1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
3
|
Yao Y, Zhou S, Yan Y, Fu K, Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci 2024; 14:103. [PMID: 39160596 PMCID: PMC11334367 DOI: 10.1186/s13578-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuanbing Yao
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
| | - Sheng Zhou
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yue Yan
- Yanbian University Medical School, Yanji, Jilin, China
| | - Kai Fu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Department of General Surgery, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Center MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, 87# Xiangya Road, Changsha, 410008, Hunan, China.
| | - Shuai Xiao
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, 69# Chuanshan Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet 2024; 15:1431564. [PMID: 39100077 PMCID: PMC11294089 DOI: 10.3389/fgene.2024.1431564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
TRIM28 (tripartite motif protein 28) was initially believed to be a transcription inhibitor that plays an important role in DNA damage repair (DDR) and in maintaining cancer cellular stemness. As research has continued to deepen, several studies have found that TRIM28 not only has ubiquitin E3 ligase activity to promote degradation of substrates, but also can promote SUMOylation of substrates. Although TRIM28 is highly expressed in various cancer tissues and has oncogenic effects, there are still a few studies indicating that TRIM28 has certain anticancer effects. Additionally, TRIM28 is subject to complex upstream regulation. In this review, we have elaborated on the structure and regulation of TRIM28. At the same time, highlighting the functional role of TRIM28 in tumor development and emphasizing its impact on cancer treatment provides a new direction for future clinical antitumor treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Haifeng Wang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Bitao Jiang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Zhang Y, Guan Y, Wang S, Guan C, Liu X. Tripartite motif family - its role in tumor progression and therapy resistance: a review. Curr Opin Oncol 2024; 36:102-114. [PMID: 38441046 DOI: 10.1097/cco.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW In this review, we summarized published articles on the role of tripartite motif (TRIM) family members in the initiation and development of human malignancies. RECENT FINDINGS The ubiquitin-proteasome system (UP-S) plays a critical role in cellular activities, and UP-S dysregulation contributes to tumorigenesis. One of the key regulators of the UP-S is the tripartite motif TRIM protein family, most of which are active E3 ubiquitin ligases. TRIM proteins are critical for the biological functions of cancer cells, including migration, invasion, metastasis, and therapy resistance. Therefore, it is important to understand how TRIM proteins function at the molecular level in cancer cells. SUMMARY We provide a comprehensive and up-to-date overview about the role TRIMs play in cancer progression and therapy resistance. We propose TRIM family members as potential new markers and targets to overcome therapy failure.
Collapse
Affiliation(s)
- Yongqi Zhang
- Department of Obstetrics and Gynecology, Harbin Obstetrics and Gynecology Hospital, Harbin Medical University (the Red Cross Center Hospital of Harbin)
| | - Ying Guan
- Department of Obstetrics and Gynecology, Harbin Obstetrics and Gynecology Hospital, Harbin Medical University (the Red Cross Center Hospital of Harbin)
| | - Shuxiang Wang
- Department of Obstetrics and Gynecology, Harbin Obstetrics and Gynecology Hospital, Harbin Medical University (the Red Cross Center Hospital of Harbin)
| | - Chunyan Guan
- Heilongjiang Armed Police Hospital, Harbin, Heilongjiang Province, China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Harbin Obstetrics and Gynecology Hospital, Harbin Medical University (the Red Cross Center Hospital of Harbin)
| |
Collapse
|
6
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Chih-Hsiang Y, Bergsma A, Drougard A, Dror E, Chandler D, Schramek D, Triche TJ, Pospisilik JA. Developmental priming of cancer susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557446. [PMID: 37745326 PMCID: PMC10515831 DOI: 10.1101/2023.09.12.557446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yang Chih-Hsiang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
7
|
Lu J, Liang K, Zou R, Peng Y, Wang H, Huang R, Zeng Z, Feng Z, Fan Y, Zhang S, Ji Y, Pang X, Wang Y, Zhang H, Wang Z. Comprehensive analysis of the prognostic and immunological signature of eight Tripartitemotif (TRIM) family molecules in human gliomas. Aging (Albany NY) 2023; 15:5798-5825. [PMID: 37367937 PMCID: PMC10333093 DOI: 10.18632/aging.204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND TRIM family molecules have been identified as being involved in the tumor progression of various cancer types. Increasingly, experimental evidence indicates that some of TRIM family molecules are implicated in glioma tumorigenesis. However, the diverse genomic changes, prognostic values and immunological landscapes of TRIM family of molecules have yet to be fully determined in glioma. METHODS In our study, employing the comprehensive bioinformatics tools, we evaluated the unique functions of 8 TRIM members including TRIM5/17/21/22/24/28/34/47 in gliomas. RESULTS The expression levels of 7 TRIM members (TRIM5/21/22/24/28/34/47) were higher in glioma as well as its diverse cancer subtypes than in normal tissues, whereas the expression level of TRIM17 was the opposite, lower in the former than in the latter. In addition, survival analysis revealed that the high expression profiles of TRIM5/21/22/24/28/34/47 were associated with poor overall survival (OS), disease-specific survival (DSS) and progress-free interval (PFI) in glioma patients, whereas TRIM17 displayed adverse outcomes. Moreover, the 8 TRIM molecules expression as well as methylation profiles remarkably correlated with different WHO grades. And genetic alterations, including mutations and copy number alterations (CNAs), in the TRIM family were correlated with longer OS, DSS and progress-free survival (PFS) in glioma patients. Furthermore, through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results of these 8 molecules and their related genes, we found that these molecules may change the immune infiltration of the tumor microenvironment and regulate the expression of immune checkpoint molecules (ICMs), affecting the occurrence and development of gliomas. The correlation analyses between the 8 TRIM molecules and TMB (tumor mutational burden)/MSI (microsatellite instability)/ICMs discovered that as the expression level of TRIM5/21/22/24/28/34/47 increased, the TMB score also increased significantly, while TRIM17 showed an opposite outcome. Further, a 6-gene signature (TRIM 5/17/21/28/34/47) for predicting overall survival (OS) in gliomas was built by using the least absolute shrinkage and selection operator (LASSO) regression, and the survival and time-dependent ROC analyses all were found to perform well in testing and validation cohorts. Results of multivariate COX regression analysis showed that TRIM5/28 are both expected to become independent risk predictors to guide clinical treatment. CONCLUSION In general, the results indicate that TRIM5/17/21/22/24/28/34/47 might exert a crucial influence on gliomas tumorigenesis and might be putative prognostic markers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Jiajie Lu
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Kairong Liang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Renheng Zou
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuecheng Peng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Haojian Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Rihong Huang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Zhaorong Zeng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Zejia Feng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Yongyang Fan
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shizhen Zhang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao Pang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hongri Zhang
- Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
8
|
Demirdizen E, Al-Ali R, Narayanan A, Sun X, Varga JP, Steffl B, Brom M, Krunic D, Schmidt C, Schmidt G, Bestvater F, Taranda J, Turcan Ş. TRIM67 drives tumorigenesis in oligodendrogliomas through Rho GTPase-dependent membrane blebbing. Neuro Oncol 2023; 25:1031-1043. [PMID: 36215168 PMCID: PMC10237422 DOI: 10.1093/neuonc/noac233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND IDH mutant gliomas are grouped into astrocytomas or oligodendrogliomas depending on the codeletion of chromosome arms 1p and 19q. Although the genomic alterations of IDH mutant gliomas have been well described, transcriptional changes unique to either tumor type have not been fully understood. Here, we identify Tripartite Motif Containing 67 (TRIM67), an E3 ubiquitin ligase with essential roles during neuronal development, as an oncogene distinctly upregulated in oligodendrogliomas. METHODS We used several cell lines, including patient-derived oligodendroglioma tumorspheres, to knock down or overexpress TRIM67. We coupled high-throughput assays, including RNA sequencing, total lysate-mass spectrometry (MS), and coimmunoprecipitation (co-IP)-MS with functional assays including immunofluorescence (IF) staining, co-IP, and western blotting (WB) to assess the in vitro phenotype associated with TRIM67. Patient-derived oligodendroglioma tumorspheres were orthotopically implanted in mice to determine the effect of TRIM67 on tumor growth and survival. RESULTS TRIM67 overexpression alters the abundance of cytoskeletal proteins and induces membrane bleb formation. TRIM67-associated blebbing was reverted with the nonmuscle class II myosin inhibitor blebbistatin and selective ROCK inhibitor fasudil. NOGO-A/Rho GTPase/ROCK2 signaling is altered upon TRIM67 ectopic expression, pointing to the underlying mechanism for TRIM67-induced blebbing. Phenotypically, TRIM67 expression resulted in higher cell motility and reduced cell adherence. In orthotopic implantation models of patient-derived oligodendrogliomas, TRIM67 accelerated tumor growth, reduced overall survival, and led to increased vimentin expression at the tumor margin. CONCLUSIONS Taken together, our results demonstrate that upregulated TRIM67 induces blebbing-based rounded cell morphology through Rho GTPase/ROCK-mediated signaling thereby contributing to glioma pathogenesis.
