1
|
Chen Y, Guo Y, Li S, Xu J, Zhao C, Wang J, Yang J, Ning W, Qu Y, Zhang M, Wang S, Zhang H. Tumor-derived IL-6 promotes chordoma invasion by stimulating tumor-associated macrophages M2 polarization and TNFα secretion. Int Immunopharmacol 2024; 143:113315. [PMID: 39393273 DOI: 10.1016/j.intimp.2024.113315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
AIMS Chordoma is a rare and aggressive bone tumor with high-recurrence and lack of effective treatment methods. Tumor associated macrophages (TAMs) are abundant in tumor microenvironment (TME) and polarize toward M2 in chordoma. It has been observed that the high proportion of M2 cells is associated with chordoma rapid progression. However, the mechanism of TAMs polarization and promotion to tumor progression in chordoma is still unclear. The is an urgent need for further research. MATERIALS AND METHODS Flow cytometry and immunohistochemical staining was used to detect the degree of macrophages infiltration in chordoma. A co-culture model of chordoma cells and macrophages was established in vitro to investigate the effects of their interaction on cell function, cytokine secretion, and RNA transcriptome expression. KEY FINDINGS In this study, we found M2 macrophage was predominantly abundant immune cell population in chordoma, and its proportion was associated with the degree of bone destruction. We demonstrated that interleukin 6 (IL-6) derived from chordoma cells could induce TAMs polarization by activating STAT3 phosphorylation, and TAMs could enhance chordoma cells migration and invasion through TNFα/NF-κB pathway. The interaction of chordoma cells and TAMs could promote the bone destruction-related factor Cathepsin B (CTSB) and inhibitory immune checkpoints expression. We also confirmed blocking IL-6/STAT3 pathway could significantly attenuate the M2 polarization of TAMs and decrease the secretion of TNFα. SIGNIFICANCE This study illustrates the dynamics between chordoma cells and TAMs in promoting chordoma invasion and suggests that IL-6/STAT3 pathway is a potential therapeutic target to reduce TAM-induced chordoma invasion.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Chao Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jun Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jingjing Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Mingshan Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China.
| |
Collapse
|
2
|
Kawaai K, Oishi Y, Kuroda Y, Tamura R, Toda M, Matsuo K. Chordoma cells possess bone-dissolving activity at the bone invasion front. Cell Oncol (Dordr) 2024; 47:1663-1677. [PMID: 38652222 PMCID: PMC11466907 DOI: 10.1007/s13402-024-00946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Chordomas are malignant tumors that destroy bones, compress surrounding nerve tissues and exhibit phenotypes that recapitulate notochordal differentiation in the axial skeleton. Chordomas recur frequently, as they resist radio-chemotherapy and are difficult to completely resect, leading to repeated bone destruction and local expansion via unknown mechanisms. Here, using chordoma specimens and JHC7 chordoma cells, we asked whether chordoma cells possess bone-dissolving activity. METHODS CT imaging and histological analysis were performed to evaluate the structure and mineral density of chordoma-invaded bone and osteolytic marker expression. JHC7 cells were subjected to immunocytochemistry, imaging of cell fusion, calcium dynamics and acidic vacuoles, and bone lysis assays. RESULTS In patients, we found that the skull base invaded by chordoma was highly porous, showed low mineral density and contained brachyury-positive chordoma cells and conventional osteoclasts both expressing the osteolytic markers tartrate-resistant acid phosphatase (TRAP) and collagenases. JHC7 cells expressed TRAP and cathepsin K, became multinucleated via cell-cell fusion, showed spontaneous calcium oscillation, and were partly responsive to the osteoclastogenic cytokine RANKL. JHC7 cells exhibited large acidic vacuoles, and nonregulatory bone degradation without forming actin rings. Finally, bone-derived factors, calcium ions, TGF-β1, and IGF-1 enhanced JHC7 cell proliferation. CONCLUSION In chordoma, we propose that in addition to conventional bone resorption by osteoclasts, chordoma cells possess bone-dissolving activity at the tumor-bone boundary. Furthermore, bone destruction and tumor expansion may occur in a positive feedback loop.
Collapse
Affiliation(s)
- Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yumiko Oishi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| |
Collapse
|
3
|
Chen Y, Zhang H. Immune microenvironment and immunotherapy for chordoma. Front Oncol 2024; 14:1374249. [PMID: 38983929 PMCID: PMC11232415 DOI: 10.3389/fonc.2024.1374249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Chordoma, as a rare, low-grade malignant tumor that tends to occur in the midline of the body, grows slowly but often severely invades surrounding tissues and bones. Due to the severe invasion and damage to the surrounding tissues, chordoma is difficult to be gross totally resected in surgery, and the progression of the residual tumor is often unavoidable. Besides, the tumor is insensitive to conventional radiotherapy and chemotherapy, thus finding effective treatment methods for chordoma is urgent. Nowadays, immunotherapy has made a series of breakthroughs and shown good therapeutic effects in kinds of tumors, which brings new insights into tumors without effective treatment strategies. With the deepening of research on immunotherapy, some studies focused on the immune microenvironment of chordoma have been published, most of them concentrated on the infiltration of immune cells, the expression of tumor-specific antigen or the immune checkpoint expression. On this basis, a series of immunotherapy studies of chordoma are under way, some of which have shown encouraging results. In this review, we reviewed the research about immune microenvironment and immunotherapy for chordoma, combined with the existing clinical trials data, hoping to clarify the frontiers and limitations of chordoma immune research, and provide reference for follow-up immunotherapy research on chordoma.
Collapse
Affiliation(s)
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Alexander AY, Dhawan S, Venteicher AS. Role of immunotherapy in treatment refractory chordomas: review of current evidence. Front Surg 2024; 11:1375567. [PMID: 38881706 PMCID: PMC11177759 DOI: 10.3389/fsurg.2024.1375567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Chordomas are aggressive tumors that are thought to arise from remnants of the embryological notochord. They can arise along the ventromedial aspect of the sacrum, mobile spine, and clivus-with most cases occurring in the sacrum or skull base. Despite surgery and radiation, chordomas often progress and become refractory to further treatment. The high recurrence rate of chordomas has created an urgent need to develop new systemic treatment options. Recent case reports and clinical trials have highlighted the use of immunotherapy for refractory chordomas. In this review, we summarize the results of these studies and discuss the potential role of immunotherapy for chordomas. Methods The PUBMED database was queried for studies mentioning both "Chordoma" and "Immunotherapy." All case series and case reports that involved administration of an immunotherapy for chordoma were included. Additional studies that were found during literature review were added. ClinicalTrials.Gov was queried for studies mentioning both "Chordoma" and "Immunotherapy." The final cohort consisted of all clinical trials that utilized immunotherapy for chordomas of any location. Results Eight case reports and series detailing the use of immunotherapy for treatment refractory chordoma were identified. Most patients received immunotherapy targeting the PD-1/PD-L1 interaction, and two patients received therapy targeting this interaction along with the tyrosine kinase inhibitor pazopanib. One patient received a vaccine derived from autologous tumor cells, and one patient received a viral vector that downregulated the effect of TGF-beta. One clinical trial utilized a brachyury vaccine in conjunction with standard of care radiotherapy. Conclusions Immunotherapy for chordoma is a promising area of investigation with increasing, but small, numbers of case series and clinical trials. Despite challenges in patient accrual, future directions in chordoma immunotherapy may lie in vaccine-based therapies and immune checkpoint inhibitors. Understanding chordoma heterogeneity and microenvironment will likely elucidate important chordoma features that will inform future clinical trial design.
Collapse
Affiliation(s)
- A Yohan Alexander
- Department of Neurosurgery and Center for Skull Base and Pituitary Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Sanjay Dhawan
- Department of Neurosurgery and Center for Skull Base and Pituitary Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Andrew S Venteicher
- Department of Neurosurgery and Center for Skull Base and Pituitary Surgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Hoch CC, Knoedler L, Knoedler S, Bashiri Dezfouli A, Schmidl B, Trill A, Douglas JE, Adappa ND, Stögbauer F, Wollenberg B. Integrated Molecular and Histological Insights for Targeted Therapies in Mesenchymal Sinonasal Tract Tumors. Curr Oncol Rep 2024; 26:272-291. [PMID: 38376625 PMCID: PMC10920452 DOI: 10.1007/s11912-024-01506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a comprehensive overview of mesenchymal sinonasal tract tumors (STTs), a distinct subset of STTs. Despite their rarity, mesenchymal STTs represent a unique clinical challenge, characterized by their rarity, often slow progression, and frequently subtle or overlooked symptoms. The complex anatomy of the sinonasal area, which includes critical structures such as the orbit, brain, and cranial nerves, further complicates surgical treatment options. This underscores an urgent need for more advanced and specialized therapeutic approaches. RECENT FINDINGS Advancements in molecular diagnostics, particularly in next-generation sequencing, have significantly enhanced our understanding of STTs. Consequently, the World Health Organization has updated its tumor classification to better reflect the distinct histological and molecular profiles of these tumors, as well as to categorize mesenchymal STTs with greater accuracy. The growing understanding of the molecular characteristics of mesenchymal STTs opens new possibilities for targeted therapeutic interventions, marking a significant shift in treatment paradigms. This review article concentrates on mesenchymal STTs, specifically addressing sinonasal tract angiofibroma, sinonasal glomangiopericytoma, biphenotypic sinonasal sarcoma, and skull base chordoma. These entities are marked by unique histopathological and molecular features, which challenge conventional treatment approaches and simultaneously open avenues for novel targeted therapies. Our discussion is geared towards delineating the molecular underpinnings of mesenchymal STTs, with the objective of enhancing therapeutic strategies and addressing the existing shortcomings in the management of these intricate tumors.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany
| | - Leonard Knoedler
- Department of Surgery, Division of Plastic Surgery, Yale School of Medicine, New Haven, CT, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum Munich, Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Benedikt Schmidl
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany
| | - Anskar Trill
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Department of Radiation Oncology, Klinikum rechts der Isar, Munich, Germany
| | - Jennifer E Douglas
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Fabian Stögbauer
- Institute of Pathology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Ismaningerstrasse 22, 81675, Munich, Germany.
| |
Collapse
|
6
|
Perez-Vega C, Akinduro OO, Ruiz-Garcia HJ, Ghaith AKA, Almeida JP, Jentoft ME, Mahajan A, Janus JR, Bendok BR, Choby GW, Middlebrooks EH, Trifiletti DM, Chaichana KL, Laack NN, Quinones-Hinojosa A, Van Gompel JJ. Extent of Surgical Resection as a Predictor of Tumor Progression in Skull Base Chordomas: A Multicenter Volumetric Analysis. World Neurosurg 2024; 181:e620-e627. [PMID: 37898264 DOI: 10.1016/j.wneu.2023.10.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Skull-base chordomas are aggressive tumors with a propensity for recurrence/progression. Even with standard of care (SoC), 5-year recurrence rates are variable (19%-54%). This high recurrence/progression rate correlates with increased morbidity and mortality. We sought to analyze a multicenter cohort of skull base chordomas to identify predictors of progression in patients receiving SoC. METHODS The [Blinded]-Neurosurgery data registry was queried for skull base chordomas treated from 2008-2020. Patients with the histopathologic diagnosis of chordoma were included. The cohort was composed of patients with preoperative and postoperative magnetic resonance imaging. Tumor volume and radiologic characteristics were obtained from axial T2 sequences using a Digital Imaging and Communications in Medicine viewer. Survival analysis was performed using Kaplan-Meier method, and time-to-event multivariate regression was performed to identify independent predictors of progression. RESULTS The cohort included 195 patients, of which 66 patients met inclusion criteria; median age was 44, and 28 (42%) were females. Fifty-four (82%) received SoC, 7 (11%) resection only, and 5 (8%) radiotherapy only. Median preoperative and postoperative tumor volumes were 11.55 cm3 (0.33-54.89) and 0.34 cm3 (0-42.52), respectively. Recurrence rate with SoC was 37%. Postoperative tumor volume (P = 0.010) correlated with progression. A postoperative volume of >4.9 cm3 (P = 0.044), ≤81.3% of tumor resection (P = 0.02), and lower-clivus location (P < 0.005) correlated with decreased time to progression. CONCLUSIONS Skull base chordomas can be challenging to resect. Even though maximal resection and radiotherapy improve rate of tumor progression, many of these lesions eventually recur. We have identified a postoperative tumor volume of ≥4.9 cm3 and extent of resection of ≤81.3% in this cohort as predictors of progression in patients receiving SoC.
