1
|
Cao M, Zhang W, Chen J, Zhang Y. Identification of a coagulation-related gene signature for predicting prognosis in recurrent glioma. Discov Oncol 2024; 15:642. [PMID: 39527288 PMCID: PMC11555177 DOI: 10.1007/s12672-024-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Recurrent gliomas rapidly progress and have high mortality and poor prognosis in the central nervous system. Therefore, further investigation of prognostic and therapeutic markers is needed. METHODS The mRNA expression, clinical data, and coagulation-related genes (CRGs) associated with recurrent glioma were obtained and calculated from the Chinese Glioma Genome Atlas and Kyoto Encyclopedia of Genes and Genomes databases. The significant CRGs were calculated by Weighted gene co-expression network analysis and PPI network. A prediction model was constructed using the least absolute shrinkage and selection operator regression analysis. Recurrent gliomas were stratified into high and low-risk groups based on the median risk score (RS). The Kaplan-Meier curve was used to analyze the difference in overall survival (OS) between these groups, while the receiver operating characteristic (ROC) curve was used to evaluate the accuracy of the gene model at 1-, 3-, and 5-years. Clinical factors, including age, gender, MGMT methylation status, radiotherapy, chemotherapy, and RS, were included in the univariate and multivariate regression analysis. A prognostic nomogram and calibration curve were established based on these factors. RESULTS Overall, seven CRGs associated with the prognosis were identified, including BTK, ITGB1, GNAI3, CFH, LYN, CFI, and F3. OS and survival rates were lower in the high-risk group compared with the low-risk group. The ROC curve demonstrated the area under the curve values >0.65 at 1-, 3-, and 5-years, confirming the reliability of the prognostic model. The univariate regression analysis indicated that tumor grade (grades 2, 3, and 4), histopathology (GBM or not), chemotherapy, IDH mutation, and 1p19q co-deletion status were independent prognostic indicators. Univariate and multivariate regression analyses indicated that RS was an independent prognostic factor for patients with recurrent glioma. Immune analysis revealed low infiltration of resting dendritic cells and high expression of programmed death receptor 1 in the high-risk group. CONCLUSION This study comprehensively investigated the correlation between CRGs and recurrent glioma prognosis, offering crucial insights for further research into glioma recurrence mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Ming Cao
- Department of Neurosurgery, WuXi Children's Hospital, Wuxi, 214000, China.
| | - Wenwen Zhang
- Department of Oncology, Wuxi Taihu Hospital, Wuxi, 214000, China
| | - Jie Chen
- Department of Neurosurgery, WuXi Children's Hospital, Wuxi, 214000, China
| | - Yuchen Zhang
- Department of Neurosurgery, WuXi Children's Hospital, Wuxi, 214000, China
| |
Collapse
|
2
|
Jo J, Diaz M, Horbinski C, Mackman N, Bagley S, Broekman M, Rak J, Perry J, Pabinger I, Key NS, Schiff D. Epidemiology, biology, and management of venous thromboembolism in gliomas: An interdisciplinary review. Neuro Oncol 2023; 25:1381-1394. [PMID: 37100086 PMCID: PMC10398809 DOI: 10.1093/neuonc/noad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Patients with diffuse glioma are at high risk of developing venous thromboembolism (VTE) over the course of the disease, with up to 30% incidence in patients with glioblastoma (GBM) and a lower but nonnegligible risk in lower-grade gliomas. Recent and ongoing efforts to identify clinical and laboratory biomarkers of patients at increased risk offer promise, but to date, there is no proven role for prophylaxis outside of the perioperative period. Emerging data suggest a higher risk of VTE in patients with isocitrate dehydrogenase (IDH) wild-type glioma and the potential mechanistic role of IDH mutation in the suppression of production of the procoagulants tissue factor and podoplanin. According to published guidelines, therapeutic anticoagulation with low molecular weight heparin (LMWH) or alternatively, direct oral anticoagulants (DOACs) in patients without increased risk of gastrointestinal or genitourinary bleeding is recommended for VTE treatment. Due to the elevated risk of intracranial hemorrhage (ICH) in GBM, anticoagulation treatment remains challenging and at times fraught. There are conflicting data on the risk of ICH with LMWH in patients with glioma; small retrospective studies suggest DOACs may convey lower ICH risk than LMWH. Investigational anticoagulants that prevent thrombosis without impairing hemostasis, such as factor XI inhibitors, may carry a better therapeutic index and are expected to enter clinical trials for cancer-associated thrombosis.