Collapse
Affiliation(s)
- Engin Demirdizen
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Ruslan Al-Ali
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Ashwin Narayanan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Xueyuan Sun
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julianna Patricia Varga
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Bianca Steffl
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Brom
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Damir Krunic
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Claudia Schmidt
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Gabriele Schmidt
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Felix Bestvater
- Core Facility Unit Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Julian Taranda
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, Heidelberg, Germany
| |
Collapse
|
9
|
Du Q, Stow EC, LaCoste D, Freeman B, Baddoo M, Shareef A, Miller KM, Belancio VP. A novel role of TRIM28 B box domain in L1 retrotransposition and ORF2p-mediated cDNA synthesis. Nucleic Acids Res 2023; 51:4429-4450. [PMID: 37070200 PMCID: PMC10201437 DOI: 10.1093/nar/gkad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/19/2023] Open
Abstract
The long interspersed element 1 (LINE-1 or L1) integration is affected by many cellular factors through various mechanisms. Some of these factors are required for L1 amplification, while others either suppress or enhance specific steps during L1 propagation. Previously, TRIM28 has been identified to suppress transposable elements, including L1 expression via its canonical role in chromatin remodeling. Here, we report that TRIM28 through its B box domain increases L1 retrotransposition and facilitates shorter cDNA and L1 insert generation in cultured cells. Consistent with the latter, we observe that tumor specific L1 inserts are shorter in endometrial, ovarian, and prostate tumors with higher TRIM28 mRNA expression than in those with lower TRIM28 expression. We determine that three amino acids in the B box domain that are involved in TRIM28 multimerization are critical for its effect on both L1 retrotransposition and cDNA synthesis. We provide evidence that B boxes from the other two members in the Class VI TRIM proteins, TRIM24 and TRIM33, also increase L1 retrotransposition. Our findings could lead to a better understanding of the host/L1 evolutionary arms race in the germline and their interplay during tumorigenesis.
Collapse
Affiliation(s)
- Qianhui Du
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Dawn LaCoste
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Benjamin Freeman
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Afzaal M Shareef
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E 24th Street, Austin, TX 78712, USA
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans 70112, USA
| |
Collapse
|
10
|
Yang Y, Tan S, Han Y, Huang L, Yang R, Hu Z, Tao Y, Oyang L, Lin J, Peng Q, Jiang X, Xu X, Xia L, Peng M, Wu N, Tang Y, Li X, Liao Q, Zhou Y. The role of tripartite motif-containing 28 in cancer progression and its therapeutic potentials. Front Oncol 2023; 13:1100134. [PMID: 36756159 PMCID: PMC9899900 DOI: 10.3389/fonc.2023.1100134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Tripartite motif-containing 28 (TRIM28) belongs to tripartite motif (TRIM) family. TRIM28 not only binds and degrades its downstream target, but also acts as a transcription co-factor to inhibit gene expression. More and more studies have shown that TRIM28 plays a vital role in tumor genesis and progression. Here, we reviewed the role of TRIM28 in tumor proliferation, migration, invasion and cell death. Moreover, we also summarized the important role of TRIM28 in tumor stemness sustainability and immune regulation. Because of the importance of TRIM28 in tumors, TIRM28 may be a candidate target for anti-tumor therapy and play an important role in tumor diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,University of South China, Hengyang, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, Changsha, Hunan, China,*Correspondence: Yujuan Zhou, ; Qianjin Liao, ; Xiaoling Li,
| |
Collapse
|
11
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
12
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
13
|
Emerging Roles of TRIM Family Proteins in Gliomas Pathogenesis. Cancers (Basel) 2022; 14:cancers14184536. [PMID: 36139694 PMCID: PMC9496762 DOI: 10.3390/cancers14184536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Gliomas remain challenging tumors due to their increased heterogeneity, complex molecular profile, and infiltrative phenotype that are often associated with a dismal prognosis. In a constant search for molecular changes and associated mechanisms, the TRIM protein family has emerged as an important area of investigation because of the regulation of vital cellular processes involved in brain pathophysiology that may possibly lead to brain tumor development. Herein, we discuss the diverse role of TRIM proteins in glioma progression, aiming to detect potential targets for future intervention. Abstract Gliomas encompass a vast category of CNS tumors affecting both adults and children. Treatment and diagnosis are often impeded due to intratumor heterogeneity and the aggressive nature of the more malignant forms. It is therefore essential to elucidate the molecular mechanisms and explore the intracellular signaling pathways underlying tumor pathology to provide more promising diagnostic, prognostic, and therapeutic tools for gliomas. The tripartite motif-containing (TRIM) superfamily of proteins plays a key role in many physiological cellular processes, including brain development and function. Emerging evidence supports the association of TRIMs with a wide variety of cancers, exhibiting both an oncogenic as well as a tumor suppressive role depending on cancer type. In this review, we provide evidence of the pivotal role of TRIM proteins in gliomagenesis and exploit their potential as prognostic biomarkers and therapeutic targets.
Collapse
|
14
|
Kim YS, Potashnikova DM, Gisina AM, Kholodenko IV, Kopylov AT, Tikhonova OV, Kurbatov LK, Saidova AA, Tvorogova AV, Kholodenko RV, Belousov PV, Vorobjev IA, Zgoda VG, Yarygin KN, Lupatov AY. TRIM28 Is a Novel Regulator of CD133 Expression Associated with Cancer Stem Cell Phenotype. Int J Mol Sci 2022; 23:9874. [PMID: 36077272 PMCID: PMC9456468 DOI: 10.3390/ijms23179874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines. Despite a substantial difference in the proliferative activities of cell populations with different levels of CD133 expression, transcriptomic and proteomic profiling revealed only minor distinctions between them. Nonetheless, a further in silico assessment of the differentially expressed transcripts and proteins revealed 16 proteins that could be involved in the regulation of CD133 expression; these were assigned ranks reflecting the apparent extent of their involvement. Among them, the TRIM28 transcription factor had the highest rank. The prominent role of TRIM28 in CD133 expression modulation was confirmed experimentally in the Caco2 cell line clones: the knockout, though not the knockdown, of the TRIM28 gene downregulated CD133. These results for the first time highlight an important role of the TRIM28 transcription factor in the regulation of CD133-associated cancer cell heterogeneity.