Collapse
Affiliation(s)
- Carlos Perez-Vega
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | - Joao P Almeida
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Mark E Jentoft
- Department of Lab Medicine and Pathology, Jacksonville, Florida, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Rochester, Minnesota, USA
| | | | | | - Garret W Choby
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Nadia N Laack
- Department of Radiation Oncology, Rochester, Minnesota, USA
| | | | - Jamie J Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
7
|
Huang KW, Huang TL. Association between programmed death-1 pathway and major depression. World J Biol Psychiatry 2023; 24:822-828. [PMID: 37139744 DOI: 10.1080/15622975.2023.2209876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Major depression (MD) may be associated with inflammation and immunity. PD-1 (programmed death-1), PD-L1 (programmed death-ligand 1) and PD-L2 (programmed death-ligand 2) are among the inhibitory immune mediators on the PD-1 pathway. However, previous data regarding the association between MD and PD-1 pathway were still scarce; therefore, we investigated the association of PD-1 pathway with MD. METHODS During a period of 2 years, patients with MD and healthy controls were recruited from a medical centre in this study. The diagnosis of MD was established according to the DSM-5 criteria. The severity of MD was assessed with 17-item Hamilton Depression Rating Scale. PD-1, PD-L1 and PD-L2 were detected in peripheral blood from MD patients after 4 weeks of treatment with antidepressant drugs. RESULTS A total of 54 patients with MD and 38 healthy controls were recruited. According to the analyses, there is a significantly higher PD-L2 level in MD than in healthy controls and lower PD-1 level after age and BMI adjustment. Besides, moderately positive correlation between HAM-D scores and PD-L2 level was found. CONCLUSIONS It was found that PD-1 pathway might play an important role in MD. We need a large sample to prove these results in the future.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Xu J, Shi Q, Wang B, Ji T, Guo W, Ren T, Tang X. The role of tumor immune microenvironment in chordoma: promising immunotherapy strategies. Front Immunol 2023; 14:1257254. [PMID: 37720221 PMCID: PMC10502727 DOI: 10.3389/fimmu.2023.1257254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Chordoma is a rare malignant bone tumor with limited therapeutic options, which is resistant to conventional chemotherapy and radiotherapy, and targeted therapy is also shown with little efficacy. The long-standing delay in researching its mechanisms of occurrence and development has resulted in the dilemma of no effective treatment targets and no available drugs in clinical practice. In recent years, the role of the tumor immune microenvironment in driving tumor growth has become a hot and challenging topic in the field of cancer research. Immunotherapy has shown promising results in the treatment of various tumors. However, the study of the immune microenvironment of chordoma is still in its infancy. In this review, we aim to present a comprehensive reveal of previous exploration on the chordoma immune microenvironment and propose promising immunotherapy strategies for chordoma based on these characteristics.
Collapse
Affiliation(s)
- Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tao Ji
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
9
|
Lin Z, Tang Y, Chen Z, Li S, Xu X, Hou X, Chen Z, Wen J, Zeng W, Meng X, Fan H. Soluble CD80 oral delivery by recombinant Lactococcus suppresses tumor growth by enhancing antitumor immunity. Bioeng Transl Med 2023; 8:e10533. [PMID: 37476068 PMCID: PMC10354755 DOI: 10.1002/btm2.10533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 07/22/2023] Open
Abstract
CD80 is an important co-stimulatory molecule that participates in the immune response. Soluble CD80 can induce T cell activation and overcome PDL1-mediated immune suppression. In this study, we aimed to construct recombinant Lactococcus lactis for oral delivery of the soluble CD80 (hsCD80) protein or the fusion protein containing the cholera toxin B subunit (CTB) and hsCD80 (CTB-hsCD80) under the control of the nisin-inducible expression system. The recombinant L. lactis expressed and secreted hsCD80 or CTB-hsCD80 fusion proteins after induction by nisin in vitro and in the enteric cavity. Additionally, the CTB-hsCD80 fusion protein showed uptake by intestinal epithelial cells, was cleaved by the furin protease, and was released as free hsCD80 protein into the blood circulation. Orally administered hsCD80 and CTB-hsCD80 containing L. lactis increased the proportion of activated T cells in the spleen and intestinal epithelium, inhibited tumor growth, and prolonged the survival of tumor-bearing mice. The hsCD80-containing L. lactis showed greater therapeutic effects on primary colonic adenoma in APCmin/- mice and completely suppressed tumor growth. Further, recombinant CTB-hsCD80 in L. lactis was more efficient than hsCD80-containing bacteria in inhibiting the growth of xenografted colon cancer and melanoma cells. hsCD80 engineered probiotics may serve as a promising new approach for antitumor immunotherapy, especially for colorectal cancer.
Collapse
Affiliation(s)
- Ziqing Lin
- Department of Cell Biology, School of Basic MedicineSouthern Medical UniversityGuangzhouChina
- Guangzhou Virotech Phamaceutical Co., LtdGuangzhouChina
| | - Yanqing Tang
- Department of Cell Biology, School of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - Zerong Chen
- Department of Cell Biology, School of Basic MedicineSouthern Medical UniversityGuangzhouChina
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Simin Li
- Department of Cell Biology, School of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - Xueyan Xu
- Department of Cell Biology, School of Basic MedicineSouthern Medical UniversityGuangzhouChina
- Department of Dermatology, Dermatology Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhouChina
| | - Xufeng Hou
- Department of Cell Biology, School of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Junjie Wen
- Guangzhou Weisengene Biological Technology Co., Ltd.GuangzhouChina
| | - Weisen Zeng
- Department of Cell Biology, School of Basic MedicineSouthern Medical UniversityGuangzhouChina
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, School of Public HealthSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
10
|
The Tumor Immune Microenvironment in Primary CNS Neoplasms: A Review of Current Knowledge and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24032020. [PMID: 36768342 PMCID: PMC9917056 DOI: 10.3390/ijms24032020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Primary CNS neoplasms are responsible for considerable mortality and morbidity, and many therapies directed at primary brain tumors have proven unsuccessful despite their success in preclinical studies. Recently, the tumor immune microenvironment has emerged as a critical aspect of primary CNS neoplasms that may affect their malignancy, prognosis, and response to therapy across patients and tumor grades. This review covers the tumor microenvironment of various primary CNS neoplasms, with a focus on glioblastoma and meningioma. Additionally, current therapeutic strategies based on elements of the tumor microenvironment, including checkpoint inhibitor therapy and immunotherapeutic vaccines, are discussed.
Collapse
|
11
|
Immunotherapy as a New Therapeutic Approach for Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:73-84. [PMID: 36587382 DOI: 10.1007/978-3-031-14732-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Historically, the central nervous system (CNS) was considered an immune-privileged organ. However, recent studies have shown that the immune system plays a significant role in the CNS. Thus, there is renewed interest in applying cancer immunotherapy to CNS malignancies with the hope of generating a robust anti-tumor immune response and creating long-lasting immunity in patients. There has been some work with non-specific immunotherapy such as IL-2 for brain metastasis. Unfortunately, the results from non-specific immunotherapy studies were lackluster, so the focus has shifted to more specific CNS immunotherapies including cancer vaccines, immune checkpoint inhibitors, oncolytic virus therapy, and chimeric antigen receptor (CAR) T cell therapy. With respect to cancer vaccines, rindopepimut has been well-studied in glioblastoma (GBM) patients with the EGFRvIII mutation, with early results from phase II trials showing possible efficacy in carefully selected GBM patients. Other antigen-specific CNS tumor vaccines are still in the early stages. Immune checkpoint inhibitors are amongst the most promising and widely studied CNS immunotherapy strategies. Anti-PD-1 showed promising results in many non-CNS solid tumors, however, results from early clinical trials show poor efficacy for anti-PD-1 in GBM patients. Anti-PD-1 is also under investigation for CNS metastasis and showed some efficacy in non-small cell lung cancer and renal cell carcinoma patients. Anti-PD-1 is under early stage investigation for other CNS tumors such as chordoma. Oncolytic virus therapy is the strategy of infecting tumor cells with a virus that in turn triggers an innate immune response leading to tumor cell lysis. Oncolytic viruses currently under investigation include several adenovirus-based therapies and a herpes simplex virus-based therapy. Phase I studies have demonstrated the safety of oncolytic virus therapies in GBM patients. Current studies are evaluating the efficacy of these therapies both alone and in combination with other immunotherapy approaches such as checkpoint inhibition in patients with CNS tumors. CAR T cell therapy is a newer immunotherapy approach. CAR T cell therapies, directed against EGFRvIII mutation and HER-2 mutation, demonstrate an acceptable safety profile, although there is no conclusive evidence of the survival benefit of these therapies in early trials. Studies are currently underway to determine optimal tumor-specific antigen selection and modality of administration for CAR T cell therapy. Overall, the prognosis is generally poor for patients with CNS malignancies. The promising results of cancer immunotherapy for non-CNS tumors have created significant interest in applying these therapies for CNS malignancies. Preliminary results have not demonstrated robust efficacy for CNS immunotherapy. However, it is important to keep in mind that the field is still in its infancy and many clinical trials are still early-phase. Several, clinical trials are currently underway to further explore the role of immunotherapy for CNS malignancies.
Collapse
|
12
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
13
|
Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov 2022; 8:94. [PMID: 36127333 PMCID: PMC9489773 DOI: 10.1038/s41421-022-00459-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
Skull base chordoma (SBC) is a bone cancer with a high recurrence rate, high radioresistance rate, and poorly understood mechanism. Here, we profiled the transcriptomes of 90,691 single cells, revealed the SBC cellular hierarchies, and explored novel treatment targets. We identified a cluster of stem-like SBC cells that tended to be distributed in the inferior part of the tumor. Combining radiated UM-Chor1 RNA-seq data and in vitro validation, we further found that this stem-like cell cluster is marked by cathepsin L (CTSL), a gene involved in the packaging of telomere ends, and may be responsible for radioresistance. Moreover, signatures related to partial epithelial-mesenchymal transition (p-EMT) were found to be significant in malignant cells and were related to the invasion and poor prognosis of SBC. Furthermore, YL-13027, a p-EMT inhibitor that acts through the TGF-β signaling pathway, demonstrated remarkable potency in inhibiting the invasiveness of SBC in preclinical models and was subsequently applied in a phase I clinical trial that enrolled three SBC patients. Encouragingly, YL-13027 attenuated the growth of SBC and achieved stable disease with no serious adverse events, underscoring the clinical potential for the precision treatment of SBC with this therapy. In summary, we conducted the first single-cell RNA sequencing of SBC and identified several targets that could be translated to the treatment of SBC.