Collapse
Affiliation(s)
- Jasmin Jo
- Department of Internal Medicine, Division of Hematology and Oncology, East Carolina University, Greenville, NC, USA
| | - Maria Diaz
- Department of Neurology, Division of Neuro-Oncology, Columbia University, New York, NY, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Nigel Mackman
- Department of Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen Bagley
- Department of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Marika Broekman
- Department of Neurosurgery, University Medical Center, Utrecht, The Netherlands
| | - Janusz Rak
- Department of Pediatrics, McGill University, Montreal, Canada
| | - James Perry
- Department of Neurology, Sunnybrook Health Sciences Center, Toronto, Canada
| | - Ingrid Pabinger
- Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Nigel S Key
- Department of Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Himes BT, Fain CE, Tritz ZP, Nesvick CL, Jin-Lee HJ, Geiger PA, Peterson TE, Jung MY, Parney IF. Use of heparin to rescue immunosuppressive monocyte reprogramming by glioblastoma-derived extracellular vesicles. J Neurosurg 2022; 138:1291-1301. [PMID: 36115048 DOI: 10.3171/2022.6.jns2274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The profound immunosuppression found in glioblastoma (GBM) patients is a critical barrier to effective immunotherapy. Multiple mechanisms of tumor-mediated immune suppression exist, and the induction of immunosuppressive monocytes such as myeloid-derived suppressor cells (MDSCs) is increasingly appreciated as a key part of this pathology. GBM-derived extracellular vesicles (EVs) can induce the formation of MDSCs. The authors sought to identify the molecular consequences of these interactions in myeloid cells in order to identify potential targets that could pharmacologically disrupt GBM EV-monocyte interaction as a means to ameliorate tumor-mediated immune suppression. Heparin-sulfate proteoglycans (HSPGs) are a general mechanism by which EVs come into association with their target cells, and soluble heparin has been shown to interfere with EV-HSPG interactions. The authors sought to assess the efficacy of heparin treatment for mitigating the effects of GBM EVs on the formation of MDSCs. METHODS GBM EVs were collected from patient-derived cell line cultures via staged ultracentrifugation and cocultured with monocytes collected from apheresis cones from healthy blood donors. RNA was isolated from EV-conditioned and unconditioned monocytes after 72 hours of coculture, and RNA-sequencing analysis performed. For the heparin treatment studies, soluble heparin was added at the time of EV-monocyte coculture and flow cytometry analysis was performed 72 hours later. After the initial EV-monocyte coculture period, donor-matched T-cell coculture studies were performed by adding fluorescently labeled and stimulated T cells for 5 days of coculture. RESULTS Transcriptomic analysis of GBM EV-treated monocytes demonstrated downregulation of several important immunological and metabolic pathways, with upregulation of the pathways associated with synthesis of cholesterol and HSPG. Heparin treatment inhibited association between GBM EVs and monocytes in a dose-dependent fashion, which resulted in a concomitant reduction in MDSC formation (p < 0.01). The authors further demonstrated that reduced MDSC formation resulted in a partial rescue of immune suppression, as measured by effects on activated donor-matched T cells (p < 0.05). CONCLUSIONS The authors demonstrated that GBM EVs induce broad but reproducible reprogramming in monocytes, with enrichment of pathways that may portend an immunosuppressive phenotype. The authors further demonstrated that GBM EV-monocyte interactions are potentially druggable targets for overcoming tumor-mediated immune suppression, with heparin inhibition of EV-monocyte interactions demonstrating proof of principle.