Collapse
Affiliation(s)
- Yan S. Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Daria M. Potashnikova
- Cell Biology and Histology Department, School of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alisa M. Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Arthur T. Kopylov
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Olga V. Tikhonova
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Leonid K. Kurbatov
- Transcriptome Analysis Group, Analytical Branch Department, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Aleena A. Saidova
- Cell Biology and Histology Department, School of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Transcription Factors, V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Tvorogova
- Laboratory of Cell Motility, A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, M.M. Shemyakin–Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Pavel V. Belousov
- Endocrinology Research Centre, 117292 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan A. Vorobjev
- Laboratory of Cell Motility, A.N. Belozersky Research Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Laboratory of Biophotonics and Imaging, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Victor G. Zgoda
- Laboratory of Systems Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Alexey Yu. Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
15
|
Shah PA, Boutros-Suleiman S, Emanuelli A, Paolini B, Levy-Cohen G, Blank M. The Emerging Role of E3 Ubiquitin Ligase SMURF2 in the Regulation of Transcriptional Co-Repressor KAP1 in Untransformed and Cancer Cells and Tissues. Cancers (Basel) 2022; 14:cancers14071607. [PMID: 35406379 PMCID: PMC8997158 DOI: 10.3390/cancers14071607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary KAP1 plays an essential role in different molecular and cellular processes central to carcinogenesis, disease progression, and treatment response, revealing both tumor promoting and anticancer functions. The mechanisms that control the steady-state levels of KAP1 and its protein abundance are not well known. Our findings show that SMURF2, a ubiquitously-expressed HECT-type E3 ubiquitin ligase with suggested anticancer activities, is capable to directly bind, ubiquitinate, and regulate KAP1 expression levels in non-cancerous and tumor cells and tissues. The data further show that SMURF2 has a significant influence on KAP1 interactome, regulating its protein–protein interactions and functions in a catalytically-dependent manner. These findings reveal SMURF2 as a pivotal regulator of KAP1, laying a foundation for the investigation of the role of the SMURF2–KAP1 axis in carcinogenic processes and therapeutic responses to anticancer treatment. Abstract KAP1 is an essential nuclear factor acting as a scaffold for protein complexes repressing transcription. KAP1 plays fundamental role in normal and cancer cell biology, affecting cell proliferation, DNA damage response, genome integrity maintenance, migration and invasion, as well as anti-viral and immune response. Despite the foregoing, the mechanisms regulating KAP1 cellular abundance are poorly understood. In this study, we identified the E3 ubiquitin ligase SMURF2 as an important regulator of KAP1. We show that SMURF2 directly interacts with KAP1 and ubiquitinates it in vitro and in the cellular environment in a catalytically-dependent manner. Interestingly, while in the examined untransformed cells, SMURF2 mostly exerted a negative impact on KAP1 expression, a phenomenon that was also monitored in certain Smurf2-ablated mouse tissues, in tumor cells SMURF2 stabilized KAP1. This stabilization relied on the unaltered E3 ubiquitin ligase function of SMURF2. Further investigations showed that SMURF2 regulates KAP1 post-translationally, interfering with its proteasomal degradation. The conducted immunohistochemical studies showed that the reciprocal relationship between the expression of SMURF2 and KAP1 also exists in human normal and breast cancer tissues and suggested that this relationship may be disrupted by the carcinogenic process. Finally, through stratifying KAP1 interactome in cells expressing either SMURF2 wild-type or its E3 ligase-dead form, we demonstrate that SMURF2 has a profound impact on KAP1 protein–protein interactions and the associated functions, adding an additional layer in the SMURF2-mediated regulation of KAP1. Cumulatively, these findings uncover SMURF2 as a novel regulator of KAP1, governing its protein expression, interactions, and functions.
Collapse
Affiliation(s)
- Pooja Anil Shah
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Sandy Boutros-Suleiman
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, IRCCS Fondazione, Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
- Correspondence:
| |
Collapse
|
16
|
Lin J, Guo D, Liu H, Zhou W, Wang C, Müller I, Kossenkov AV, Drapkin R, Bitler BG, Helin K, Zhang R. The SETDB1-TRIM28 Complex Suppresses Antitumor Immunity. Cancer Immunol Res 2021; 9:1413-1424. [PMID: 34848497 DOI: 10.1158/2326-6066.cir-21-0754] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
The tumor immune microenvironment is influenced by the epigenetic landscape of the tumor. Here, we have identified the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a suppressor of PD-L1 expression. We then revealed that expression of the SETDB1-TRIM28 complex negatively correlated with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulated PD-L1 and activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition led to micronuclei formation in the cytoplasm, which is known to activate the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges innate and adaptive immunity. Indeed, SETDB1 knockout enhanced the antitumor effects of immune checkpoint blockade with anti-PD-L1 in a mouse model of ovarian cancer in a cGAS-dependent manner. Our findings establish the SETDB1-TRIM28 complex as a regulator of antitumor immunity and demonstrate that its loss activates cGAS-STING innate immunity to boost the antitumor effects of immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dajiang Guo
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Chen Wang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Iris Müller
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Andrew V Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, Colorado
| | - Kristian Helin
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Mohammadi A, Pour Abbasi MS, Khorrami S, Khodamoradi S, Mohammadi Goldar Z, Ebrahimzadeh F. The TRIM proteins in cancer: from expression to emerging regulatory mechanisms. Clin Transl Oncol 2021; 24:460-470. [PMID: 34643877 DOI: 10.1007/s12094-021-02715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
New clinical evidence suggests that dysregulation of the ubiquitin-mediated destruction of tumor suppressors or oncogene products is probably engaged in the etiology of leukemia and carcinoma. The superfamily of tripartite motif (TRIM)-containing protein family is among the biggest recognized single protein RING finger E3 ubiquitin ligases that are considered vital carcinogenesis regulators, which is not shocking since TRIM proteins are engaged in various biological processes, including cell growth, development, and differentiation; hence, TRIM proteins' alterations may influence apoptosis, cell proliferation, and transcriptional regulation. In this review article, the various mechanisms through which TRIM proteins exert their role in the most prevalent malignancies including lung, prostate, colorectal, liver, breast, brain cancer, and leukemia are summarized.
Collapse
Affiliation(s)
- A Mohammadi
- Department of Genetics Islamic, Azad University of Marand, Marand, Iran
| | | | - S Khorrami
- Tehran University of Medical Sciences, Tehran, Iran
| | - S Khodamoradi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Z Mohammadi Goldar
- Department of Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - F Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Ni X, Feng Y, Fu X. Role of salt‑inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells. Mol Med Rep 2021; 24:822. [PMID: 34558647 PMCID: PMC8485122 DOI: 10.3892/mmr.2021.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Currently, surgery, chemotherapy and radiation therapy are the conventional approaches used to treat CRC. However, these therapy strategies cause several side effects. The present study aimed to develop an alternative and more effective treatment approach for patients with CRC. It has been reported that salt-inducible kinase 2 (SIK2) acts as an oncogene. Therefore, in the present study, the expression levels of SIK2 were determined in CRC cells using western blot analysis and reverse transcription-quantitative PCR. In addition, SIK2 was knocked down in CRC cells to evaluate its role in cell proliferation, migration, invasion and glycolysis using Cell Counting Kit-8, wound healing, Transwell assays and glycolysis cell-based assay kit, respectively. Additionally, the target genes of SIK2 were identified using bioinformatics analysis, while SIK2 overexpression experiments were carried out to determine whether SIK2 could regulate CRC cell malignant behavior and glycolysis. The results revealed that SIK2 was upregulated in CRC cells. Furthermore, SIK2 knockdown attenuated CRC cell proliferation, migration, invasion and glycolysis. Bioinformatics analysis predicted that SIK2 could interact with tripartite motif containing 28 (TRIM28), while TRIM28 overexpression could reverse the effects of SIK2 silencing on cell proliferation, migration, invasion and glycolysis. This finding indicated that the aforementioned effects of SIK2 were mediated by regulating TRIM28. In conclusion, the findings of the present study suggested that SIK2 may be involved in CRC carcinogenesis and glycolysis by regulating TRIM28 expression. These findings could provide a novel approach to targeted therapy and clinical diagnosis of CRC in the future.