Collapse
|
14
|
Gao J, Huang R, Yin H, Song D, Meng T. Research hotspots and trends of chordoma: A bibliometric analysis. Front Oncol 2022; 12:946597. [PMID: 36185236 PMCID: PMC9523362 DOI: 10.3389/fonc.2022.946597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chordoma is a type of mesenchymal malignancy with a high recurrence rate and poor prognosis. Due to its rarity, the tumorigenic mechanism and optimal therapeutic strategy are not well known. Methods All relevant articles of chordoma research from 1 January 2000 to 26 April 2022 were obtained from Web of Science Core Collection database. Blibliometrix was used to acquire basic publication data. Visualization and data table of collaboration network, dynamic analysis, trend topics, thematic map, and factorial analysis were acquired using Blibliometrix package. VOSviewer was used to generate a visualization map of co-citation analysis and co-occurrence. Results A total of 2,285 articles related to chordoma were identified. The most influential and productive country/region was the United States, and Capital Medical University has published the most articles. Among all high-impact authors, Adrienne M. Flanagan had the highest average citation rate. Neurosurgery was the important periodical for chordoma research with the highest total/average citation rate. We focused on four hotspots in recent chordoma research. The research on surgical treatment and radiotherapy was relatively mature. The molecular signaling pathway, targeted therapy and immunotherapy for chordoma are not yet mature, which will be the future trends of chordoma research. Conclusion This study indicates that chordoma studies are increasing. Surgery and radiotherapy are well reported and always play fundamental roles in chordoma treatment. The molecular signaling pathway, targeted therapy, and immunotherapy of chordoma are the latest research hotspots.
Collapse
Affiliation(s)
- Jianxuan Gao
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Huabin Yin
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dianwen Song
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Tong Meng, ; Dianwen Song,
| | - Tong Meng
- Department of Spine Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Tong Meng, ; Dianwen Song,
| |
Collapse
|
15
|
Huo X, Wang K, Song L, Yang Y, Zhu S, Ma J, Tian K, Fan Y, Wang L, Wu Z. Bibliometric analysis of publication trends in chordoma research (1992−2021). INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Williamson LM, Rive CM, Di Francesco D, Titmuss E, Chun HJE, Brown SD, Milne K, Pleasance E, Lee AF, Yip S, Rosenbaum DG, Hasselblatt M, Johann PD, Kool M, Harvey M, Dix D, Renouf DJ, Holt RA, Nelson BH, Hirst M, Jones SJM, Laskin J, Rassekh SR, Deyell RJ, Marra MA. Clinical response to nivolumab in an INI1-deficient pediatric chordoma correlates with immunogenic recognition of brachyury. NPJ Precis Oncol 2021; 5:103. [PMID: 34931022 PMCID: PMC8688516 DOI: 10.1038/s41698-021-00238-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
Poorly differentiated chordoma (PDC) is a recently recognized subtype of chordoma characterized by expression of the embryonic transcription factor, brachyury, and loss of INI1. PDC primarily affects children and is associated with a poor prognosis and limited treatment options. Here we describe the molecular and immune tumour microenvironment profiles of two paediatric PDCs produced using whole-genome, transcriptome and whole-genome bisulfite sequencing (WGBS) and multiplex immunohistochemistry. Our analyses revealed the presence of tumour-associated immune cells, including CD8+ T cells, and expression of the immune checkpoint protein, PD-L1, in both patient samples. Molecular profiling provided the rationale for immune checkpoint inhibitor (ICI) therapy, which resulted in a clinical and radiographic response. A dominant T cell receptor (TCR) clone specific for a brachyury peptide-MHC complex was identified from bulk RNA sequencing, suggesting that targeting of the brachyury tumour antigen by tumour-associated T cells may underlie this clinical response to ICI. Correlative analysis with rhabdoid tumours, another INI1-deficient paediatric malignancy, suggests that a subset of tumours may share common immune phenotypes, indicating the potential for a therapeutically targetable subgroup of challenging paediatric cancers.
Collapse
Affiliation(s)
- Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Craig M Rive
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Daniela Di Francesco
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Hye-Jung E Chun
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Scott D Brown
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Anna F Lee
- Department of Pathology and Laboratory Medicine, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Daniel G Rosenbaum
- Department of Radiology, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Pascal D Johann
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) Core Center, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK) Core Center, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Melissa Harvey
- Division of Pediatric Hematology Oncology BMT, University of British Columbia, Vancouver, BC, Canada
| | - David Dix
- Division of Pediatric Hematology Oncology BMT, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Robert A Holt
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Microbiology & Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- Division of Pediatric Hematology Oncology BMT, University of British Columbia, Vancouver, BC, Canada
| | - Rebecca J Deyell
- Division of Pediatric Hematology Oncology BMT, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Dridi M, Krebs-Drouot L, Meyronet D, Dumollard JM, Vassal F, Jouanneau E, Jacquesson T, Barrey C, Grange S, Boutonnat J, Péoc’h M, Karpathiou G. The Immune Microenvironment of Chordomas: An Immunohistochemical Analysis. Cancers (Basel) 2021; 13:cancers13133335. [PMID: 34283048 PMCID: PMC8268246 DOI: 10.3390/cancers13133335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Chordoma patients may be amenable to immunotherapy; however, the immune microenvironment of chordomas needs further investigation. We performed the immunohistochemical analysis of a chordoma series, showing that these tumors have a unique microenvironment characterized by the absence of PD-L1 tumor cell expression, but feature PD-L1+ immune cells playing a negative prognostic role. Abstract Chordomas are rare sarcomas that are usually treated by surgery and/or radiotherapy since these are chemo-resistant tumors, but immunotherapy could be a possible option for chordoma patients. However, few reports investigating the composition of the chordoma immune microenvironment exist. We immunohistochemically studied 81 chordomas regarding their immune microenvironment factors and compared them with clinicopathological data. Macrophages and CD4 cells were the most prominent inflammatory cell populations, followed by CD8 T cells, while CD20 B cells and high endothelial venules (MECA-79+) were less frequently found. PD-L1 (22C3) expression by inflammatory cells was found in 21 (26%) tumors and was associated with a larger tumor size. None of the cases showed the expression of PD-L1 by tumor cells. Survival analysis showed that younger patients had a better overall survival. Considering the immunohistochemical factors studied, higher CD8, the presence of PD-L1+ immune cells, and higher vascular density were adverse prognostic factors, but in multivariate analysis, only PD-L1+ immune cells retained prognostic significance. To conclude, chordoma tumor cells do not express PD-L1, but PD-L1+ immune cells seem to play a negative prognostic role, supporting the need for further studies in this field and the possible beneficial role of immunotherapy in these patients.
Collapse
Affiliation(s)
- Maroa Dridi
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (M.D.); (J.M.D.); (M.P.)
| | - Lila Krebs-Drouot
- Pathology Department, University Hospital of Grenoble, 38700 Grenoble, France; (L.K.-D.); (J.B.)
| | - David Meyronet
- East Pathology Institute, Hospices Civils de Lyon, 69677 Lyon, France;
- Cancer Cell Plasticity Department, Cancer Research Center of Lyon, 69373 Lyon, France
- Claude Bernard University, Lyon 1, 69100 Lyon, France; (E.J.); (C.B.)
| | - Jean Marc Dumollard
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (M.D.); (J.M.D.); (M.P.)
| | - François Vassal
- Neurosurgery Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Emmanuel Jouanneau
- Claude Bernard University, Lyon 1, 69100 Lyon, France; (E.J.); (C.B.)
- Department of Neurosurgery B, Neurological Hospital Pierre Wertheimer, 69500 Lyon, France;
- Inserm U1052, CNRS UMR5286, «Signaling, Metabolism and Tumor Progression» The Cancer Research Center of Lyon, 69373 Lyon, France
| | - Timothée Jacquesson
- Department of Neurosurgery B, Neurological Hospital Pierre Wertheimer, 69500 Lyon, France;
- Department of Anatomy, Faculté de Médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France
| | - Cédric Barrey
- Claude Bernard University, Lyon 1, 69100 Lyon, France; (E.J.); (C.B.)
- Department of Spine and Spinal Cord Surgery, Neurological Hospital Pierre Wertheimer, 69500 Lyon, France
| | - Sylvain Grange
- Radiology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Jean Boutonnat
- Pathology Department, University Hospital of Grenoble, 38700 Grenoble, France; (L.K.-D.); (J.B.)
| | - Michel Péoc’h
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (M.D.); (J.M.D.); (M.P.)
| | - Georgia Karpathiou
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (M.D.); (J.M.D.); (M.P.)
- Correspondence:
| |
Collapse
|
18
|
Matsusaka K, Fujiwara Y, Pan C, Esumi S, Saito Y, Bi J, Nakamura Y, Mukunoki A, Takeo T, Nakagata N, Yoshii D, Fukuda R, Nagasaki T, Tanaka R, Komori H, Maeda H, Watanabe H, Tamada K, Komohara Y, Maruyama T. α 1-Acid Glycoprotein Enhances the Immunosuppressive and Protumor Functions of Tumor-Associated Macrophages. Cancer Res 2021; 81:4545-4559. [PMID: 34210751 DOI: 10.1158/0008-5472.can-20-3471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Blood levels of acute-phase protein α1-acid glycoprotein (AGP, orosmucoid) increase in patients with cancer. Although AGP is produced from hepatocytes following stimulation by immune cell-derived cytokines under conditions of inflammation and tumorigenesis, the functions of AGP in tumorigenesis and tumor progression remain unknown. In the present study, we revealed that AGP contributes directly to tumor development by induction of programmed death ligand 1 (PD-L1) expression and IL6 production in macrophages. Stimulation of AGP induced PD-L1 expression in both human monocyte-derived macrophages through STAT1 activation, whereas AGP had no direct effect on PD-L1 expression in tumor cells. AGP also induced IL6 production from macrophages, which stimulated proliferation in tumor cells by IL6R-mediated activation of STAT3. Furthermore, administration of AGP to AGP KO mice phenocopied effects of tumor-associated macrophages (TAM) on tumor progression. AGP decreased IFNγ secretion from T cells and enhanced STAT3 activation in subcutaneous tumor tissues. In addition, AGP regulated PD-L1 expression and IL6 production in macrophages by binding with CD14, a coreceptor for Toll-like receptor 4 (TLR4), and inducing TLR4 signaling. These results provide the first evidence that AGP is directly involved in tumorigenesis by interacting with TAMs and that AGP might be a target molecule for anticancer therapy. SIGNIFICANCE: AGP-mediated suppression of antitumor immunity contributes to tumor progression by inducing PD-L1 expression and IL6 production in TAMs.