Collapse
Affiliation(s)
| | - Cori E Fain
- 2Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | - Ian F Parney
- 1Department of Neurologic Surgery and.,2Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Samanta S, Joncour VL, Wegrzyniak O, Rangasami VK, Ali‐Löytty H, Hong T, Selvaraju RK, Aberg O, Hilborn J, Laakkonen P, Varghese OP, Eriksson O, Cabral H, Oommen OP. Heparin‐derived Theranostic Nanoprobes Overcome the Blood Brain Barrier and Target glioma in Murine Model. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sumanta Samanta
- Bioengineering and Nanomedicine Lab Faculty of Medicine and Health Technology Tampere University Tampere 33720 Finland
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program Faculty of Medicine University of Helsinki Helsinki Finland
| | - Olivia Wegrzyniak
- Science for Life Laboratory Department of Medicinal Chemistry Uppsala University Uppsala Sweden
| | - Vignesh Kumar Rangasami
- Bioengineering and Nanomedicine Lab Faculty of Medicine and Health Technology Tampere University Tampere 33720 Finland
- Polymer Chemistry Division Department of Chemistry Ångström Laboratory Uppsala University Uppsala 75121 Sweden
| | - Harri Ali‐Löytty
- Surface Science Group Photonics Laboratory Tampere University P.O. Box 692 Tampere FI‐33014 Finland
| | - Taehun Hong
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113–8656 Japan
| | - Ram Kumar Selvaraju
- Science for Life Laboratory Department of Medicinal Chemistry Uppsala University Uppsala Sweden
| | - Ola Aberg
- Science for Life Laboratory Department of Medicinal Chemistry Uppsala University Uppsala Sweden
| | - Jons Hilborn
- Polymer Chemistry Division Department of Chemistry Ångström Laboratory Uppsala University Uppsala 75121 Sweden
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program Faculty of Medicine University of Helsinki Helsinki Finland
| | - Oommen P. Varghese
- Polymer Chemistry Division Department of Chemistry Ångström Laboratory Uppsala University Uppsala 75121 Sweden
| | - Olof Eriksson
- Science for Life Laboratory Department of Medicinal Chemistry Uppsala University Uppsala Sweden
| | - Horacio Cabral
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113–8656 Japan
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine Lab Faculty of Medicine and Health Technology Tampere University Tampere 33720 Finland
| |
Collapse
|
5
|
Koudriavtseva T, Villani V, Lorenzano S, Giannarelli D, Di Domenico EG, Stefanile A, Maschio M, D'Agosto G, Pimpinelli F, Tanzilli A, Galiè E, Pace A. Neutrophil-to-lymphocyte ratio, Factor VIII and Antithrombin III: inflammatory-clotting biomarkers in glioma. EXCLI JOURNAL 2021; 20:1152-1169. [PMID: 34345234 PMCID: PMC8326499 DOI: 10.17179/excli2021-3831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022]
Abstract
One of the key difficulties in glioma treatment is our limited ability to consistently assess cancer response or progression either by neuroimaging or specific blood biomarkers. An ideal biomarker could be measured through non-invasive methods such as blood-based biomarkers, aiding both early diagnosis and monitoring disease evolution. This is a single-center, case-control, 10-year retrospective, longitudinal study. We evaluated routine coagulation factors in 138 glioma patients (45 Females/93 Males; median [range] age, 56.4 [27-82] years; 64 non-recurrent/74 recurrent) and, for comparison, in 56 relapsing-remitting MS patients (41 Females/15 Males; 40.8 [25-62] years, 35 stable/21 active) and 23 controls (16 Females/7 Males; 41.7 [24-62] years) as well as Neutrophil-to-lymphocyte ratio (NLR) in subgroups of 127 glioma patients, 33 MS patients and 23 healthy controls. Secondly, we assessed whether these indicators could be predictive of overall (OS) and progression-free survival (PFS) in glioma patients. NLR, d-dimer, Antithrombin III and Factor VIII were significantly higher in glioma patients compared to both MS patients and controls (p<0.0001 for all). ROC curves confirmed that either NLR, Antithrombin III or Factor VIII were moderately accurate biomarkers (0.7<AUC<0.9) for glioma patients compared to other two groups whereas d-dimer was a moderately accurate marker for glioma only when compared to controls. In multivariable analysis, NLR ≥ 4.3 (median) (HR 1.53 [95 % CI 1.04-2.26], p=0.03) together with the Karnofsky Performance Status (KPS) ≥ 80 (median) (0.46 [0.31-0.69], p<0.0001) and use of steroids (1.75 [1.19-2.57], p=0.004) resulted independent predictors of OS while only KPS was independently associated with PFS. Our study showed increased levels of either NLR, Antithrombin III, Factor VIII, or d-dimer in glioma patients compared to MS patients and controls, where the first three represented moderately accurate biomarkers for this cancer. Among these markers, only NLR was found to be predictive for OS along with severe disability and steroid therapy.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Veronica Villani
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Diana Giannarelli
- Biostatistics, IRCCS Regina Elena National Cancer Institute, IFO, Rome, Italy
| | - Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, IRCCS San Gallicano Institute, IFO, Rome, Italy
| | - Annunziata Stefanile
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Marta Maschio
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, IRCCS San Gallicano Institute, IFO, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, IRCCS San Gallicano Institute, IFO, Rome, Italy
| | - Antonio Tanzilli
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Edvina Galiè
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Andrea Pace
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, IFO, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
6
|
Lu Z, Long Y, Wang Y, Wang X, Xia C, Li M, Zhang Z, He Q. Phenylboronic acid modified nanoparticles simultaneously target pancreatic cancer and its metastasis and alleviate immunosuppression. Eur J Pharm Biopharm 2021; 165:164-173. [PMID: 34020022 DOI: 10.1016/j.ejpb.2021.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignant tumors, its drug resistance, immunosuppression and metastasis makes the traditional chemotherapy and immunotherapy inefficient. Here we confirmed a 3-aminophenylboronic acid-modified low molecular weight heparin-D-α-tocopheryl succinate micellar nanoparticle (PBA-LMWH-TOS NP, PLT NP) could inhibit orthotopic pancreatic tumor and its spontaneous metastases. The small particle size and high affinity of PBA to sialic acid residue (SA) made PLT/PTX NPs significantly targeted and accumulated in both pancreatic tumor tissues and metastases. The immunosuppressive microenvironment of pancreatic tumor was most caused by the infiltration of immunosuppressive cells, mainly myeloid-derived suppressor cells (MDSCs). We first reported that P-selectin glycoprotein ligand-1 (PSGL-1) was expressed on the surfaces of MDSCs in pancreatic tumor tissues. Meanwhile, we found that LMWH could inhibit the early stage of adhesion cascade between vascular endothelial cells (VECs) and MDSCs by interfering with P-selectin/PSGL-1 binding, thus inhibiting MDSC recruitment to pancreatic tumor tissues. The therapeutic results indicated that PLT/PTX NPs could significantly improve the immune microenvironment of pancreatic tumor and inhibit spontaneous metastases. This nanosystem provides a new immune microenvironment regulation mechanism based on carrier materials in pancreatic tumor, and has high clinical application potential.
Collapse
Affiliation(s)
- Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chunyu Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
7
|
Muñoz-Garcia J, Mazza M, Alliot C, Sinquin C, Colliec-Jouault S, Heymann D, Huclier-Markai S. Antiproliferative Properties of Scandium Exopolysaccharide Complexes on Several Cancer Cell Lines. Mar Drugs 2021; 19:md19030174. [PMID: 33806830 PMCID: PMC8005100 DOI: 10.3390/md19030174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Antimetastatic properties on both murine and human osteosarcoma cell lines (POS-1 and KHOS) have been evidenced using exopolysaccharide (EPS) derivatives, produced by Alteromonas infernus bacterium. These derivatives had no significant effect on the cell cycle neither a pro-apoptotic effect on osteosarcoma cells. Based on this observation, these EPSs could be employed as new drug delivery systems for therapeutic uses. A theranostic approach, i.e., combination of a predictive biomarker with a therapeutic agent, has been developed notably by combining with true pair of theranostic radionuclides, such as scandium 47Sc/44Sc. However, it is crucial to ensure that, once complexation is done, the biological properties of the vector remain intact, allowing the molecular tropism of the ligand to recognize its molecular target. It is important to assess if the biological properties of EPS evidenced on osteosarcoma cell lines remain when scandium is complexed to the polymers and can be extended to other cancer cell types. Scandium-EPS complexes were thus tested in vitro on human cell lines: MNNG/HOS osteosarcoma, A375 melanoma, A549 lung adenocarcinoma, U251 glioma, MDA231 breast cancer, and Caco2 colon cancer cells. An xCELLigence Real Cell Time Analysis (RTCA) technology assay was used to monitor for 160 h, the proliferation kinetics of the different cell lines. The tested complexes exhibited an anti-proliferative effect, this effect was more effective compared to EPS alone. This increase of the antiproliferative properties was explained by a change in conformation of EPS complexes due to their polyelectrolyte nature that was induced by complexation. Alterations of both growth factor-receptor signaling, and transmembrane protein interactions could be the principal cause of the antiproliferative effect. These results are very promising and reveal that EPS can be coupled to scandium for improving its biological effects and also suggesting that no major structural modification occurs on the ligand.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Institut de Cancérologie de l’Ouest, Université de Nantes, Blvd Jacques Monod, F-44805 Saint-Herblain, France; (J.M.-G.); (D.H.)