Collapse
Affiliation(s)
- Xiaohong Ni
- Department of Gastrointestinal Surgery, Yancheng Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Yongjiang Feng
- Department of Gastrointestinal Surgery, Yancheng Dafeng People's Hospital, Yancheng, Jiangsu 224100, P.R. China
| | - Xiangwei Fu
- Department of General Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570105, P.R. China
| |
Collapse
|
19
|
Porčnik A, Novak M, Breznik B, Majc B, Hrastar B, Šamec N, Zottel A, Jovčevska I, Vittori M, Rotter A, Komel R, Lah Turnšek T. TRIM28 Selective Nanobody Reduces Glioblastoma Stem Cell Invasion. Molecules 2021; 26:molecules26175141. [PMID: 34500575 PMCID: PMC8434287 DOI: 10.3390/molecules26175141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GB), is the most common and aggressive malignant primary brain tumour in adults. Intra- and inter-tumour heterogeneity, infiltrative GB cell invasion and presence of therapy-resistant GB stem cells (GSCs) represent major obstacles to favourable prognosis and poor therapy response. Identifying the biomarkers of the most aggressive tumour cells and their more efficient targeting strategies are; therefore, crucial. Recently, transcription factor TRIM28 has been identified as a GB biomarker and, in this study, we have shown high expression of TRIM28 in GB and in low grade gliomas as well as higher expression in GSCs vs. differentiated GB cells, although in both cases not significant. We demonstrated significant in vitro inhibition of GB cells and GSCs invasiveness and spread in zebrafish brains in vivo by anti-TRIM28 selective nanobody NB237. TRIM28 was also enriched in GB (tumour) core and associated with the expression of stem cell genes, but was not prognostic for overall survival. However, based on the above results, we conclude that TRIM28 nanobody NB237 offers a new opportunity as a GB therapeutic tool.
Collapse
Affiliation(s)
- Andrej Porčnik
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Barbara Hrastar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Alja Zottel
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Miloš Vittori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
- Correspondence: (R.K.); (T.L.T.)
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (R.K.); (T.L.T.)
| |
Collapse
|
20
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
21
|
D'Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. Chembiochem 2021; 22:2011-2031. [PMID: 33482040 PMCID: PMC8251876 DOI: 10.1002/cbic.202000787] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitylation machinery regulates several fundamental biological processes from protein homeostasis to a wide variety of cellular signaling pathways. As a consequence, its dysregulation is linked to diseases including cancer, neurodegeneration, and autoimmunity. With this review, we aim to highlight the therapeutic potential of targeting E3 ligases, with a special focus on an emerging class of RING ligases, named tri-partite motif (TRIM) proteins, whose role as targets for drug development is currently gaining pharmaceutical attention. TRIM proteins exert their catalytic activity as scaffolds involved in many protein-protein interactions, whose multidomains and adapter-like nature make their druggability very challenging. Herein, we give an overview of the current understanding of this class of single polypeptide RING E3 ligases and discuss potential targeting options.
Collapse
Affiliation(s)
- Francesca D'Amico
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Rishov Mukhopadhyay
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| |
Collapse
|
22
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
23
|
Wang H, Wang X, Xu L, Zhang J, Cao H. Analysis of the EGFR Amplification and CDKN2A Deletion Regulated Transcriptomic Signatures Reveals the Prognostic Significance of SPATS2L in Patients With Glioma. Front Oncol 2021; 11:551160. [PMID: 33959491 PMCID: PMC8093400 DOI: 10.3389/fonc.2021.551160] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: This study was conducted in order to analyze the prognostic effects of epidermal growth factor receptor (EGFR) and CDKN2A alterations and determine the prognostic significance of EGFR and CDKN2A alterations on regulated genes in patients with glioblastoma (GBM) or lower grade glioma (LGG). Methods: The alteration frequencies of EGFR and CDKN2A across 32 tumor types were derived from cBioPortal based on The Cancer Genome Atlas (TCGA) datasets. The Kaplan–Meier analysis was used to determine the prognostic significance of EGFR and CDKN2A alterations. EGFR and CDKN2A alterations on regulated expression signatures were identified from RNA-seq data in the TCGA GBM datasets. The prognostic significance of EGFR and CDKN2A alterations on regulated genes in patients with glioma was determined using the TCGA and the Chinese Glioma Genome Atlas (CGGA) datasets. Results: Compared with the other 31 tumor types, EGFR amplification and CDKN2A deletion particularly occurred in patients with GBM. GBM patients with EGFR amplification or CDKN2A deletion demonstrated poor prognosis. Statistical analysis showed the coexistence of EGFR alteration and CDKN2A deletion in GBM patients. We identified 864 genes which were commonly regulated by EGFR amplification and CDKN2A deletion, and those genes were highly expressed in brain tissues and associated with the cell cycle, EBRR2, and MAPK signaling pathways. Spermatogenesis-associated serine-rich 2-like gene (SPATS2L) was upregulated in GBM patients with EGFR amplification or CDKN2A alteration. Higher expression levels of SPATS2L were associated with worse prognosis in patients with GBM in both TCGA and CGGA datasets. Moreover, the expression levels of SPATS2L were higher in patients with a mesenchymal subtype of GBM. Statistical analysis also showed that the coexistence of EGFR alteration and CDKN2A deletion was significant in patients with LGG. SPATS2L was upregulated in LGG patients with EGFR amplification or CDKN2A alteration. Furthermore, higher expression levels of SPATS2L were associated with worse prognosis in patients with LGG in both TCGA and CGGA datasets. The expression levels of SPATS2L were higher in patients with an astrocytoma subtype of LGG. Finally, the coexistence and unfavorable prognostic effects of EGFR amplification and CDKN2A alteration were validated using the Memorial Sloan Kettering Cancer Center (MSKCC) glioma datasets. Conclusions: EGFR amplification and CDKN2A deletion of the regulated gene SPATS2L have significant prognostic effects in patients with GBM or LGG.
Collapse
Affiliation(s)
- Haiwei Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Cao
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
The Association between TIF1 Family Members and Cancer Stemness in Solid Tumors. Cancers (Basel) 2021; 13:cancers13071528. [PMID: 33810347 PMCID: PMC8061774 DOI: 10.3390/cancers13071528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Stem cell-associated molecular features of solid tumors, collectively known as cancer stemness, are of great importance in the development, progression, and reoccurrence of cancer. Transcriptional and epigenetic dysregulation is significantly associated with cancer stemness. Here, we investigated the association between the Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in solid tumors. We aimed to evaluate the potential value of TIF1 members in predicting a stem-like cancer phenotype. Our results indicate that only TIF1β (also known as Tripartite Motif protein 28, TRIM28) high expression is consequently associated with a “stemness high” phenotype, regardless of the tumor type, resulting in a worse prognosis for cancer patients. The oncogenic signature of TRIM28HIGH tumors significantly reflects the enrichment of “stemness high” cancers with targets for c-Myc (MYC Proto-Oncogene). TRIM28-associated gene expression profiles are also robustly enriched with stemness markers. Our results demonstrate that the association between high TRIM28 expression and an enriched cancer stem cell-like phenotype is a common phenomenon across solid tumors. Abstract Cancer progression entails a gradual loss of a differentiated phenotype in parallel with the acquisition of stem cell-like features. Cancer de-differentiation and the acquisition of stemness features are mediated by the transcriptional and epigenetic dysregulation of cancer cells. Here, using publicly available data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and harnessing several bioinformatic tools, we characterized the association between Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in 27 distinct types of solid tumors. We aimed to define the prognostic value for TIF1 members in predicting a stem cell-like cancer phenotype and patient outcome. Our results demonstrate that high expression of only one member of the TIF1 family, namely TIF1β (also known as Tripartite Motif protein 28, TRIM28) is consequently associated with enriched cancer stemness across the tested solid tumor types, resulting in a worse prognosis for cancer patients. TRIM28 is highly expressed in higher grade tumors that exhibit stem cell-like traits. In contrast to other TIF1 members, only TIF1β/TRIM28-associated gene expression profiles were robustly enriched with stemness markers regardless of the tumor type. Our work demonstrates that TIF1 family members exhibit distinct expression patterns in stem cell-like tumors, despite their structural and functional similarity. Among other TIF1 members, only TRIM28 might serve as a marker of cancer stemness features.