Collapse
Affiliation(s)
- Kotaro Matsusaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoichi Saito
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jing Bi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Nakamura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayumi Mukunoki
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Daiki Yoshii
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Fukuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryusei Tanaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisakazu Komori
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Tamada
- Department of Immunology, Graduate School of Medicine, Faculty of Medicine and Health Sciences, Yamaguchi University, Yamaguchi Prefecture, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan. .,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
19
|
Wedekind MF, Widemann BC, Cote G. Chordoma: Current status, problems, and future directions. Curr Probl Cancer 2021; 45:100771. [PMID: 34266694 DOI: 10.1016/j.currproblcancer.2021.100771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Abstract
Chordoma is a rare tumor that occurs along the axial spine in pediatrics and adults, with an incidence of approximately 350 cases per year in the United States. While typically described as slow-growing, many patients will eventually develop loco-regional relapse or metastatic disease with few treatment options. Despite numerous efforts over the last 10+ years, effective treatments for patients are lacking. As subtypes of chordoma are identified and described in more detail, further knowledge regarding the natural history of each type, tumor location, age differences, genomic variability, and an overall better understanding of chordoma may be the key to developing meaningful clinical trials and effective therapies for patients with chordoma.
Collapse
Affiliation(s)
- Mary Frances Wedekind
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Gregory Cote
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
20
|
Affiliation(s)
- Tarek Assi
- Department of Hematology-Oncology, Faculty of medicine, Saint-Joseph University, Beirut, Lebanon
| |
Collapse
|
21
|
Patel SS, Nota SP, Sabbatino F, Nielsen GP, Deshpande V, Wang X, Ferrone S, Schwab JH. Defective HLA Class I Expression and Patterns of Lymphocyte Infiltration in Chordoma Tumors. Clin Orthop Relat Res 2021; 479:1373-1382. [PMID: 33273248 PMCID: PMC8133041 DOI: 10.1097/corr.0000000000001587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND There are no effective systemic therapies for chordoma. The recent successes of immunotherapeutic strategies in other cancers have resulted in a resurgence of interest in using immunotherapy in chordoma. These approaches rely on a functional interaction between the host's immune system and the expression of tumor peptides via the human leukocyte antigen (HLA) Class I antigen. It is not known whether chordoma cells express the HLA Class I antigen. QUESTIONS/PURPOSES (1) Do chordoma tumors exhibit defects in HLA Class I antigen expression? (2) What is the pattern of lymphocyte infiltration in chordoma tumors? METHODS Patients with chordoma treated at Massachusetts General Hospital between 1989 and 2009 were identified with permission from the institutional review board. Of the 75 patients who were identified, 24 human chordoma tumors were selected from 24 distinct patients based on tissue availability. Histology slides from these 24 formalin-fixed paraffin-embedded chordoma tissue samples were deparaffinized using xylene and ethanol and underwent heat-induced antigen retrieval in a citrate buffer. Samples were incubated with monoclonal antibodies directed against HLA Class I antigen processing machinery components. Antibody binding was detected via immunohistochemical staining. Staining intensity (negative, weakly positive, strongly positive) was assessed semiquantitatively and the percentage of chordoma cells stained for HLA Class I antigen subunits was assessed quantitatively. Hematoxylin and eosin-stained histology slides from the same 24 chordoma samples were assessed qualitatively for the presence of tumor-infiltrating lymphocytes and histologic location of these lymphocytes. Immunohistochemical staining with monoclonal antibodies directed against CD4 and CD8 was performed in a quantitative manner to identify the lymphocyte subtype present in chordoma tumors. All results were scored independently by two investigators and were confirmed by a senior bone and soft tissue pathologist. RESULTS Seven of 24 chordoma samples exhibited no staining by the anti-HLA-A heavy chain monoclonal antibody HC-A2, two had weak staining intensity, and eight had a heterogeneous staining pattern, with fewer than 60% of chordoma cells exhibiting positive staining results. Four of 24 samples tested were not stained by the anti-HLA-B/C heavy chain monoclonal antibody HC-10, five had weak staining intensity, and 11 displayed a heterogeneous staining pattern. For the anti-β-2-microglobulin monoclonal antibody NAMB-1, staining was detected in all samples, but 11 had weak staining intensity and four displayed a heterogeneous staining pattern. Twenty-one of 24 samples tested had decreased expression in at least one subunit of HLA Class I antigens. No tumors were negative for all three subunits. Lymphocytic infiltration was found in 21 of 24 samples. Lymphocytes were primarily found in the fibrous septae between chordoma lobules but also within the tumor lobules and within the fibrous septae and tumor lobules. Twenty-one of 24 tumors had CD4+ T cells and 11 had CD8+ T cells. CONCLUSION In chordoma tissue samples, HLA Class I antigen defects commonly were present, suggesting a mechanism for escape from host immunosurveillance. Additionally, nearly half of the tested samples had cytotoxic CD8+ T cells present in chordoma tumors, suggesting that the host may be capable of mounting an immune response against chordoma tumors. The resulting selective pressure imposed on chordoma tumors may lead to the outgrowth of chordoma cell subpopulations that can evade the host's immune system. CLINICAL RELEVANCE These findings have implications in the design of immunotherapeutic strategies for chordoma treatment. T cell recognition of tumor cells requires HLA Class I antigen expression on the targeted tumor cells. Defects in HLA Class I expression may play a role in the clinical course of chordoma and may account for the limited or lack of efficacy of T cell-based immunity triggered by vaccines and/or checkpoint inhibitors.
Collapse
Affiliation(s)
- Shalin S Patel
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sjoerd P Nota
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesco Sabbatino
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vikram Deshpande
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinhui Wang
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph H Schwab
- S. S. Patel, Orthopaedic Spine Service, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- S. S. Patel, S. P. Nota, S. Ferrone, J. H. Schwab, Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- F. Sabbatino, X. Wang, S. Ferrone, Surgical Oncology Service, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- G. P. Nielsen, V. Deshpande, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Traylor JI, Pernik MN, Plitt AR, Lim M, Garzon-Muvdi T. Immunotherapy for Chordoma and Chondrosarcoma: Current Evidence. Cancers (Basel) 2021; 13:2408. [PMID: 34067530 PMCID: PMC8156915 DOI: 10.3390/cancers13102408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Chordomas and chondrosarcomas are rare but devastating neoplasms that are characterized by chemoradiation resistance. For both tumors, surgical resection is the cornerstone of management. Immunotherapy agents are increasingly improving outcomes in multiple cancer subtypes and are being explored in chordoma and chondrosarcoma alike. In chordoma, brachyury has been identified as a prominent biomarker and potential molecular immunotherapy target as well as PD-1 inhibition. While studies on immunotherapy in chondrosarcoma are sparse, there is emerging evidence and ongoing clinical trials for PD-1 as well as IDH inhibitors. This review highlights potential biomarkers and targets for immunotherapy in chordoma and chondrosarcoma, as well as current clinical evidence and ongoing trials.
Collapse
Affiliation(s)
- Jeffrey I. Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Mark N. Pernik
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Aaron R. Plitt
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| | - Michael Lim
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94305, USA;
| | - Tomas Garzon-Muvdi
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.); (A.R.P.)
| |
Collapse
|
23
|
Karpathiou G, Dridi M, Krebs-Drouot L, Vassal F, Jouanneau E, Jacquesson T, Barrey C, Prades JM, Dumollard JM, Meyronet D, Boutonnat J, Péoc’h M. Autophagic Markers in Chordomas: Immunohistochemical Analysis and Comparison with the Immune Microenvironment of Chordoma Tissues. Cancers (Basel) 2021; 13:cancers13092169. [PMID: 33946484 PMCID: PMC8124629 DOI: 10.3390/cancers13092169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In contrast to normal notochords, autophagic factors are often present in chordomas. Furthermore, PD-L1+ immune cells also express LC3B, suggesting the need for further investigations between autophagy and the immune microenvironment. Abstract Chordomas are notably resistant to chemotherapy. One of the cytoprotective mechanisms implicated in chemoresistance is autophagy. There are indirect data that autophagy could be implicated in chordomas, but its presence has not been studied in chordoma tissues. Sixty-one (61) chordomas were immunohistochemically studied for autophagic markers and their expression was compared with the expression in notochords, clinicopathological data, as well as the tumor immune microenvironment. All chordomas strongly and diffusely expressed cytoplasmic p62 (sequestosome 1, SQSTM1/p62), whereas 16 (26.2%) tumors also showed nuclear p62 expression. LC3B (Microtubule-associated protein 1A/1B-light chain 3B) tumor cell expression was found in 44 (72.1%) tumors. Autophagy-related 16‑like 1 (ATG16L1) was also expressed by most tumors. All tumors expressed mannose-6-phosphate/insulin-like growth factor 2 receptor (M6PR/IGF2R). LC3B tumor cell expression was negatively associated with tumor size, while no other parameters, such as age, sex, localization, or survival, were associated with the immunohistochemical factors studied. LC3B immune cell expression showed a significant positive association with programmed death-ligand 1 (PD-L1)+ immune cells and with a higher vascular density. ATG16L1 expression was also positively associated with higher vascular density. Notochords (n = 5) showed different immunostaining with a very weak LC3B and M6PR expression, and no p62 expression. In contrast to normal notochords, autophagic factors such as LC3B and ATG16L1 are often present in chordomas, associated with a strong and diffuse expression of p62, suggesting a blocked autophagic flow. Furthermore, PD-L1+ immune cells also express LC3B, suggesting the need for further investigations between autophagy and the immune microenvironment.
Collapse
Affiliation(s)
- Georgia Karpathiou
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (M.D.); (J.M.D.); (M.P.)
- Correspondence:
| | - Maroa Dridi
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (M.D.); (J.M.D.); (M.P.)
| | - Lila Krebs-Drouot
- Pathology Department, University Hospital of Grenoble, 38700 Grenoble, France; (L.K.-D.); (J.B.)
| | - François Vassal
- Neurosurgery Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Emmanuel Jouanneau
- Department of Neurosurgery B, Neurological Hospital Pierre Wertheimer, 69500 Lyon, France; (E.J.); (T.J.)
- Inserm U1052, CNRS UMR5286, «Signaling, Metabolism and Tumor Progression» The Cancer Research Center of Lyon, 69373 Lyon, France
- Claude Bernard University, Lyon 1, 69100 Lyon, France; (C.B.); (D.M.)
| | - Timothée Jacquesson
- Department of Neurosurgery B, Neurological Hospital Pierre Wertheimer, 69500 Lyon, France; (E.J.); (T.J.)
- Department of Anatomy, Faculté de Médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, 69100 Lyon, France
| | - Cédric Barrey
- Claude Bernard University, Lyon 1, 69100 Lyon, France; (C.B.); (D.M.)
- Department of Spine and Spinal Cord Surgery, Neurological Hospital Pierre Wertheimer, 69500 Lyon, France
| | - Jean Michel Prades
- Head and Neck Surgery Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Jean Marc Dumollard
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (M.D.); (J.M.D.); (M.P.)
| | - David Meyronet
- Claude Bernard University, Lyon 1, 69100 Lyon, France; (C.B.); (D.M.)