| | - Mattia Mazza
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Laboratoire SUBATECH, 4 rue Alfred Kastler, BP 20722, CEDEX 3, F-44307 Nantes, France
| | - Cyrille Alliot
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, INSERM, U892, 8 quai Moncousu, CEDEX 1, F-44007 Nantes, France
| | - Corinne Sinquin
- IFREMER, Institut Français de Recherche pour L’exploitation de la mer, rue de l’Ile d’Yeu, BP21105, CEDEX 3, F-44311 Nantes, France; (C.S.); (S.C.-J.)
| | - Sylvia Colliec-Jouault
- IFREMER, Institut Français de Recherche pour L’exploitation de la mer, rue de l’Ile d’Yeu, BP21105, CEDEX 3, F-44311 Nantes, France; (C.S.); (S.C.-J.)
| | - Dominique Heymann
- Institut de Cancérologie de l’Ouest, Université de Nantes, Blvd Jacques Monod, F-44805 Saint-Herblain, France; (J.M.-G.); (D.H.)
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield S10 2TN, UK
| | - Sandrine Huclier-Markai
- GIP ARRONAX, 1 rue Aronnax, CEDEX 3, F-44817 Nantes, France; (M.M.); (C.A.)
- Laboratoire SUBATECH, 4 rue Alfred Kastler, BP 20722, CEDEX 3, F-44307 Nantes, France
- Correspondence: ; Tel.: +33-(0)51-85-85-37 or +33-(0)28-21-25-23
| |
Collapse
|
8
|
Xiong A, Spyrou A, Forsberg-Nilsson K. Involvement of Heparan Sulfate and Heparanase in Neural Development and Pathogenesis of Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:365-403. [PMID: 32274718 DOI: 10.1007/978-3-030-34521-1_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors are aggressive and devastating diseases. The most common type of brain tumor, glioblastoma (GBM), is incurable and has one of the worst five-year survival rates of all human cancers. GBMs are invasive and infiltrate healthy brain tissue, which is one main reason they remain fatal despite resection, since cells that have already migrated away lead to rapid regrowth of the tumor. Curative therapy for medulloblastoma (MB), the most common pediatric brain tumor, has improved, but the outcome is still poor for many patients, and treatment causes long-term complications. Recent advances in the classification of pediatric brain tumors reveal distinct subgroups, allowing more targeted therapy for the most aggressive forms, and sparing children with less malignant tumors the side-effects of massive treatment. Heparan sulfate proteoglycans (HSPGs), main components of the neurogenic niche, interact specifically with a large number of physiologically important molecules and vital roles for HS biosynthesis and degradation in neural stem cell differentiation have been presented. HSPGs are composed of a core protein with attached highly charged, sulfated disaccharide chains. The major enzyme that degrades HS is heparanase (HPSE), an important regulator of extracellular matrix (ECM) remodeling which has been suggested to promote the growth and invasion of other types of tumors. This is of clinical interest because GBM are highly invasive and children with metastatic MB at the time of diagnosis exhibit a worse outcome. Here we review the involvement of HS and HPSE in development of the nervous system and some of its most malignant brain tumors, glioblastoma and medulloblastoma.