Collapse
|
25
|
Zhang RY, Liu ZK, Wei D, Yong YL, Lin P, Li H, Liu M, Zheng NS, Liu K, Hu CX, Yang XZ, Chen ZN, Bian H. UBE2S interacting with TRIM28 in the nucleus accelerates cell cycle by ubiquitination of p27 to promote hepatocellular carcinoma development. Signal Transduct Target Ther 2021; 6:64. [PMID: 33589597 PMCID: PMC7884418 DOI: 10.1038/s41392-020-00432-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
Genomic sequencing analysis of tumors provides potential molecular therapeutic targets for precision medicine. However, identifying a key driver gene or mutation that can be used for hepatocellular carcinoma (HCC) treatment remains difficult. Here, we performed whole-exome sequencing on genomic DNA obtained from six pairs of HCC and adjacent tissues and identified two novel somatic mutations of UBE2S (p. Gly57Ala and p. Lys63Asn). Predictions of the functional effects of the mutations showed that two amino-acid substitutions were potentially deleterious. Further, we observed that wild-type UBE2S, especially in the nucleus, was significantly higher in HCC tissues than that in adjacent tissues and closely related to the clinicopathological features of patients with HCC. Functional assays revealed that overexpression of UBE2S promoted the proliferation, invasion, metastasis, and G1/S phase transition of HCC cells in vitro, and promoted the tumor growth significantly in vivo. Mechanistically, UBE2S interacted with TRIM28 in the nucleus, both together enhanced the ubiquitination of p27 to facilitate its degradation and cell cycle progression. Most importantly, the small-molecule cephalomannine was found by a luciferase-based sensitive high-throughput screen (HTS) to inhibit UBE2S expression and significantly attenuate HCC progression in vitro and in vivo, which may represent a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Ren-Yu Zhang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ze-Kun Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Le Yong
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Man Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Nai-Shan Zheng
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ke Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Cai-Xia Hu
- Oncology and Hepatobiliary Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiao-Zhen Yang
- Oncology and Hepatobiliary Minimally Invasive Interventional Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
26
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
27
|
Sun Q, Ye Z, Qin Y, Fan G, Ji S, Zhuo Q, Xu W, Liu W, Hu Q, Liu M, Zhang Z, Xu X, Yu X. Oncogenic function of TRIM2 in pancreatic cancer by activating ROS-related NRF2/ITGB7/FAK axis. Oncogene 2020; 39:6572-6588. [PMID: 32929153 DOI: 10.1038/s41388-020-01452-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Evidence suggests that tripartite motif-containing 2 (TRIM2) is associated with carcinogenic effects in several malignancies. However, the expression patterns and roles of TRIM2 in pancreatic cancer are rarely studied. Our study demonstrated that TRIM2 was expressed in a high percentage of pancreatic tumors. High TRIM2 expression was negatively correlated with the outcome of pancreatic cancer. TRIM2 silencing significantly inhibited the proliferation, migration, invasion, and in vivo tumorigenicity of pancreatic cancer cells. Regarding the mechanism involved, TRIM2 activated ROS-related E2-related factor 2 (NRF2)/antioxidant response element (ARE) signaling and the integrin/focal adhesion kinase (FAK) pathway. Treatment of pancreatic cancer cells with the antioxidant N-acetyl-L-cysteine decreased ROS activity and expression level of NRF2 and ITGB7. Increased translocation of NRF2 protein into nucleus further rescued the inhibited ITGB7 transcription. Moreover, NRF2 bound to the potential ARE on the promoter region and enhanced the transcriptional activity of ITGB7, indicating the bridging effect of NRF2 between the two signaling pathways. In summary, our study provides evidence that upregulated TRIM2 in pancreatic cancer predicts short survival for pancreatic cancer patients. TRIM2 accelerates pancreatic cancer progression via the ROS-related NRF2/ITGB7/FAK axis.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.
| |
Collapse
|
28
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
29
|
Jeon KY, Ko EJ, Oh YL, Kim H, Eo WK, Kim A, Sun HG, Ock MS, Kim KH, Cha HJ. Analysis of KAP1 expression patterns and human endogenous retrovirus Env proteins in ovarian cancer. Genes Genomics 2020; 42:1145-1150. [PMID: 32785870 DOI: 10.1007/s13258-020-00979-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) constitute around 8% of the human genome and have important roles in human health and disease, including cancers. Previous studies showed that HERV envelope (Env) proteins are highly expressed in cancer tissues and co-related with cancer progression. KAP1 has been reported to play a key role in regulating retrotransposons, including HERV-K, through epigenetic silencing. OBJECTIVE The relationship between KAP-1 and HERV Envs expressions was analyzed only in tumor cell lines and has not yet been studied in cancer tissues. In this study, we analyzed the expression patterns and relationship between KAP1 and HERV Env proteins in ovarian cancer tissues. METHOD The expression patterns of KAP-1 and HERV Env proteins, including HERV-K and HERV-R, were analyzed in ovarian cancer tissue microarrays that contained 80 surgical specimens, including normal ovary and malignant ovarian cancers. RESULTS The expression of HERV-R Env and KAP1 proteins is significantly higher in ovarian cancer compared with normal ovary tissues. However, the expression of HERV-K Env did not change significantly in cancer tissues. The expression patterns of HERV-K Env and HERV-R Env significantly increased in early stages of cancer and KAP1 expression was higher in certain stage and types of cancers. However, the expression of HERV-K Env, HERV-R Env, and KAP1 did not change in different age groups. The correlation between the expression of KAP1 and HERV-Env, including HERV-K and HERV-R, was not significantly correlated. CONCLUSIONS The results of this study showed that there was no significant correlation between the expression of KAP1 and HERV Env proteins in ovarian cancer tissues, unlike studies with cell lines in vitro. These results suggest that the actual expression of HERV Env proteins in ovarian cancer tissues may be regulated through various complex factors as well as KAP1.
Collapse
Affiliation(s)
- Kyung-Yoon Jeon
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.,Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Young Lim Oh
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan, South Korea
| | - Hongbae Kim
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, South Korea
| | - Wan Kyu Eo
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Ari Kim
- Department of Obstetrics and Gynecology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, USA
| | - Han Gyu Sun
- Department of Obstetrics and Gynecology, Ehwa Obstetrics and Gynecology Clinic, Cheongju, Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.
| |
Collapse
|
30
|
TIF1 Proteins in Genome Stability and Cancer. Cancers (Basel) 2020; 12:cancers12082094. [PMID: 32731534 PMCID: PMC7463590 DOI: 10.3390/cancers12082094] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is a hallmark of cancer cells which results in excessive DNA damage. To counteract this, cells have evolved a tightly regulated DNA damage response (DDR) to rapidly sense DNA damage and promote its repair whilst halting cell cycle progression. The DDR functions predominantly within the context of chromatin and requires the action of chromatin-binding proteins to coordinate the appropriate response. TRIM24, TRIM28, TRIM33 and TRIM66 make up the transcriptional intermediary factor 1 (TIF1) family of chromatin-binding proteins, a subfamily of the large tripartite motif (TRIM) family of E3 ligases. All four TIF1 proteins are aberrantly expressed across numerous cancer types, and increasing evidence suggests that TIF1 family members can function to maintain genome stability by mediating chromatin-based responses to DNA damage. This review provides an overview of the TIF1 family in cancer, focusing on their roles in DNA repair, chromatin regulation and cell cycle regulation.