- East Pathology Institute, Hospices Civils de Lyon, 69677 Lyon, France
- Cancer Research Center of Lyon, Cancer Cell Plasticity Department, 69373 Lyon, France
| | - Jean Boutonnat
- Pathology Department, University Hospital of Grenoble, 38700 Grenoble, France; (L.K.-D.); (J.B.)
| | - Michel Péoc’h
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (M.D.); (J.M.D.); (M.P.)
| |
Collapse
|
24
|
Akinduro OO, Suarez-Meade P, Garcia D, Brown DA, Sarabia-Estrada R, Attia S, Gokaslan ZL, Quiñones-Hinojosa A. Targeted Therapy for Chordoma: Key Molecular Signaling Pathways and the Role of Multimodal Therapy. Target Oncol 2021; 16:325-337. [PMID: 33893940 DOI: 10.1007/s11523-021-00814-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chordoma is a rare but devastating tumor that arises in the cranial skull base or spine. There are currently no US Food and Drug Administration-approved targeted therapies for chordoma, and little understanding of whether using more than one therapy has benefit over monotherapy. OBJECTIVE The objective of this study was to systematically review the current status of clinical trials completed for patients with chordoma to determine if multimodal therapy offers a benefit in progression-free survival over monomodal therapy. METHODS We performed a systematic review of the literature according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to review the available clinical trials of targeted therapy for chordoma. We compiled the clinical data to determine if there is a benefit of multimodal therapy over monotherapy. RESULTS Our search resulted in 11 clinical trials including 270 patients with advanced chordoma who were treated with targeted therapies. The most commonly employed targeted therapies acted within the following pathways: platelet-derived growth factor receptor (187 patients), vascular endothelial growth factor (66 patients), and mammalian target of rapamycin (43 patients). Reported progression-free survival for included studies ranged from 2.5 to 58 months, with the longest progression-free survival in a trial that included a platelet-derived growth factor receptor inhibitor, nilotinib, and concurrent radiotherapy (58.2 months). There was a higher range of progression-free survival for trials treating patients with multimodal therapy (10.2-14 months vs 2.5-9.2 months, except for a monotherapy trial published in 2020 with a progression-free survival of 18 months), and those published in 2018 or later (14-58.2 months vs 2.5-10.2 months). Only 23% of patients with chordoma in published clinical trials have been treated with multimodal therapy. CONCLUSIONS Progression-free survival may be enhanced by the use of targeted therapy with concurrent radiotherapy, use of multimodal therapy, and use of newer targeted therapy. Future clinical trials should consider use of concurrent radiotherapy and multimodal therapy for patients with advanced chordoma.
Collapse
Affiliation(s)
- Oluwaseun O Akinduro
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Paola Suarez-Meade
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Diogo Garcia
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | | | - Rachel Sarabia-Estrada
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Steven Attia
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alfredo Quiñones-Hinojosa
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
25
|
Hübschmann D, Jopp-Saile L, Andresen C, Krämer S, Gu Z, Heilig CE, Kreutzfeldt S, Teleanu V, Fröhling S, Eils R, Schlesner M. Analysis of mutational signatures with yet another package for signature analysis. Genes Chromosomes Cancer 2020; 60:314-331. [PMID: 33222322 DOI: 10.1002/gcc.22918] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Different mutational processes leave characteristic patterns of somatic mutations in the genome that can be identified as mutational signatures. Determining the contributions of mutational signatures to cancer genomes allows not only to reconstruct the etiology of somatic mutations, but can also be used for improved tumor classification and support therapeutic decisions. We here present the R package yet another package for signature analysis (YAPSA) to deconvolute the contributions of mutational signatures to tumor genomes. YAPSA provides in-built collections from the COSMIC and PCAWG SNV signature sets as well as the PCAWG Indel signatures and employs signature-specific cutoffs to increase sensitivity and specificity. Furthermore, YAPSA allows to determine 95% confidence intervals for signature exposures, to perform constrained stratified signature analyses to obtain enrichment and depletion patterns of the identified signatures and, when applied to whole exome sequencing data, to correct for the triplet content of individual target capture kits. With this functionality, YAPSA has proved to be a valuable tool for analysis of mutational signatures in molecular tumor boards in a precision oncology context. YAPSA is available at R/Bioconductor (http://bioconductor.org/packages/3.12/bioc/html/YAPSA.html).
Collapse
Affiliation(s)
- Daniel Hübschmann
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Pattern Recognition and Digital Medicine, Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Department of Pediatric Immunology, Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lea Jopp-Saile
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Pattern Recognition and Digital Medicine, Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Carolin Andresen
- Pattern Recognition and Digital Medicine, Heidelberg Institute of Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Stephen Krämer
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Zuguang Gu
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,DKFZ-HIPO (Heidelberg Center for Personalized Oncology), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Christoph E Heilig
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Simon Kreutzfeldt
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Veronica Teleanu
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Chair of Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
26
|
Pastor DM, Lee-Wisdom K, Arai AE, Sirajuddin A, Rosing DR, Korchin B, Gulley JL, Bilusic M. Fast Clearance of the SARS-CoV-2 Virus in a Patient Undergoing Vaccine Immunotherapy for Metastatic Chordoma: A Case Report. Front Oncol 2020; 10:603248. [PMID: 33330104 PMCID: PMC7717959 DOI: 10.3389/fonc.2020.603248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
The emergence of the SARS-CoV-2 virus has been associated with perplexing clinical sequelae and phenomena that often have no clear link to the underlying infection. There is a wide spectrum of symptoms associated with infection, from minimal respiratory complaints to severe multi-organ failure, often resulting in death. Individuals with malignancies, particularly those whose treatments have left them immunocompromised or immunosuppressed, are among the patient populations thought to be at greater risk for more severe illness. A man with aggressive metastatic chordoma contracted the SARS-CoV-2 virus and was diagnosed with COVID-19 while undergoing intravenous brachyury vaccine immunotherapy. His disease course was remarkably mild, and the virus cleared rapidly. Despite a treatment delay of 3 months due to the COVID-19 pandemic, the patient’s disease has been stable and tumor-related pain has significantly improved. This suggests not only an intact, functional immune system, but also one that appears to have been responsive to cancer treatment. It has been suggested that individuals undergoing treatment for metastatic cancer are at greater risk of severe SARS-CoV-2-related illnesses and complications. While immunosuppression may be a problem, particularly in those receiving conventional chemotherapeutic agents, it is possible that the non-specific effects of immune-enhancing therapies may confer some protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Danielle M Pastor
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katherine Lee-Wisdom
- Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Andrew E Arai
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Arlene Sirajuddin
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Douglas R Rosing
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Hoffman SE, Al Abdulmohsen SA, Gupta S, Hauser BM, Meredith DM, Dunn IF, Bi WL. Translational Windows in Chordoma: A Target Appraisal. Front Neurol 2020; 11:657. [PMID: 32733369 PMCID: PMC7360834 DOI: 10.3389/fneur.2020.00657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chordomas are rare tumors that are notoriously refractory to chemotherapy and radiotherapy when radical surgical resection is not achieved or upon recurrence after maximally aggressive treatment. The study of chordomas has been complicated by small patient cohorts and few available model systems due to the rarity of these tumors. Emerging next-generation sequencing technologies have broadened understanding of this disease by implicating novel pathways for possible targeted therapy. Mutations in cell-cycle regulation and chromatin remodeling genes have been identified in chordomas, but their significance remains unknown. Investigation of the immune microenvironment of these tumors suggests that checkpoint protein expression may influence prognosis, and adjuvant immunotherapy may improve patient outcome. Finally, growing evidence supports aberrant growth factor signaling as potential pathogenic mechanisms in chordoma. In this review, we characterize the impact on treatment opportunities offered by the genomic and immunologic landscape of this tumor.
Collapse
Affiliation(s)
- Samantha E Hoffman
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sally A Al Abdulmohsen
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Blake M Hauser
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - David M Meredith
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma College of Medicine, Oklahoma City, OK, United States
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
28
|
Fingolimod inhibits proliferation and epithelial-mesenchymal transition in sacral chordoma by inactivating IL-6/STAT3 signalling. Biosci Rep 2020; 40:222049. [PMID: 32027356 PMCID: PMC7029154 DOI: 10.1042/bsr20200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose: To explore the sensitivity of the immunosuppressive agent fingolimod (FTY720) in chordoma and determine whether it can serve as an appropriate alternate treatment for unresectable tumours in patients after incomplete surgery. Methods: Cell viability assays, colony formation assays and EdU assays were performed to evaluate the sensitivity of chordoma cell lines to FTY720. Transwell invasion assays, wound healing assays, flow cytometry, cell cycle analysis, immunofluorescence analysis, Western blotting analysis and enzyme-linked immunosorbent assays (ELISAs) were performed to evaluate cell invasion, epithelial–mesenchymal transition (EMT) and activation of related pathways after treatment with FTY720. The effect of FTY720 was also evaluated in vivo in a xenograft model. Results: We found that FTY720 inhibited the proliferation, invasion and metastasis of sacral chordoma cells (P < 0.01). FTY720 also inhibited the proliferation of tumour cells in a xenograft model using sacral chordoma cell lines (P < 0.01). The mechanism was related to the EMT and apoptosis of chordoma cells and inactivation of IL-6/STAT3 signalling in vitro and in vivo. Conclusions: Our findings indicate that FTY720 may be an effective therapeutic agent against chordoma. These findings suggest that FTY720 is a novel agent that can treat locally advanced and metastatic chordoma.
