J, Cao J. Diallyl Trisulfide Inhibits Growth of NCI-H460 in Vitro and in Vivo, and Ameliorates Cisplatin-Induced Oxidative Injury in the Treatment of Lung Carcinoma in Xenograft Mice. Int J Biol Sci 2017; 13:167-178. [PMID: 28255269 PMCID: PMC5332871 DOI: 10.7150/ijbs.16828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
Diallyl trisulfide (DATS), an organosulfuric component of garlic oil, exhibits potential anticancer and chemopreventive effects. Cisplatin (DDP), a common chemotherapeutic agent, has provided great therapeutic contributions to treating solid tumors, but with serious side effects. Here, we verified the anti-tumor properties of DATS on lung cancer in vitro and in vivo, and evaluated synergistic effects of DATS combined with DDP on the NCI-H460 xenograft model. Significantly decreased cell viabilities, cell cycle G1 arrest, and apoptosis induction were observed in DATS treated NCI-H460 cells (p<0.05). And injection of DATS (30 or 40 mg/kg) to female Balb/c mice significantly inhibited the growth of human NCI-H460 cell tumor xenograft (p<0.001). Moreover, DATS in combination with DDP exhibited enhanced anti-tumor activity via induction of apoptosis. Apoptosis pathways were confirmed by modulation of p53, Bcl-2 family members; induction of active caspase-3/8/9 and activation of JNK- and p38-MAPK pathways. Interestedly, DATS+DDP administration exerted fewer side effects, such as suppressing the weight loss and ameliorating DDP-induced oxidative injury, especially in renal parenchyma. In addition, increased E-cadherin and decreased MMP-9 expression levels were observed in DATS-treated tumor tissues. These studies provide supports that DATS might be a potential candidate for combination with DDP in cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Na Liu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Hongya Xu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China.; Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan, Shandong 250101, P.R. China.; Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu 222006, P.R. China
| | - Siying Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P.R. China
| | - Shanzhong Li
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu 222006, P.R. China
| | - Jianhua Cai
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu 222006, P.R. China
| | - Jimin Cao
- Jiangsu Shengshi Kangde Biotech Corporation, Lianyungang, Jiangsu 222006, P.R. China
| |
Collapse
|
31
|
Yagdi E, Cerella C, Dicato M, Diederich M. Garlic-derived natural polysulfanes as hydrogen sulfide donors: Friend or foe? Food Chem Toxicol 2016; 95:219-33. [DOI: 10.1016/j.fct.2016.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
|
32
|
S-allylmercapto-l-cysteine modulates MUC5AC and AQP5 secretions in a COPD model via NF-кB signaling pathway. Int Immunopharmacol 2016; 39:307-313. [PMID: 27517516 DOI: 10.1016/j.intimp.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022]
Abstract
Garlic has shown versatile medicinal activities in the prevention and treatment of diseases such as chronic obstructive pulmonary disease (COPD). However, no individual garlic bioactive components have yet been determined in the COPD treatment effects. In this work, S-allylmercapto-l-cysteine (SAMC) identified in the aged garlic was selected as a model compound to determine its COPD therapeutic potential. The COPD model was established by using lipopolysaccharides (LPS) to stimulate the human airway submucosal gland cell line SPC-A1. Previous studies show that both MUC5AC up-regulation and AQP5 down-regulation play an important role in viscous COPD mucus secretions. The modulation effects of SAMC on LPS-induced MUC5AC and AQP5 productions in SPC-A1 cells were then evaluated. Pretreatment of the SPC-A1 cells with SAMC attenuated MUC5AC secretion and increased AQP5 expression in a dose-dependent manner in the non-cytotoxic concentration range of 20 to 100μM. Mechanistic studies suggested that SAMC could suppress the accumulation of MUC5AC mRNA and inhibit IкBα degradation and NF-кB p65 translocation. These results suggest that SAMC could be a promising candidate in the prevention and treatment of MUC5AC-associated disorders such as COPD.