Collapse
Affiliation(s)
- Anqi Xiong
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Insitutet, Stockholm, Sweden
| | - Argyris Spyrou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Stepanenko AA, Chekhonin VP. Recent Advances in Oncolytic Virotherapy and Immunotherapy for Glioblastoma: A Glimmer of Hope in the Search for an Effective Therapy? Cancers (Basel) 2018; 10:E492. [PMID: 30563098 PMCID: PMC6316815 DOI: 10.3390/cancers10120492] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
To date, no targeted drugs, antibodies or combinations of chemotherapeutics have been demonstrated to be more efficient than temozolomide, or to increase efficacy of standard therapy (surgery, radiotherapy, temozolomide, steroid dexamethasone). According to recent phase III trials, standard therapy may ensure a median overall survival of up to 18⁻20 months for adult patients with newly diagnosed glioblastoma. These data explain a failure of positive non-controlled phase II trials to predict positive phase III trials and should result in revision of the landmark Stupp trial as a historical control for median overall survival in non-controlled trials. A high rate of failures in clinical trials and a lack of effective chemotherapy on the horizon fostered the development of conceptually distinct therapeutic approaches: dendritic cell/peptide immunotherapy, chimeric antigen receptor (CAR) T-cell therapy and oncolytic virotherapy. Recent early phase trials with the recombinant adenovirus DNX-2401 (Ad5-delta24-RGD), polio-rhinovirus chimera (PVSRIPO), parvovirus H-1 (ParvOryx), Toca 511 retroviral vector with 5-fluorocytosine, heat shock protein-peptide complex-96 (HSPPC-96) and dendritic cell vaccines, including DCVax-L vaccine, demonstrated that subsets of patients with glioblastoma/glioma may benefit from oncolytic virotherapy/immunotherapy (>3 years of survival after treatment). However, large controlled trials are required to prove efficacy of next-generation immunotherapeutics and oncolytic vectors.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
10
|
Arnone GD, Bhimani AD, Aguilar T, Mehta AI. Localized targeted antiangiogenic drug delivery for glioblastoma. J Neurooncol 2018; 137:223-231. [DOI: 10.1007/s11060-018-2747-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
|
11
|
Wang J, Liu K, Wang XF, Sun DJ. Juglone reduces growth and migration of U251 glioblastoma cells and disrupts angiogenesis. Oncol Rep 2017; 38:1959-1966. [PMID: 28791366 PMCID: PMC5652942 DOI: 10.3892/or.2017.5878] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/21/2017] [Indexed: 01/11/2023] Open
Abstract
Accumulating data show that prolylisomerase (Pin1) is overexpressed in human glioblastoma multiforme (GBM) specimens. Therefore, Pin1 inhibitors should be investigated as a new chemotherapeutic drug that may enhance the clinical management of human gliomas. Recently, juglone, a Pin1 inhibitor, was shown to exhibit potent anticancer activity in various tumor cells, but its role in human glioma cells remains unknown. In the present study, we determined if juglone exerts antitumor effects in the U251 human glioma cell line and investigated its potential underlying molecular mechanisms. Cell survival, apoptosis, migration, angiogenesis and molecular targets were identified with multiple detection techniques including the MTT cell proliferation assay, dual acridine orange/ethidium bromide staining, electron microscopy, Transwell migration assay, chick chorioallantoic membrane assay, quantitative real-time polymerase chain reaction and immunoblotting. The results showed that 5–20 µM juglone markedly suppressed cell proliferation, induced apoptosis, and enhanced caspase-3 activity in U251 cells in a dose- and time-dependent manner. Moreover, juglone inhibited cell migration and the formation of new blood vessels. At the molecular level, juglone markedly suppressed Pin1 levels in a time-dependent manner. TGF-β1/Smad signaling, a critical upstream regulator of miR-21, was also suppressed by juglone. Moreover, the transient overexpression of Pin1 reversed its antitumor effects in U251 cells and inhibited juglone-mediated changes to the TGF-β1/miR-21 signaling pathway. These findings suggest that juglone inhibits cell growth by causing apoptosis, thereby inhibiting the migration of U251 glioma cells and disrupting angiogenesis; and that Pin1 is a critical target for juglones antitumor activity. The present study provides evidence that juglone has in vitro efficacy against glioma. Therefore, additional studies are warranted to examine the clinical potential of juglone in human gliomas.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Ke Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xiao-Feng Wang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Dian-Jun Sun
- Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
12
|
Gambogic acid grafted low molecular weight heparin micelles for targeted treatment in a hepatocellular carcinoma model with an enhanced anti-angiogenesis effect. Int J Pharm 2017; 522:110-118. [DOI: 10.1016/j.ijpharm.2017.02.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/19/2017] [Accepted: 02/19/2017] [Indexed: 12/17/2022]
|
13
|
Soares da Costa D, Reis RL, Pashkuleva I. Sulfation of Glycosaminoglycans and Its Implications in Human Health and Disorders. Annu Rev Biomed Eng 2017; 19:1-26. [PMID: 28226217 DOI: 10.1146/annurev-bioeng-071516-044610] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sulfation is a dynamic and complex posttranslational modification process. It can occur at various positions within the glycosaminoglycan (GAG) backbone and modulates extracellular signals such as cell-cell and cell-matrix interactions; different sulfation patterns have been identified for the same organs and cells during their development. Because of their high specificity in relation to function, GAG sulfation patterns are referred to as the sulfation code. This review explores the role of GAG sulfation in different biological processes at the cell, tissue, and organism levels. We address the connection between the sulfation patterns of GAGs and several physiological processes and discuss the misregulation of GAG sulfation and its involvement in several genetic and metabolic disorders. Finally, we present the therapeutic potential of GAGs and their synthetic mimics in the biomedical field.