Collapse
|
29
|
Ozair MZ, Shah PP, Mathios D, Lim M, Moss NS. New Prospects for Molecular Targets for Chordomas. Neurosurg Clin N Am 2020; 31:289-300. [PMID: 32147018 DOI: 10.1016/j.nec.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chordomas are malignant, highly recurrent tumors of the midline skeleton that arise from the remnants of the notochord. The development of systemic therapy is critically important to ultimately managing this tumor. Several ongoing trials are attempting to use molecular targeted therapies for mutated pathways in recurrent and advanced chordomas and have shown promise. In addition, immunotherapies, including brachyury-directed vaccination and checkpoint inhibition, have also been attempted with encouraging results. This article discusses the major pathways that have been implicated in the pathogenesis of chordoma with an emphasis on molecular vulnerabilities that future therapies are attempting to exploit.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Pavan Pinkesh Shah
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Dimitrios Mathios
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21287, USA
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
30
|
Noor A, Bindal P, Ramirez M, Vredenburgh J. Chordoma: A Case Report and Review of Literature. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e918927. [PMID: 31969553 PMCID: PMC6998794 DOI: 10.12659/ajcr.918927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Patient: Female, 68-year-old Final Diagnosis: Chordoma Symptoms: Hoarseness • neck pain • weakness Medication: — Clinical Procedure: — Specialty: Oncology
Collapse
Affiliation(s)
- Arish Noor
- Internal Medicine, University of Connecticut, Farmington, CT, USA
| | - Poorva Bindal
- Internal Medicine, University of Connecticut, Farmington, CT, USA
| | - Miguel Ramirez
- Department of Radiology, St. Francis Hospital, Hartford, CT, USA
| | - James Vredenburgh
- Department of Hematology Oncology, St. Francis Hospital, Hartford, CT, USA
| |
Collapse
|
31
|
Zou M, Pan Y, Huang W, Zhang T, Escobar D, Wang X, Jiang Y, She X, Lv G, Li J. A four-factor immune risk score signature predicts the clinical outcome of patients with spinal chordoma. Clin Transl Med 2020; 10:224-237. [PMID: 32508056 PMCID: PMC7240847 DOI: 10.1002/ctm2.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently, the measurement of immune cells in previous studies is usually subjective, and no immune-based prognostic model has been established for chordoma. In this study, we sought to simultaneously measure tumor-infiltrating lymphocyte (TIL) subtypes in chordoma samples using an objective method and develop an immune risk score (IRS) model for survival prediction. METHODS Multiplexed quantitative immunofluorescence staining was used to determine the TIL levels in the tumoral and stromal subareas of 114 spinal chordoma specimens (54 in the training and 60 in the validation cohort) for programmed death-1 (PD-1), CD3, CD8, CD20 (where CD is cluster of differentiation), and FOXP3. Flow cytometry was performed to validate the immunofluorescence assay for lymphocyte measurement on an additional five fresh chordoma specimens. Subsequently, the IRS model was built using the least absolute shrinkage and selection operator (LASSO) Cox regression method. RESULTS Flow cytometry and quantitative immunofluorescence showed similar lymphocytic percentages and TIL subpopulation proportions in the fresh tumor specimens. With the training data, the LASSO model identified four immune features for IRS construction: tumoral FOXP3, tumoral PD-1, stromal FOXP3, and stromal CD8. In both cohorts, a high IRS was significantly associated with tumoral programmed cell death-1 ligand 1 expression, Enneking inappropriate tumor resection, and surrounding muscle invasion by tumor. Multivariate Cox regression and stratified analysis in the two cohorts revealed that the IRS was an independent predictor and could effectively separate patients with similar Enneking staging into different risk subgroups, with significantly different survival rates. Further receiver operating characteristic analysis found that the IRS classifier had a better prognostic value than the traditional clinicopathological factors and compensated for the deficiency of Enneking staging for outcome prediction. More importantly, a nomogram based on the IRS and clinical predictors showed adequate performance in estimating disease recurrence and survival of patients. CONCLUSIONS These data support the use of the IRS signature as a reliable prognostic tool in spinal chordoma and may facilitate individualized therapy decision making for patients.
Collapse
Affiliation(s)
- Ming‐Xiang Zou
- Department of Spine SurgeryThe First Affiliated HospitalUniversity of South ChinaHengyangChina
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yue Pan
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Huang
- Institute of Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Tao‐Lan Zhang
- Department of Cancer BiologyCollege of Medicine & Life SciencesUniversity of ToledoToledoOhio
| | - David Escobar
- Department of Cancer BiologyCollege of Medicine & Life SciencesUniversity of ToledoToledoOhio
| | - Xiao‐Bin Wang
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yi Jiang
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiao‐Ling She
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Guo‐Hua Lv
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jing Li
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
32
|
[From bench to bedside for new treatment paradigms in chordomas: An update]. Bull Cancer 2019; 107:129-135. [PMID: 31882268 DOI: 10.1016/j.bulcan.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 11/23/2022]
Abstract
Chordomas are rare malignant tumours, which typically occur in the axial skeleton and skull base. They arise from embryonic remnants of the notochord. They constitute less than 5 % of primary bone tumours. They are characterised by their locally aggressive potential with high frequency of recurrences and a median overall survival of 6 years. The initial therapeutic strategy must be discussed in an expert centre and may involve surgery, preoperative radiotherapy, exclusive radiotherapy or therapeutic abstention. Despite this, more than 50 % of patients will be facing recurrences with few therapeutic options available at this advanced stage. This review aims to outline current treatment options available in chordomas, as well as discussing potentiality of new therapeutic approaches through their molecular characterization and the comprehension of their immunological environment.
Collapse
|
33
|
Patient-derived organoids as a potential model to predict response to PD-1/PD-L1 checkpoint inhibitors. Br J Cancer 2019; 121:979-982. [PMID: 31666667 PMCID: PMC6889147 DOI: 10.1038/s41416-019-0616-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
Selection of cancer patients for treatment with immune checkpoint inhibitors remains a challenge due to tumour heterogeneity and variable biomarker detection. PD-L1 expression in 24 surgical chordoma specimen was determined immunohistochemically with antibodies 28-8 and E1L3N. The ability of patient-derived organoids to detect treatment effects of nivolumab was explored by quantitative and qualitative immunofluorescence and FACS analysis. The more sensitive antibody, E1L3N (ROC = 0.896, p = 0.001), was associated with greater tumour diameters (p = 0.014) and detected both tumour cells and infiltrating lymphocytes in 54% of patients, but only 1–15% of their cells. Organoids generated from PD-L1-positive patients contained both tumour cells and PD-1/CD8-positive lymphocytes and responded to nivolumab treatment with marked dose-dependent diameter reductions of up to 50% and increased cell death in both PD-L1-positive and negative organoids. Patient-derived organoids may be valuable to predict individual responses to immunotherapy even in patients with low or no immunohistochemical PD-L1 expression.
Collapse
|
34
|
Morimoto Y, Tamura R, Ohara K, Kosugi K, Oishi Y, Kuranari Y, Yoshida K, Toda M. Prognostic significance of VEGF receptors expression on the tumor cells in skull base chordoma. J Neurooncol 2019; 144:65-77. [PMID: 31240525 DOI: 10.1007/s11060-019-03221-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chordoma is a rare refractory neoplasm that arises from the embryological remnants of the notochord, which is incurable using any multimodality therapy. Vascular endothelial growth factor (VEGF) is a potent activator of angiogenesis that is strongly associated with the tumor-immune microenvironment. These factors have not been elucidated for chordomas. METHODS To evaluate the characteristics of vascular and tumor cells in chordoma, we first analyzed the expression of VEGF receptor (VEGFR) 1, VEGFR2, CD34, and Brachyury in a cell line and 54 tumor tissues. Patients with primary skull base chordomas were divided into the following two groups as per the tumor growth rate: patients with slow progression (SP: < 3 mm/year) and those with rapid progression (RP: ≥ 3 mm/year). Thus, the expressions of VEGF-A, VEGFR 1, and VEGFR2 on tumor cells; tumor infiltrative immune cells, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs); and immune-checkpoint molecules (PD-1/PD-L1) were analyzed with the clinical courses, especially in a comparison between the two groups. RESULTS In chordomas, both VEGFR1 and VEGFR2 were strongly expressed not only on vascular endothelial cells, but also on tumor cells. The recurrent cases showed significantly higher VEGFR1 expressions on tumor cells than the primary cases. The expression of VEGF-A was significantly higher in RP than that in SP group. The numbers of CD163+ TAMs and Foxp3+ Tregs were higher in RP than that in SP group. CONCLUSIONS Expression of VEGFR1 and VEGFR2 on tumor cells and immunosuppressive tumor-microenvironment were related to tumor growth in patients with chordomas.
Collapse
Affiliation(s)
- Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenzo Kosugi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yumiko Oishi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Kuranari
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
35
|
Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat Commun 2019; 10:1635. [PMID: 30967556 PMCID: PMC6456501 DOI: 10.1038/s41467-019-09633-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Chordomas are rare bone tumors with few therapeutic options. Here we show, using whole-exome and genome sequencing within a precision oncology program, that advanced chordomas (n = 11) may be characterized by genomic patterns indicative of defective homologous recombination (HR) DNA repair and alterations affecting HR-related genes, including, for example, deletions and pathogenic germline variants of BRCA2, NBN, and CHEK2. A mutational signature associated with HR deficiency was significantly enriched in 72.7% of samples and co-occurred with genomic instability. The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, which is preferentially toxic to HR-incompetent cells, led to prolonged clinical benefit in a patient with refractory chordoma, and whole-genome analysis at progression revealed a PARP1 p.T910A mutation predicted to disrupt the autoinhibitory PARP1 helical domain. These findings uncover a therapeutic opportunity in chordoma that warrants further exploration, and provide insight into the mechanisms underlying PARP inhibitor resistance. Chordomas are rare bone tumors with limited therapeutic options. Here, the authors identify molecular alterations associated with defective homologous recombination DNA repair in advanced chordomas and report prolonged response in a patient treated with a PARP inhibitor, which later acquired resistance due to a newly gained PARP1 mutation.
Collapse
|
36
|
Shah SR, Kim J, Schiapparelli P, Vazquez-Ramos CA, Martinez-Gutierrez JC, Ruiz-Valls A, Inman K, Shamul JG, Green JJ, Quinones-Hinojosa A. Verteporfin-Loaded Polymeric Microparticles for Intratumoral Treatment of Brain Cancer. Mol Pharm 2019; 16:1433-1443. [PMID: 30803231 PMCID: PMC7337228 DOI: 10.1021/acs.molpharmaceut.8b00959] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glioblastoma (GBMs) is the most common and aggressive type of primary brain tumor in adults with dismal prognosis despite radical surgical resection coupled with chemo- and radiotherapy. Recent studies have proposed the use of small-molecule inhibitors, including verteporfin (VP), to target oncogenic networks in cancers. Here we report efficient encapsulation of water-insoluble VP in poly(lactic- co-glycolic acid) microparticles (PLGA MP) of ∼1.5 μm in diameter that allows tunable, sustained release. Treatment with naked VP and released VP from PLGA MP decreased cell viability of patient-derived primary GBM cells in vitro by ∼70%. Moreover, naked VP treatment significantly increased radiosensitivity of GBM cells, thereby enhancing overall tumor cell killing ability by nearly 85%. Our in vivo study demonstrated that two intratumoral administrations of sustained slow-releasing VP-loaded PLGA MPs separated by two weeks significantly attenuated tumor growth by ∼67% in tumor volume in a subcutaneous patient-derived GBM xenograft model over 26 d. Additionally, our in vitro data indicate broader utility of VP for treatment for other solid cancers, including chordoma, malignant meningioma, and various noncentral nervous system-derived carcinomas. Collectively, our work suggests that the use of VP-loaded PLGA MP may be an effective local therapeutic strategy for a variety of solid cancers, including unresectable and orphan tumors, which may decrease tumor burden and ultimately improve patient prognosis.