Collapse
|
33
|
Das A, McDonald DG, Dixon-Mah YN, Jacqmin DJ, Samant VN, Vandergrift WA, Lindhorst SM, Cachia D, Varma AK, Vanek KN, Banik NL, Jenrette JM, Raizer JJ, Giglio P, Patel SJ. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma. Tumour Biol 2016; 37:7525-34. [PMID: 26684801 DOI: 10.1007/s13277-015-4621-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023] Open
Abstract
Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Yaenette N Dixon-Mah
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dustin J Jacqmin
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Vikram N Samant
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - William A Vandergrift
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Scott M Lindhorst
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David Cachia
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Abhay K Varma
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kenneth N Vanek
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L Banik
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Joseph M Jenrette
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Jeffery J Raizer
- Department of Neurology and Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pierre Giglio
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neurological Surgery, Ohio State University Wexner Medical College, Columbus, OH, 43210, USA
| | - Sunil J Patel
- Department of Neurosurgery (Divisions of Neuro-oncology) and MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
34
|
Wang K, Wang Y, Qi Q, Zhang F, Zhang Y, Zhu X, Liu G, Luan Y, Zhao Z, Cai J, Cao J, Li S. Inhibitory effects of S -allylmercaptocysteine against benzo(a)pyrene-induced precancerous carcinogenesis in human lung cells. Int Immunopharmacol 2016; 34:37-43. [DOI: 10.1016/j.intimp.2016.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 01/08/2023]
|
35
|
Clinical evaluation of an antiinflammatory and antioxidant diet effect in 30 dogs affected by chronic otitis externa: preliminary results. Vet Res Commun 2016; 40:29-38. [PMID: 26743397 PMCID: PMC4754334 DOI: 10.1007/s11259-015-9651-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Abstract
The aim of this evaluation study was to assess the possible role of a specific nutraceutical diet in relieving main clinical symptoms of chronic bilateral otitis externa (occlusion of ear canal, erythema, discharge quantity, and odor) in 30 adult dogs. Thirty dogs of different breeds (mean age ± SEM; 6.03 ± 0.15 years and mean weight ± SEM; 32.01 ± 1.17 Kg; 53.3% males, 46.6% females) with evident chronic clinical otitis symptoms were equally divided and randomly assigned to receive either the nutraceutical diet (ND group) or a standard diet (SD group) over a period of 90 days. In all cases a topical pharmacological treatment was given. The nutraceutical diet, also endowed with anti-inflammatory and antioxidant activities, significantly decreased the mean score intensity of all symptoms after 90 days of intervention (P < 0.0001) with the exception of Malassezia pachydermatis infection which was only slightly reduced. Our investigation is one of the few evidence-based results where a commercial nutraceutical diet has been proven effective, in combination with drugs, in relieving otitis externa-related symptoms. This study opens new insights into otitis externa clinical management providing evidence of efficacy of a combined therapy with drugs and a specific nutraceutical diet.
Collapse
|
36
|
Abstract
The three endogenous gaseous transmitters - nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) - regulate a number of key biological functions. Emerging data have revealed several new mechanisms for each of these three gasotransmitters in tumour biology. It is now appreciated that they show bimodal pharmacological character in cancer, in that not only the inhibition of their biosynthesis but also elevation of their concentration beyond a certain threshold can exert anticancer effects. This Review discusses the role of each gasotransmitter in cancer and the effects of pharmacological agents - some of which are in early-stage clinical studies - that modulate the levels of each gasotransmitter. A clearer understanding of the pharmacological character of these three gases and the mechanisms underlying their biological effects is expected to guide further clinical translation.
Collapse
|
37
|
Das A, Cheng RR, Hilbert MLT, Dixon-Moh YN, Decandio M, Vandergrift WA, Banik NL, Lindhorst SM, Cachia D, Varma AK, Patel SJ, Giglio P. Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG-ROS1 Fusion-Positive Glioblastoma. CANCER GROWTH AND METASTASIS 2015; 8:51-60. [PMID: 26648752 PMCID: PMC4667559 DOI: 10.4137/cgm.s32801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GB) is the most common malignant brain tumor. Drug resistance frequently develops in these tumors during chemotherapy. Therefore, predicting drug response in these patients remains a major challenge in the clinic. Thus, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Robust experimental evidence has shown that the main reason for failure of treatments is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK), c-Met (hepatocyte growth factor receptor), and oncogenic c-ros oncogene1 (ROS1: RTK class orphan) fusion kinase FIG (fused in GB)-ROS1. As such, these could be attractive targets for GB therapy. The study subjects consisted of 19 patients who underwent neurosurgical resection of GB tissues. Our in vitro and ex vivo models promisingly demonstrated that treatments with crizotinib (PF-02341066: dual ALK/c-Met inhibitor) and temozolomide in combination induced synergistic antitumor activity on FIG-ROS1-positive GB cells. Our results also showed that ex vivo FIG-ROS1+ slices (obtained from GB patients) when cultured were able to preserve tissue architecture, cell viability, and global gene-expression profiles for up to 14 days. Both in vitro and ex vivo studies indicated that combination blockade of FIG, p-ROS1, p-ALK, and p-Met augmented apoptosis, which mechanistically involves activation of Bim and inhibition of survivin, p-Akt, and Mcl-1 expression. However, it is important to note that we did not see any significant synergistic effect of crizotinib and temozolomide on FIG-ROS1-negative GB cells. Thus, these ex vivo culture results will have a significant impact on patient selection for clinical trials and in predicting response to crizotinib and temozolomide therapy. Further studies in different animal models of FIG-ROS1-positive GB cells are warranted to determine useful therapies for the management of human GBs.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Ron Ron Cheng