Collapse
|
31
|
Zottel A, Jovčevska I, Šamec N, Mlakar J, Šribar J, Križaj I, Skoblar Vidmar M, Komel R. Anti-vimentin, anti-TUFM, anti-NAP1L1 and anti-DPYSL2 nanobodies display cytotoxic effect and reduce glioblastoma cell migration. Ther Adv Med Oncol 2020; 12:1758835920915302. [PMID: 32426045 PMCID: PMC7222267 DOI: 10.1177/1758835920915302] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/04/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Glioblastoma is a particularly common and very aggressive primary brain tumour. One of the main causes of therapy failure is the presence of glioblastoma stem cells that are resistant to chemotherapy and radiotherapy, and that have the potential to form new tumours. This study focuses on validation of eight novel antigens, TRIM28, nucleolin, vimentin, nucleosome assembly protein 1-like 1 (NAP1L1), mitochondrial translation elongation factor (EF-TU) (TUFM), dihydropyrimidinase-related protein 2 (DPYSL2), collapsin response mediator protein 1 (CRMP1) and Aly/REF export factor (ALYREF), as putative glioblastoma targets, using nanobodies. Methods: Expression of these eight antigens was analysed at the cellular level by qPCR, ELISA and immunocytochemistry, and in tissues by immunohistochemistry. The cytotoxic effects of the nanobodies were determined using AlamarBlue and water-soluble tetrazolium tests. Annexin V/propidium iodide tests were used to determine apoptotsis/necrosis of the cells in the presence of the nanobodies. Cell migration assays were performed to determine the effects of the nanobodies on cell migration. Results: NAP1L1 and CRMP1 were significantly overexpressed in glioblastoma stem cells in comparison with astrocytes and glioblastoma cell lines at the mRNA and protein levels. Vimentin, DPYSL2 and ALYREF were overexpressed in glioblastoma cell lines only at the protein level. The functional part of the study examined the cytotoxic effects of the nanobodies on glioblastoma cell lines. Four of the nanobodies were selected in terms of their specificity towards glioblastoma cells and protein overexpression: anti-vimentin (Nb79), anti-NAP1L1 (Nb179), anti-TUFM (Nb225) and anti-DPYSL2 (Nb314). In further experiments to optimise the nanobody treatment schemes, to increase their effects, and to determine their impact on migration of glioblastoma cells, the anti-TUFM nanobody showed large cytotoxic effects on glioblastoma stem cells, while the anti-vimentin, anti-NAP1L1 and anti-DPYSL2 nanobodies were indicated as agents to target mature glioblastoma cells. The anti-vimentin nanobody also had significant effects on migration of mature glioblastoma cells. Conclusion: Nb79 (anti-vimentin), Nb179 (anti-NAP1L1), Nb225 (anti-TUFM) and Nb314 (anti-DPYSL2) nanobodies are indicated for further examination for cell targeting. The anti-TUFM nanobody, Nb225, is particularly potent for inhibition of cell growth after long-term exposure of glioblastoma stem cells, with minor effects seen for astrocytes. The anti-vimentin nanobody represents an agent for inhibition of cell migration.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
32
|
Mandell MA, Saha B, Thompson TA. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol 2020; 11:308. [PMID: 32226386 PMCID: PMC7081753 DOI: 10.3389/fphar.2020.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradative process that has multiple important actions in cancer. Autophagy modulation is under consideration as a promising new approach to cancer therapy. However, complete autophagy dysregulation is likely to have substantial undesirable side effects. Thus, more targeted approaches to autophagy modulation may prove clinically beneficial. One potential avenue to achieving this goal is to focus on the actions of tripartite motif-containing protein family members (TRIMs). TRIMs have key roles in an array of cellular processes, and their dysregulation has been extensively linked to cancer risk and prognosis. As detailed here, emerging data shows that TRIMs can play important yet context-dependent roles in controlling autophagy and in the selective targeting of autophagic substrates. This review covers how the autophagy-related actions of TRIM proteins contribute to cancer and the possibility of targeting TRIM-directed autophagy in cancer therapy.
Collapse
Affiliation(s)
- Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Todd A Thompson
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, United States
| |
Collapse
|
33
|
TRIM8 interacts with KIF11 and KIFC1 and controls bipolar spindle formation and chromosomal stability. Cancer Lett 2020; 473:98-106. [DOI: 10.1016/j.canlet.2019.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
|
34
|
Xue LP, Lu B, Gao BB, Shi YY, Xu JQ, Yang R, Xu B, Ding P. Overexpression of Tripartite Motif-Containing 48 (TRIM48) Inhibits Growth of Human Glioblastoma Cells by Suppressing Extracellular Signal Regulated Kinase 1/2 (ERK1/2) Pathway. Med Sci Monit 2019; 25:8422-8429. [PMID: 31703057 PMCID: PMC6858785 DOI: 10.12659/msm.916024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Herein, we found that tripartite motif-containing 48 (TRIM48) was reduced in human glioblastoma (GBM) cell lines. We investigated whether and how TRIM48 functions in human GBM in vitro. MATERIAL AND METHODS Human GBM cells (U87 MG and U138 MG) were infected with lentivirus to overexpress TRIM48, and 1 human GBM cell line (T98G) was infected with siRNAs to knock down TRIM48 expression. Techniques used included cell proliferation assay, measured by CCK-8 and BrdU-ELISA method, and cell cycle assay, determined using flow cytometry. Curcumin, a specific activator of extracellular signal regulated kinases (ERK1/2), or PD98059, a specific inhibitor of ERK1/2, was used to activate or block the ERK1/2 pathway, respectively. Expression of phosphorylated (p)-ERK1/2, and its downstream targets (Cyclin D1) were measured to assess the mechanism. RESULTS Our data suggest that overexpression of TRIM48 reduces the viability of U87 MG and U138 MG and leads to cell cycle arrest (in G0-G1 phase), which is associated with blockade of the ERK1/2 pathway and reduction of Cyclin D1. In contrast, knockdown of TRIM48 resulted in the opposite effects. Interestingly, the inhibitory effect of TRIM48 overexpression on human GBM cell growth and the inactivation of ERK1/2 were significantly alleviated with additional curcumin treatment, while it the promoted the effect of siTRIM48 on human GBM cell growth, and the activation of ERK1/2 was significantly alleviated with additional PD98059 treatment. CONCLUSIONS TRIM48 suppressed the growth of human GBM cell via the prevention of ERK1/2 activation.