Collapse
Affiliation(s)
- Sagar R. Shah
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida 32224, United States
- Department of Biomedical Engineering, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
- Translational Tissue Engineering Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Jayoung Kim
- Department of Biomedical Engineering, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
- Translational Tissue Engineering Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Paula Schiapparelli
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida 32224, United States
| | | | | | - Alejandro Ruiz-Valls
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland 21231, United States
| | - Kyle Inman
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland 21231, United States
| | - James G. Shamul
- Department of Biomedical Engineering, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
- Translational Tissue Engineering Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Jordan J. Green
- Department of Biomedical Engineering, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
- Translational Tissue Engineering Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Department of Materials Science and Engineering, and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
37
|
Zhang J, Zhang H, Luo Y. Association Between Activation of the Programmed Cell Death-1 (PD-1)/Programmed Death-Ligand 1 (PD-L1) Pathway and Pain in Patients with Cancer. Med Sci Monit 2019; 25:1275-1282. [PMID: 30771277 PMCID: PMC6387472 DOI: 10.12659/msm.912632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background The aim of this study was to investigate the clinical correlation between sPD-1 (soluble programmed cell death-1) and PD-1 (programmed cell death-1) expression and cancer pain. Material/Methods sPD-1 content in peripheral blood was determined by enzyme-linked immunosorbent assay (ELISA). T cell surface-positive rate was determined by flow cytometry, and the correlation of clinical characteristics of patients with cancer pain was analyzed. Results The positive expression rate of PD-1 in sPD-1 and T cells of patients with cancer pain was higher than that in normal patients. There was a significant correlation between sPD-1 and PD-1 positivity on T cell surface with tumor type, differentiation degree, and VAS scores of patients with cancer pain (P<0.05). Peripheral blood sPD-1 level and PD-1 positivity in patients with liver cancer and melanoma cancer were higher than those in patients with renal cell carcinoma and breast cancer. In addition, peripheral blood sPD-1 level and PD-1 positivity in patients with poorly-differentiated cancer pain were higher than those in patients with intermediately- to well-differentiated cancer. The sPD-1 content was lower and PD-1 positivity rate was higher in cancer pain patients with low VAS scores. Conclusions The positive expression rate of sPD-1 and PD-1 in patients with cancer pain is higher than that in normal people. The activation rate of the PD-1/PD-L1 pathway was mediated by sPD-1 and PD-1 positive expression, age, tumor type, and differentiation. There are correlations between clinical characteristics such as degree and pain level as shown by VAS score.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pain Management, The Third Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Huali Zhang
- Department of Laboratory, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China (mainland)
| | - Yongli Luo
- Department of Palliative Care, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
38
|
Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z. Advances in immune checkpoint inhibitors for bone sarcoma therapy. J Bone Oncol 2019; 15:100221. [PMID: 30775238 PMCID: PMC6365405 DOI: 10.1016/j.jbo.2019.100221] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Bone sarcomas are a collection of sporadic malignancies of mesenchymal origin. The most common subtypes include osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma. Despite the use of aggressive treatment protocols consisting of extensive surgical resection, chemotherapy, and radiotherapy, outcomes have not significantly improved over the past few decades for osteosarcoma or Ewing sarcoma patients. In addition, chondrosarcoma and chordoma are resistant to both chemotherapy and radiation therapy. There is, therefore, an urgent need to elucidate which novel new therapies may affect bone sarcomas. Emerging checkpoint inhibitors have generated considerable attention for their clinical success in a variety of human cancers, which has led to works assessing their potential in bone sarcoma management. Here, we review the recent advances of anti-PD-1/PD-L1 and anti-CTLA-4 blockade as well as other promising new immune checkpoint targets for their use in bone sarcoma therapy.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095, USA
- Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - Dylan C. Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095, USA
| | - Scott D. Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Francis J. Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095, USA
- Corresponding author.
| |
Collapse
|
39
|
Shah SR, David JM, Tippens ND, Mohyeldin A, Martinez-Gutierrez JC, Ganaha S, Schiapparelli P, Hamilton DH, Palena C, Levchenko A, Quiñones-Hinojosa A. Brachyury-YAP Regulatory Axis Drives Stemness and Growth in Cancer. Cell Rep 2018; 21:495-507. [PMID: 29020634 DOI: 10.1016/j.celrep.2017.09.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/19/2017] [Accepted: 09/15/2017] [Indexed: 12/16/2022] Open
Abstract
Molecular factors that define stem cell identity have recently emerged as oncogenic drivers. For instance, brachyury, a key developmental transcriptional factor, is also implicated in carcinogenesis, most notably of chordoma, through mechanisms that remain elusive. Here, we show that brachyury is a crucial regulator of stemness in chordoma and in more common aggressive cancers. Furthermore, this effect of brachyury is mediated by control of synthesis and stability of Yes-associated protein (YAP), a key regulator of tissue growth and homeostasis, providing an unexpected mechanism of control of YAP expression. We further demonstrate that the brachyury-YAP regulatory pathway is associated with tumor aggressiveness. These results elucidate a mechanism of controlling both tumor stemness and aggressiveness through regulatory coupling of two developmental factors.
Collapse
Affiliation(s)
- Sagar R Shah
- Department of Neurologic Surgery, The Mayo Clinic, Jacksonville, FL, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel D Tippens
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Ahmed Mohyeldin
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Sara Ganaha
- Department of Neurologic Surgery, The Mayo Clinic, Jacksonville, FL, USA
| | | | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andre Levchenko
- Department of Biomedical Engineering and Systems Biology Institute, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
40
|
Gong C, Milberg O, Wang B, Vicini P, Narwal R, Roskos L, Popel AS. A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition. J R Soc Interface 2018; 14:rsif.2017.0320. [PMID: 28931635 PMCID: PMC5636269 DOI: 10.1098/rsif.2017.0320] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
When the immune system responds to tumour development, patterns of immune infiltrates emerge, highlighted by the expression of immune checkpoint-related molecules such as PDL1 on the surface of cancer cells. Such spatial heterogeneity carries information on intrinsic characteristics of the tumour lesion for individual patients, and thus is a potential source for biomarkers for anti-tumour therapeutics. We developed a systems biology multiscale agent-based model to capture the interactions between immune cells and cancer cells, and analysed the emergent global behaviour during tumour development and immunotherapy. Using this model, we are able to reproduce temporal dynamics of cytotoxic T cells and cancer cells during tumour progression, as well as three-dimensional spatial distributions of these cells. By varying the characteristics of the neoantigen profile of individual patients, such as mutational burden and antigen strength, a spectrum of pretreatment spatial patterns of PDL1 expression is generated in our simulations, resembling immuno-architectures obtained via immunohistochemistry from patient biopsies. By correlating these spatial characteristics with in silico treatment results using immune checkpoint inhibitors, the model provides a framework for use to predict treatment/biomarker combinations in different cancer types based on cancer-specific experimental data.
Collapse
Affiliation(s)
- Chang Gong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oleg Milberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Antonios JP, Soto H, Everson RG, Moughon D, Orpilla JR, Shin NP, Sedighim S, Treger J, Odesa S, Tucker A, Yong WH, Li G, Cloughesy TF, Liau LM, Prins RM. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol 2018; 19:796-807. [PMID: 28115578 DOI: 10.1093/neuonc/now287] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Adaptive immune resistance in the tumor microenvironment appears to attenuate the immunotherapeutic targeting of glioblastoma (GBM). In this study, we identified a tumor-infiltrating myeloid cell (TIM) population that expands in response to dendritic cell (DC) vaccine treatment. The aim of this study was to understand how this programmed death ligand 1 (PD-L1)-expressing population restricts activation and tumor-cytolytic function of vaccine-induced tumor-infiltrating lymphocytes (TILs). Methods To test this hypothesis in our in vivo preclinical model, we treated mice bearing intracranial gliomas with DC vaccination ± murine anti-PD-1 monoclonal antibody (mAb) blockade or a colony stimulating factor 1 receptor inhibitor (CSF-1Ri) (PLX3397) and measured overall survival. We then harvested and characterized the PD-L1+ TIM population and its role in TIL activation and tumor cytolysis in vitro. Results Our data indicated that the majority of PD-L1 expression in the GBM environment is contributed by TIMs rather than by tumor cells themselves. While PD-1 blockade partially reversed the TIL dysfunction, targeting TIMs directly with CSF-1Ri altered TIM expression of key chemotactic factors associated with promoting increased TIL infiltration after vaccination. Neither PD-1 mAb nor CSF-1Ri had a demonstrable therapeutic benefit alone, but when combined with DC vaccination, a significant survival benefit was observed. When the tripartite regimen was given (DC vaccine, PD-1 mAb, PLX3397), long-term survival was noted together with an increase in the number of TILs and TIL activation. Conclusion Together, these studies elucidate the role that TIMs play in mediating adaptive immune resistance in the GBM microenvironment and provide evidence that they can be manipulated pharmacologically with agents that are clinically available. Development of immune resistance in response to active vaccination in GBM can be reversed with dual administration of CSF-1Ri and PD-1 mAb.
Collapse
Affiliation(s)
- Joseph P Antonios
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Horacio Soto
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Richard G Everson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Diana Moughon
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Joey R Orpilla
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Namjo P Shin
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Shaina Sedighim
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Janet Treger
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Sylvia Odesa
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Alexander Tucker
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Gang Li
- Department of Biostatistics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Robert M Prins
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| |
Collapse
|
42
|
Hu W, Yu J, Huang Y, Hu F, Zhang X, Wang Y. Lymphocyte-Related Inflammation and Immune-Based Scores Predict Prognosis of Chordoma Patients After Radical Resection. Transl Oncol 2018; 11:444-449. [PMID: 29477108 PMCID: PMC5842326 DOI: 10.1016/j.tranon.2018.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
The inflammatory microenvironment plays a critical role in the development and progression of malignancies. In the present study, we aimed to evaluate the prognostic value of lymphocyte-related inflammation and immune-based prognostic scores in patients with chordoma after radical resection, including the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), monocyte-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). A total of 172 consecutive patients with chordoma who underwent radical resection were reviewed. R software was used to randomly select 86 chordoma patients as a training set and 86 chordoma patients as a validation set. Potential prognostic factors were also identified, including age, sex, tumor localization, KPS, Enneking stage, tumor size, and tumor metastasis. Overall survival (OS) was calculated using the Kaplan–Meier method and multivariate Cox regression analyses. NLR, PLR, SII, Enneking stage, tumor differentiation and tumor metastasis were identified as significant factors from the univariate analysis in both the training and validation sets and were subjected to multivariate Cox proportional hazards analysis. The univariate analysis showed that NLR ≥1.65, PLR ≥121, and SII ≥370×109/L were significantly associated with poor OS. In the multivariate Cox proportional hazard analysis, SII, Enneking stage and tumor metastasis were significantly associated with OS. As noninvasive, low-cost, reproducible prognostic biomarkers, NLR, PLR and SII could help predict poor prognosis in patients with chordoma after radical resection. This finding may contribute to the development of more effective tailored therapy according to the characteristics of individual tumors.
Collapse
Affiliation(s)
- Wenhao Hu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiayi Yu
- Department of Renal cancer and Melanoma, Peking University Cancer Hospital, Beijing, China; Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yong Huang
- Department of Pathology, Chinese PLA General Hospital, Beijing,China
| | - Fanqi Hu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xuesong Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Yan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
43
|
Fujii R, Friedman ER, Richards J, Tsang KY, Heery CR, Schlom J, Hodge JW. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget 2018; 7:33498-511. [PMID: 27172898 PMCID: PMC5085098 DOI: 10.18632/oncotarget.9256] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/26/2016] [Indexed: 12/31/2022] Open
Abstract
Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.
Collapse
Affiliation(s)
- Rika Fujii
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eitan R Friedman
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Richards
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kwong Y Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Abstract
Chordoma is a locally aggressive primary malignancy of the axial skeleton. The gold standard for treatment is en bloc resection, with some centers now advocating for the use of radiation to help mitigate the risk of recurrence. Local recurrence is common, and salvaging local failures is quite difficult. Chemotherapy has been ineffective and small molecule targeted therapy has had only marginal benefits in small subsets of patients with rare tumor phenotypes or refractory disease. Recent successes utilizing immunotherapy in a variety of cancers has led to a resurgence of interest in modifying the host immune system to develop new ways to treat tumors. This review will discuss these studies and will highlight the early studies employing immune strategies for the treatment of chordoma.