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Megan L T Hilbert
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Yaenette N Dixon-Moh
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Michele Decandio
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | | | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA. ; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Scott M Lindhorst
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - David Cachia
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Abhay K Varma
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Sunil J Patel
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Pierre Giglio
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA. ; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
38
|
Das A, Miller R, Lee P, Holden CA, Lindhorst SM, Jaboin J, Vandergrift WA, Banik NL, Giglio P, Varma AK, Raizer JJ, Patel SJ. A novel component from citrus, ginger, and mushroom family exhibits antitumor activity on human meningioma cells through suppressing the Wnt/β-catenin signaling pathway. Tumour Biol 2015; 36:7027-34. [PMID: 25864108 DOI: 10.1007/s13277-015-3388-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/24/2015] [Indexed: 12/22/2022] Open
Abstract
Recurrent meningiomas constitute an uncommon but significant problem after standard (surgery and radiation) therapy failure. Current chemotherapies (hydroxyurea, RU-486, and interferon-α) are only of marginal benefit. There is an urgent need for more effective treatments for meningioma patients who have failed surgery and radiation therapy. Limonin, Tangeritin, Zerumbone, 6-Gingerol, Ganoderic Acid A, and Ganoderic Acid DM are some of the plant derivatives that have anti-tumorgenic properties and cause cell death in meningioma cells in vitro. Due to its ease of administration, long-term tolerability, and low incidence of long-term side effects, we explored its potential as a therapeutic agent against meningiomas by examining their efficacy in vitro against meningioma cells. Treatment effects were assessed using MTT assay, Western blot analysis, caspases assay, and DNA fragmentation assay. Results indicated that treatments of IOMM-Lee and CH157MN meningioma cells with Limonin, Tangeritin, Zerumbone, 6-Gingerol, Ganoderic Acid A, and Ganoderic Acid DM induced apoptosis with enhanced phosphorylation of glycogen synthase kinase 3 β (GSK3β) via inhibition of the Wnt5/β-catenin pathway. These drugs did not induce apoptosis in normal human neurons. Other events in apoptosis included downregulation of tetraspanin protein (TSPAN12), survival proteins (Bcl-XL and Mcl-1), and overexpression apoptotic factors (Bax and caspase-3). These results provide preliminary strong evidence that medicinal plants containing Limonin, Tangeritin, 6-Gingerol, Zerumbone, Ganoderic Acid A, and Ganoderic Acid DM can be applied to high-grade meningiomas as a therapeutic agent, and suggests that further in vivo studies are necessary to explore its potential as a therapeutic agent against malignant meningiomas.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Neurosurgery, Neuro-oncology Division, MUSC Brain and Spine Tumor Program CSB 310, Medical University of South Carolina at Charleston, Charleston, SC, 29425, USA.
| | - Rickey Miller
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Philip Lee
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Scott M Lindhorst
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jerry Jaboin
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - William A Vandergrift
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Pierre Giglio
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA.,Department of Neurological Surgery, Wexner Medical College, Ohio State University, Columbus, OH, 43210, USA
| | - Abhay K Varma
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jeffery J Raizer
- Department of Neurology and Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sunil J Patel
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
39
|
Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ. MicroRNAs in osteosarcoma. Clin Chim Acta 2015; 444:9-17. [PMID: 25661090 DOI: 10.1016/j.cca.2015.01.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity that principally emerges in children and adolescents. Presently, the prognosis of OS patients remains poor due to resistance to chemotherapy, highlighting the need for new therapeutic approaches. MicroRNAs (miRNAs), a class of small noncoding RNA molecules, can negatively modulate protein expression at the post-transcriptional level. miRNAs regulate a variety of normal physiologic processes and are involved in tumorigenesis and development of multiple malignancies, including OS. Some miRNAs are differentially expressed in OS tissues, cell lines and serum, and have been shown to correlate with the malignant phenotype and prognosis. These altered miRNAs function as oncogenes or tumor suppressor genes in this process. Moreover, restoration of miRNA expression has shown promise for the treatment of OS. Here, we describe miRNA biochemistry with a focus on expression profile, role and therapeutic potential in OS. A better understanding will facilitate the identification and characterization of novel biomarkers and development of miRNA-targeted therapies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Jun Zhang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Life Science Research Center, University of South China, Hengyang, Hunan 421001, China.