Collapse
Affiliation(s)
- Li-Ping Xue
- Department of Ophthalmology, Yunnan No. 2 Provincial People's Hospital, Kunming, Yunnan, China (mainland)
| | - Bin Lu
- Department of Neurosurgery, HuZhou Central Hospital, Huzhou, Zhejiang, China (mainland)
| | - Bi-Bo Gao
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yang-Yang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jing-Qi Xu
- Department of Neurosurgery, Xi'an DaXing Hospital, Xi'an, Shaanxi, China (mainland)
| | - Rui Yang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Bo Xu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Peng Ding
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
35
|
Liu H, Chen H, Deng X, Peng Y, Zeng Q, Song Z, He W, Zhang L, Xiao T, Gao G, Li B. Knockdown of TRIM28 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration. Chem Biol Interact 2019; 311:108772. [PMID: 31351049 DOI: 10.1016/j.cbi.2019.108772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is a common type of cardiovascular disease (CVD), remaining one of the leading causes of global death. Tripartite motif-containing 28 (TRIM28) is a member of TRIM family that has been found to be involved in atherosclerosis. However, the role of TRIM28 in atherosclerosis remains unknown. This study aimed to investigate the effects of TRIM28 on the phenotypic switching of human aortic smooth muscle cells (HASMCs), which is considered as a fundamental event during the development of atherosclerosis. The results showed that TRIM28 was highly expressed in human atherosclerotic tissues, as well in cultured HASMCs stimulated by platelet-derived growth factor subunit B homodimer (PDGF-BB). Knockdown of TRIM28 by transfection with siRNA targeting TRIM28 (si-TRIM28) significantly suppressed the PDGF-BB-induced cell proliferation and migration of HASMCs. Besides, knockdown of TRIM28 inhibited the expressions of matrix metalloproteinase (MMP)-2 and MMP-9. The VSMC markers including α-smooth muscle actin (α-SMA), calponin and SM22α were upregulated in TRIM28 knocked down HASMCs. Furthermore, knockdown of TRIM28 blocked PDGF-BB-induced NF-κB activation in HASMCs. Collectively, knockdown of TRIM28 prevented PDGF-BB-induced phenotypic switching of HASMCs, which might be mediated by the regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hongtao Liu
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China.
| | - Hongwei Chen
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Xia Deng
- Pharmacy Department, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Yudong Peng
- Department of Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Qiutang Zeng
- Department of Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Zongren Song
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Wenping He
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Le Zhang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Ting Xiao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Gan Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Bailin Li
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| |
Collapse
|
36
|
Cui J, Hu J, Ye Z, Fan Y, Li Y, Wang G, Wang L, Wang Z. TRIM28 protects CARM1 from proteasome-mediated degradation to prevent colorectal cancer metastasis. Sci Bull (Beijing) 2019; 64:986-997. [PMID: 36659810 DOI: 10.1016/j.scib.2019.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/21/2023]
Abstract
TRIM28 (Tripartite motif-containing protein 28), a member of TRIM family, is aberrantly expressed and reportedly has different functions in many types of human cancer. However, the biological roles of TRIM28 and related mechanism in colorectal cancer (CRC) remain unclear. Here, we showed that TRIM28 was downregulated in colorectal cancer compared with normal mucosa, especially at advanced stages, and acted as an independent prognostic factor of favorable outcome. Functional studies demonstrated that TRIM28 restrained CRC migration and invasion in vitro and in vivo. Mechanistically, we reported that CARM1 (co-activator-associated arginine methyltransferase1) was a critical player downstream of TRIM28. TRIM28 interacted with CARM1, and protected CARM1 from proteasome-mediated degradation through physical protein-protein interaction to suppress CRC metastasis. Further, TRIM28 suppressed the migration and invasion of CRC cells through inhibiting WNT/β-catenin signaling in a CARM1-dependent manner, but independent of CARM1's methyltransferase activity. The protein expression of CARM1 was positively correlated with TRIM28 in CRC tissues. Patients with high levels of TRIM28 and CARM1 had improved prognosis, whereas patients with low TRIM28 and CARM1 expression had the poor outcomes. Thus, our study reveals an inhibitory role of TRIM28 in CRC metastasis, which was achieved through a TRIM28-CARM1-WNT/β-catenin axis. This work provides potential prognostic and therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Jinyuan Cui
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhilan Ye
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongli Fan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
37
|
E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis. Cells 2019; 8:cells8050510. [PMID: 31137886 PMCID: PMC6562728 DOI: 10.3390/cells8050510] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.
Collapse
|
38
|
Peng Y, Zhang M, Jiang Z, Jiang Y. TRIM28 activates autophagy and promotes cell proliferation in glioblastoma. Onco Targets Ther 2019; 12:397-404. [PMID: 30655676 PMCID: PMC6322701 DOI: 10.2147/ott.s188101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Tripartite motif-containing protein 28 (TRIM28) is a transcriptional corepressor involved in the regulation of several cancers, including glioma. It has been reported that TRIM28 takes part in the process of autophagy. However, its effect on the autophagy and cell proliferation in gliomas has not been elucidated. Here, we report a novel tumor cell proliferation mechanism in which TRIM28-regulated autophagy promotes glioma tumor cell proliferation. Materials and methods We analyzed the expressions of TRIM28 and LC3 in different WHO grades of gliomas by IHC assays. We then knocked down and overexpressed TRIM28 or knocked down ATG5 in U251 cells and confirmed its roles in autophagy and cell proliferation via cell counting, immunofluorescence, and Western blot. Results The results showed that TRIM28 and autophagy levels were significantly increased with the progression of tumor grade in glioma. TRIM28 promoted glioblastoma cell proliferation. Knockdown of TRIM28 inhibited autophagy in glioblastoma cells. Meanwhile, TRIM28 promoted glioblastoma cell proliferation by modulating TRIM28. Conclusion These data demonstrated that TRIM28 activates autophagy and increases cell proliferation in glioma.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,
| | - Zhongzhong Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,
| |
Collapse
|
39
|
Armstrong AE, Gadd S, Huff V, Gerhard DS, Dome JS, Perlman EJ. A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: A Children's Oncology Group study. PLoS One 2018; 13:e0208936. [PMID: 30543698 PMCID: PMC6292605 DOI: 10.1371/journal.pone.0208936] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
This study explores the genomic alterations that contribute to the formation of a unique subset of low-risk, epithelial differentiated, favorable histology Wilms tumors (WT), tumors that have been characterized by their expression of post-induction renal developmental genes (Subset 1 WT). We demonstrate copy neutral loss of heterozygosity involving 19q13.32-q13.43, unaccompanied by evidence for imprinting by DNA methylation. We further identified loss-of-function somatic mutations in TRIM28 (also known as KAP1), located at 19q13, in 8/9 Subset 1 tumors analyzed. An additional germline TRIM28 mutation was identified in one patient. Retrospective evaluation of previously analyzed WT outside of Subset 1 identified an additional tumor with anaplasia and both TRIM28 and TP53 mutations. A major function of TRIM28 is the repression of endogenous retroviruses early in development. We depleted TRIM28 in HEK293 cells, which resulted in increased expression of endogenous retroviruses, a finding also demonstrated in TRIM28-mutant WT. TRIM28 has been shown by others to be active during early renal development, and to interact with WTX, another gene recurrently mutated in WT. Our findings suggest that inactivation of TRIM28 early in renal development contributes to the formation of this unique subset of FHWTs, although the precise manner in which TRIM28 impacts both normal renal development and oncogenesis remains elusive.