Collapse
Affiliation(s)
- Shalin S Patel
- Department of Orthopaedic Surgery, Massachusetts General Hospital Harvard Medical School, 55 Fruit Street Yawkey Building Suite 3A, Boston, MA, 02114-2696, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital Harvard Medical School, 55 Fruit Street Yawkey Building Suite 3A, Boston, MA, 02114-2696, USA.
| |
Collapse
|
45
|
Otani R, Mukasa A, Shin M, Omata M, Takayanagi S, Tanaka S, Ueki K, Saito N. Brachyury gene copy number gain and activation of the PI3K/Akt pathway: association with upregulation of oncogenic Brachyury expression in skull base chordoma. J Neurosurg 2017; 128:1428-1437. [PMID: 28753115 DOI: 10.3171/2016.12.jns161444] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Chordoma is a slow-growing but clinically malignant tumor, and the prognosis remains poor in many cases. There is a strong impetus to develop more effective targeted molecular therapies. On this basis, the authors investigated the potential of Brachyury, a transcription factor involved in notochord development, as a candidate molecular target for the treatment of chordoma. METHODS Brachyury gene copy number and expression levels were evaluated by quantitative polymerase chain reaction in 27 chordoma samples, and the transcriptomes of Brachyury high-expression tumors (n = 4) and Brachyury low-expression tumors (n = 4) were analyzed. A chordoma cell line (U-CH2) was used to investigate the signaling pathways that regulate Brachyury expression. RESULTS All chordoma specimens expressed Brachyury, and expression levels varied widely. Patients with higher Brachyury expression had significantly shorter progression-free survival (5 months, n = 11) than those with lower expression (13 months, n = 16) (p = 0.03). Somatic copy number gain was confirmed in 12 of 27 (44%) cases, and copy number was positively correlated with Brachyury expression (R = 0.61, p < 0.001). Expression of PI3K/Akt pathway genes was upregulated in Brachyury high-expression tumors, and suppression of PI3K signaling led to reduced Brachyury expression and inhibition of cell growth in the U-CH2 chordoma cell line. CONCLUSIONS Activation of the PI3K/Akt pathway and Brachyury copy number gain are strongly associated with Brachyury overexpression, which appears to be a key event in chordoma growth regulation. These findings suggest that targeting Brachyury and PI3K/Akt signaling may be an effective new approach for treating chordoma.
Collapse
Affiliation(s)
- Ryohei Otani
- 1Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo; and.,2Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan
| | - Akitake Mukasa
- 1Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo; and
| | - Masahiro Shin
- 1Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo; and
| | - Mayu Omata
- 1Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo; and
| | - Shunsaku Takayanagi
- 1Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo; and
| | - Shota Tanaka
- 1Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo; and
| | - Keisuke Ueki
- 2Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan
| | - Nobuhito Saito
- 1Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo; and
| |
Collapse
|
46
|
Colia V, Stacchiotti S. Medical treatment of advanced chordomas. Eur J Cancer 2017; 83:220-228. [PMID: 28750274 DOI: 10.1016/j.ejca.2017.06.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
Chordoma is a very rare bone sarcoma that can arise from any site along the spine and from the skull base. En bloc resection is the gold standard for treatment while radiation therapy has been shown to provide both curative and palliative benefit. Unfortunately, local recurrences are common, even after a complete surgical resection, and up to 40% of patients suffer from distant metastases, while salvage treatments are challenging. Patients carrying an advanced disease need a systemic treatment. Unluckily, conventional chordoma are insensitive to cytotoxic chemotherapy that is considered the standard treatment option in patients with metastatic sarcoma. In the last decade, innovative therapies have been introduced, positively impacting disease control and patients' quality of life. In addition, a better understanding of the molecular characteristics of chordoma allowed to detect new potential targets. This review is focused on the pharmacological management of patients affected by an advanced disease, starting with a summary of data available on conventional chemotherapy, then moving to a deeper analysis of available data on molecular agents and immunotherapy, and finally providing an update on ongoing clinical trials and future prospective.
Collapse
Affiliation(s)
- Vittoria Colia
- Adult Mesenchymal Tumour and Rare Cancer Medical Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy.
| | - Silvia Stacchiotti
- Adult Mesenchymal Tumour and Rare Cancer Medical Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy.
| |
Collapse
|
47
|
Migliorini D, Mach N, Aguiar D, Vernet R, Landis BN, Becker M, McKee T, Dutoit V, Dietrich PY. First report of clinical responses to immunotherapy in 3 relapsing cases of chordoma after failure of standard therapies. Oncoimmunology 2017; 6:e1338235. [PMID: 28919999 DOI: 10.1080/2162402x.2017.1338235] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 12/23/2022] Open
Abstract
Chordoma is a rare tumor of notochordal origin, currently principally treated by surgery and/or irradiation. Here, we describe the clinical outcome of 3 consecutive patients with metastatic and locally advanced chordoma, treated with different immunotherapeutic approaches. All patients presented fast growing tumors and failure of standard therapies. One was treated with a tumor-based vaccine, the 2 others with anti-PD1 antibodies, all with impressive clinical and radiological responses. We therefore propose that chordoma is an immunogenic tumor and thus that translational and clinical research is necessary to develop rationally designed immunotherapy approaches.
Collapse
Affiliation(s)
- Denis Migliorini
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Nicolas Mach
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland.,Cell Therapy Laboratory, Department of Oncology, Geneva University, Geneva, Switzerland
| | - Diego Aguiar
- Clinical Pathology Service, Geneva University Hospital, Geneva, Switzerland
| | - Rémi Vernet
- Cell Therapy Laboratory, Department of Oncology, Geneva University, Geneva, Switzerland
| | - Basile Nicolas Landis
- Department of Otorhinolaryngology, Head and Neck Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Minerva Becker
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - Thomas McKee
- Clinical Pathology Service, Geneva University Hospital, Geneva, Switzerland
| | - Valérie Dutoit
- Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland.,Laboratory of Tumor Immunology, Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
48
|
Genetic aberrations and molecular biology of skull base chordoma and chondrosarcoma. Brain Tumor Pathol 2017; 34:78-90. [PMID: 28432450 DOI: 10.1007/s10014-017-0283-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Chordomas and chondrosarcomas are two major malignant bone neoplasms located at the skull base. These tumors are rarely metastatic, but can be locally invasive and resistant to conventional chemotherapies and radiotherapies. Accordingly, therapeutic approaches for the treatment of these tumors can be difficult. Additionally, their location at the skull base makes them problematic. Although accurate diagnosis of these tumors is important because of their distinct prognoses, distinguishing between these tumor types is difficult due to overlapping radiological and histopathological findings. However, recent accumulation of molecular and genetic studies, including extracranial location analysis, has provided us clues for accurate diagnosis. In this report, we review the genetic aberrations and molecular biology of these two tumor types. Among the abundant genetic features of these tumors, brachyury immunohistochemistry and direct sequencing of IDH1/2 are simple and useful techniques that can be used to distinguish between these tumors. Although it is still unclear why these tumors, which have such distinct genetic backgrounds, show similar histopathological findings, comparison of their genetic backgrounds could provide essential information.
Collapse
|
49
|
Noguchi T, Ward JP, Gubin MM, Arthur CD, Lee SH, Hundal J, Selby MJ, Graziano RF, Mardis ER, Korman AJ, Schreiber RD. Temporally Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune Escape. Cancer Immunol Res 2017; 5:106-117. [PMID: 28073774 DOI: 10.1158/2326-6066.cir-16-0391] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
Antibody blockade of programmed death-1 (PD-1) or its ligand, PD-L1, has led to unprecedented therapeutic responses in certain tumor-bearing individuals, but PD-L1 expression's prognostic value in stratifying cancer patients for such treatment remains unclear. Reports conflict on the significance of correlations between PD-L1 on tumor cells and positive clinical outcomes to PD-1/PD-L1 blockade. We investigated this issue using genomically related, clonal subsets from the same methylcholanthrene-induced sarcoma: a highly immunogenic subset that is spontaneously eliminated in vivo by adaptive immunity and a less immunogenic subset that forms tumors in immunocompetent mice, but is sensitive to PD-1/PD-L1 blockade therapy. Using CRISPR/Cas9-induced loss-of-function approaches and overexpression gain-of-function techniques, we confirmed that PD-L1 on tumor cells is key to promoting tumor escape. In addition, the capacity of PD-L1 to suppress antitumor responses was inversely proportional to tumor cell antigenicity. PD-L1 expression on host cells, particularly tumor-associated macrophages (TAM), was also important for tumor immune escape. We demonstrated that induction of PD-L1 on tumor cells was IFNγ-dependent and transient, but PD-L1 induction on TAMs was of greater magnitude, only partially IFNγ dependent, and was stable over time. Thus, PD-L1 expression on either tumor cells or host immune cells could lead to tumor escape from immune control, indicating that total PD-L1 expression in the immediate tumor microenvironment may represent a more accurate biomarker for predicting response to PD-1/PD-L1 blockade therapy, compared with monitoring PD-L1 expression on tumor cells alone. Cancer Immunol Res; 5(2); 106-17. ©2017 AACR.
Collapse
Affiliation(s)
- Takuro Noguchi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Jeffrey P Ward
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew M Gubin
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Cora D Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Sang Hun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Elaine R Mardis
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | | | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri. .,Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
50
|
Clinical Decision Making: Integrating Advances in the Molecular Understanding of Spine Tumors. Spine (Phila Pa 1976) 2016; 41 Suppl 20:S171-S177. [PMID: 27488298 DOI: 10.1097/brs.0000000000001836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Literature review. OBJECTIVE To describe advancements in molecular techniques, biomarkers, technology, and targeted therapeutics and the potential these modalities hold to predict treatment paradigms, clinical outcomes, and/or survival in patients diagnosed with primary spinal column tumors. SUMMARY OF BACKGROUND DATA Advances in molecular technologies and techniques have influenced the prevention, diagnosis, and overall management of patients diagnosed with cancer. Assessment of genomic, proteomic alterations, epigenetic, and posttranslational modifications as well as developments in diagnostic modalities and targeted therapeutics, although the best studied in nonspinal metastatic disease, have led to increased understanding of spine oncology that is expected to improve patient outcomes. In this manuscript, the technological advancements that are expected to change the landscape of spinal oncology are discussed with a focus on how these technologies will aid in clinical decision-making for patients diagnosed with primary spinal tumors. METHODS A review of the literature was performed focusing on studies that integrated next-generation sequencing, circulating tumor cells/circulating tumor DNA, advances in imaging modalities and/or radiotherapy in the diagnosis and treatment of cancer. RESULTS We discuss genetic and epigenetic drivers, aberrations in receptor tyrosine kinase signaling, and emerging therapeutic strategies that include receptor tyrosine kinase inhibitors, immunotherapy strategies, and vaccine-based cancer prevention strategies. CONCLUSION The wide range of approaches currently in use and the emerging technologies yet to be fully realized will allow for better development of rationale therapeutics to improve patient outcomes. LEVEL OF EVIDENCE N/A.
Collapse
|