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
40
|
Lee P, Murphy B, Miller R, Menon V, Banik NL, Giglio P, Lindhorst SM, Varma AK, Vandergrift WA, Patel SJ, Das A. Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer Res 2015; 35:615-625. [PMID: 25667438 PMCID: PMC6052863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glioblastoma is the most common and deadliest of malignant primary brain tumors (Grade IV astrocytoma) in adults. Current standard treatments have been improving but patient prognosis still remains unacceptably devastating. Glioblastoma recurrence is linked to epigenetic mechanisms and cellular pathways. Thus, greater knowledge of the cellular, genetic and epigenetic origin of glioblastoma is the key for advancing glioblastoma treatment. One rapidly growing field of treatment, epigenetic modifiers; histone deacetylase inhibitors (HDACis), has now shown much promise for improving patient outcomes through regulation of the acetylation states of histone proteins (a form of epigenetic modulation) and other non-histone protein targets. HDAC inhibitors have been shown, in a pre-clinical setting, to be effective anticancer agents via multiple mechanisms, by up-regulating expression of tumor suppressor genes, inhibiting oncogenes, inhibiting tumor angiogenesis and up-regulating the immune system. There are many HDAC inhibitors that are currently in pre-clinical and clinical stages of investigation for various types of cancers. This review will explain the theory of epigenetic cancer therapy, identify HDAC inhibitors that are being investigated for glioblastoma therapy, explain the mechanisms of therapeutic effects as demonstrated by pre-clinical and clinical studies and describe the current status of development of these drugs as they pertain to glioblastoma therapy.
Collapse
Affiliation(s)
- Philip Lee
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A
| | - Ben Murphy
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A
| | - Rickey Miller
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A
| | - Vivek Menon
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A
| | - Naren L Banik
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A. Ralph H. Johnson VA Medical Center, Charleston, SC, U.S.A
| | - Pierre Giglio
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A. Department of Neurological Surgery Ohio State University Wexner Medical College, Columbus, OH, U.S.A
| | - Scott M Lindhorst
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A
| | - Abhay K Varma
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A
| | - William A Vandergrift
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A
| | - Sunil J Patel
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A
| | - Arabinda Das
- Department of Neurology and Neurosurgery & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC, U.S.A.
| |
Collapse
|
41
|
Zhang H, Wang K, Lin G, Zhao Z. Antitumor mechanisms of S-allyl mercaptocysteine for breast cancer therapy. Altern Ther Health Med 2014; 14:270. [PMID: 25070343 PMCID: PMC4122773 DOI: 10.1186/1472-6882-14-270] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/22/2014] [Indexed: 12/31/2022]
Abstract
Background S-allyl mercaptocysteine (SAMC), a water-soluble component derived from garlic, has been found to exert multi-antitumor activities. This study was to investigate the responsible molecular mechanisms of SAMC in human breast cancer cell lines. Methods Sulforhodamine B assay was used to determine cell viability, flow cytometry was applied for the analysis of cell cycle and cell apoptosis, the change of protein was detected by Western blot. Results It was found that SAMC exhibited an effective cell growth inhibition of human breast cancer cell lines MCF-7 (ER positive) and MDA-MB-231 (ER negative) in a dose- and time-dependent manner by inducing cell cycle arrested in G0/G1 phase, the block of cell cycle was associated with the up-regulation of p53 and p21. Furthermore, the SAMC-mediated cell cycle arrest was accompanied with promotion of apoptosis, as indicated by the changes in the nuclear morphology and expressions of apoptosis-related proteins. SAMC clearly triggered the mitochondrial apoptotic pathway as indicated by activation of Bax, decreased expression of Bcl-2 and Bcl-XL, and subsequent activation of caspase-9 and caspase-3. Conclusion These results highlight the value of a continued investigation into the use of SAMC as a potential antitumor candidate for breast cancer.
Collapse
|
42
|
Bayan L, Koulivand PH, Gorji A. Garlic: a review of potential therapeutic effects. AVICENNA JOURNAL OF PHYTOMEDICINE 2014; 4:1-14. [PMID: 25050296 PMCID: PMC4103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 12/03/2022]
Abstract
Throughout history, many different cultures have recognized the potential use of garlic for prevention and treatment of different diseases. Recent studies support the effects of garlic and its extracts in a wide range of applications. These studies raised the possibility of revival of garlic therapeutic values in different diseases. Different compounds in garlic are thought to reduce the risk for cardiovascular diseases, have anti-tumor and anti-microbial effects, and show benefit on high blood glucose concentration. However, the exact mechanism of all ingredients and their long-term effects are not fully understood. Further studies are needed to elucidate the pathophysiological mechanisms of action of garlic as well as its efficacy and safety in treatment of various diseases.
Collapse
Affiliation(s)
- Leyla Bayan
- Shefa Neuroscience Research Centre, Tehran, I. R. Iran
| | | | - Ali Gorji
- Shefa Neuroscience Research Centre, Tehran, I. R. Iran
- Institut für Physiologie I, Klinik und Poliklinik für Neurochirurgie, Department of Neurology, Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany
| |
Collapse
|