Collapse
Affiliation(s)
- Diana Soares da Costa
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group: Biomaterials, Biodegradables and Biomimetics, University of Minho and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal; , , .,Life and Health Sciences Research Institute/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Vianello F, Sambado L, Goss A, Fabris F, Prandoni P. Dabigatran antagonizes growth, cell-cycle progression, migration, and endothelial tube formation induced by thrombin in breast and glioblastoma cell lines. Cancer Med 2016; 5:2886-2898. [PMID: 27600331 PMCID: PMC5083743 DOI: 10.1002/cam4.857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/15/2016] [Accepted: 07/16/2016] [Indexed: 02/01/2023] Open
Abstract
Thrombin activates its G-coupled seven transmembrane protease-activated receptor (PAR-1) by cleaving the receptor's N-terminal end. In several human cancers, PAR1 expression and activation correlates with tumor progression and metastatization. This provides compelling evidence for the effectiveness of an appropriate antithrombin agent for the adjuvant treatment of patients with cancer. Dabigatran is a selective direct thrombin inhibitor that reversibly binds to thrombin. In this study, we aimed to explore if dabigatran may affect mechanisms favoring tumor growth by interfering with thrombin-induced PAR-1 activation. We confirmed that exposure of tumor cells to thrombin significantly increased cell proliferation and this was coupled with downregulation of p27 and concomitant induction of cyclin D1. Dabigatran was consistently effective in antagonizing thrombin-induced proliferation as well as it restored the baseline pattern of cell cycle protein expression. Thrombin significantly upregulated the expression of proangiogenetic proteins like Twist and GRO-α in human umbilical vascular endothelial cells (HUVEC) cells and their expression was significantly brought down to control levels when dabigatran was added to culture. We also found that the chemoattractant effect of thrombin on tumor cells was lost in the presence of dabigatran, and that the thrombin antagonist was effective in dampening vascular tube formation induced by thrombin. Our data support a role of thrombin in inducing the proliferation, migration, and proangiogenetic effects of tumor cells in vitro. Dabigatran has activity in antagonizing all these effects, thereby impairing tumor growth and progression. In vivo models may help to understand the relevance of this pathway.
Collapse
Affiliation(s)
- Fabrizio Vianello
- Department of Medicine, University of Padova School of Medicine, Padova, Italy.
| | - Luisa Sambado
- Department of Medicine, University of Padova School of Medicine, Padova, Italy
| | - Ashley Goss
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Deutschland, Germany
| | - Fabrizio Fabris
- Department of Medicine, University of Padova School of Medicine, Padova, Italy
| | - Paolo Prandoni
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padova School of Medicine, Padova, Italy
| |
Collapse
|
15
|
D'Asti E, Chennakrishnaiah S, Lee TH, Rak J. Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 2016; 36:383-407. [PMID: 26993504 DOI: 10.1007/s10571-015-0296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
Abstract
Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways also impact the emission rates, types, cargo, and biogenesis of EVs, as reflected by preliminary analyses pointing to differences in profiles of EV-regulating genes (vesiculome) between molecular subtypes of glioblastoma, and in other brain tumors. Molecular regulators of vesiculation can also act as oncogenes. These intimate connections suggest the context-specific roles of different EV subsets in the progression of specific brain tumors. Advanced efforts are underway to capture these events through the use of EVs circulating in biofluids as biomarker reservoirs and to guide diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
- Esterina D'Asti
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|