Collapse
Affiliation(s)
- Amy E. Armstrong
- Division of Hematology-Oncology and Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University’s Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Samantha Gadd
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University’s Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, Illinois, United States of America
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Daniela S. Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeffrey S. Dome
- Division of Pediatric Hematology/Oncology, Children's National Medical Center, Washington, District of Columbia, United States of America
| | - Elizabeth J. Perlman
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University’s Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Expression and Significance of TRIM 28 in Squamous Carcinoma of Esophagus. Pathol Oncol Res 2018; 25:1645-1652. [PMID: 30484263 PMCID: PMC6815281 DOI: 10.1007/s12253-018-0558-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Tripartite motif-containing protein 28 (TRIM28) has been proved to accelerate cell proliferation and metastasis in a variety of human cancers. However, the role of TRIM28 in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, to compare the biological effect and significance of TRIM28 expression in ESCC, immunohistochemistry (streptavidin-perosidase, S-P) method was used firstly to examine the expression of TRIM28 in 136 cases of ESCC, 35 cases of high grade intraepithelial neoplasia (HGIN), 29 cases of low grade intraepithelial neoplasia (LGIN) and 37 cases of normal esophageal epithelium (NEE). Then the associations of TRIM28 expression with clinicopathological data and overall survival (OS) were also analyzed. Western blot was performed to evaluate TRIM28 protein in a total of 20 matched human ESCC and NEE tissues. Moreover, the localization of TRIM28 protein in ESCC and NEE tissues was also detected by immunofluorescence. TRIM28 protein was mainly distributed in the nucleus of ESCC. The expression of TRIM28 increased progressively from NEE to LGIN, to HGIN, and to ESCC, and it was also related to invasive depth, pTNM stage and lymph node metastasis in ESCC (P < 0.05). The results of western blot and immunofluorescence all showed that the relative expression of TRIM28 protein was markedly upregulated in ESCC compared with the NEE tissues (P < 0.01). However, prognostic analysis showed that TRIM28 may not be a prognostic factor of patients with ESCC. In conclusion, the overexpression of TRIM28 may play an important role for development and metastasis in ESCC.
Collapse
|
41
|
Fernandez-Marrero Y, Bachmann D, Lauber E, Kaufmann T. Negative Regulation of BOK Expression by Recruitment of TRIM28 to Regulatory Elements in Its 3' Untranslated Region. iScience 2018; 9:461-474. [PMID: 30471638 PMCID: PMC6260365 DOI: 10.1016/j.isci.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023] Open
Abstract
BCL-2-related ovarian killer (BOK) is a pro-apoptotic BAX-like member of the BCL-2 family with suggested tumor suppressor activity. The molecular mechanisms regulating BOK expression are poorly understood and fail to explain a frequent lack of concordance between protein and transcript levels. Here, we describe a potent post-transcriptional mechanism that negatively regulates BOK expression mediated by conserved (AU/U)-rich elements within its 3’ UTR. Using proteomics approaches we identified TRIM28 as a key component associating with U-rich elements in the human BOK 3’ UTR, resulting in a dramatic reduction of BOK expression. TRIM28 is overexpressed in several cancers, correlating with poor patient outcome, whereas the BOK locus is frequently deleted or its expression downregulated in human cancers. Data mining indicated that, for certain cancers, high TRIM28 and low BOK expression are significantly correlated in the stratum of patients with the worst survival, suggesting that this mechanism might be of potential therapeutic value. BOK mRNA is destabilized by AU-(mouse) or U-rich (human) elements within its 3’ UTR Mutation of these ARE/URE sequences results in increased BOK RNA and protein levels TRIM28 represses BOK expression by associating with the UREs of human BOK mRNA Inverse correlation of TRIM28 and BOK levels predicts survival in selected cancers
Collapse
Affiliation(s)
- Yuniel Fernandez-Marrero
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Daniel Bachmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Emanuel Lauber
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland.
| |
Collapse
|
42
|
Song X, Guo C, Zheng Y, Wang Y, Jin Z, Yin Y. Post-transcriptional regulation of cancer/testis antigen MAGEC2 expression by TRIM28 in tumor cells. BMC Cancer 2018; 18:971. [PMID: 30309319 PMCID: PMC6182782 DOI: 10.1186/s12885-018-4844-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer/testis antigen MAGEC2 (also known as HCA587) is highly expressed in a wide variety of tumors and plays an active role in promoting growth and metastasis of tumor cells. However, little is known for the regulation of MAGEC2 expression in cancer cells. METHODS Western blotting and quantitative RT-PCR were performed to analyze MAGEC2 expression. Co-immunoprecipitation assay was applied for detecting the endogenous interaction of MAGEC2 and TRIM28 in tumor cells. Overexpression and knockdown assays were used to examine the effects of TRIM28 on the expression of MAGEC2 protein. Immunohistochemistry (IHC) staining was performed in hepatocellular carcinoma patients to evaluate the association between the expression of MAGEC2 and TRIM28. Proteasome inhibitors MG132 or PS-341 and lysosome inhibitor Chloroquine (CQ) were used to inhibit proteasomal or lysosomal-mediated protein degradation respectively. RESULTS We demonstrate that MAGEC2 interacts with TRIM28 in melanoma cells and MAGEC2 expression in tumor cells depends on the expression of TRIM28. The expression level of MAGEC2 protein was significantly reduced when TRIM28 was depleted in tumor cells, and no changes were observed in MAGEC2 mRNA level. Furthermore, expression levels of MAGEC2 and TRIM28 are positively correlated in MAGEC2-positive human hepatocellular carcinoma tissues (p = 0.0011). Mechanistic studies indicate that the regulatory role of TRIM28 on MAGEC2 protein expression in tumor cells depends on proteasome-mediated pathway. CONCLUSIONS Our findings show that TRIM28 is necessary for MAGEC2 expression in cancer cells, and TRIM28 may serve as a new potential target for immunotherapy of cancer.
Collapse
Affiliation(s)
- Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Chengli Guo
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Yutian Zheng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Zhongtian Jin
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
43
|
Su C, Li H, Gao W. TRIM28 is overexpressed in glioma and associated with tumor progression. Onco Targets Ther 2018; 11:6447-6458. [PMID: 30349292 PMCID: PMC6188017 DOI: 10.2147/ott.s168630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Tripartite motif containing 28 (TRIM28) is a transcriptional co-factor targeting many genes with pleiotropic biological activities, but the study on the role of TRIM28 in glioma is rare. Methods To explore the function of TRIM28 in glioma, we first detected the expression levels of TRIM28 in glioma tissues and analyzed the correlations of TRIM28 expression with clinicopathological variables of patients in 85 cases of glioma. Meanwhile, we used shRNA to knockdown TRIM28 in glioma cell lines to detect the biological functions of TRIM28 in cell and animal experiments. Results We found that TRIM28 was expressed at significantly higher level in glioma tissues than in non-tumor brain, and TRIM28 expression correlated significantly with tumor malignancy. Furthermore, TRIM28 higher expression was also correlated with poor survival of glioma patients (P<0.01). Functionally, knockdown of TRIM28 could significantly inhibit cell proliferation and migration in glioma cells. Additionally, we found that TRIM28 could inhibit the expression of E-cadherin significantly by reducing its mRNA stability at the post-transcriptional level. Conclusion Our results suggest that TRIM28 overexpression is correlated with glioma malignant progression and patients' poor survival, so targeting TRIM28 could be an efficacious strategy in glioma.
Collapse
Affiliation(s)
- Chunhai Su
- Department of Neurosurgery, Jining No 1 People's Hospital, Jining, China,
| | - Hui Li
- School of Nursing, Jining Medical University, Jining, China
| | - Wenbo Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
44
|
Fitzgerald S, Espina V, Liotta L, Sheehan KM, O'Grady A, Cummins R, O'Kennedy R, Kay EW, Kijanka GS. Stromal TRIM28-associated signaling pathway modulation within the colorectal cancer microenvironment. J Transl Med 2018; 16:89. [PMID: 29631612 PMCID: PMC5891886 DOI: 10.1186/s12967-018-1465-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Stromal gene expression patterns predict patient outcomes in colorectal cancer. TRIM28 is a transcriptional co-repressor that regulates an abundance of genes through the KRAB domain family of transcription factors. We have previously shown that stromal expression of TRIM28 is a marker of disease relapse and poor survival in colorectal cancer. Here, we perform differential epithelium-stroma proteomic network analyses to characterize signaling pathways associated with TRIM28 within the tumor microenvironment. METHODS Reverse phase protein arrays were generated from laser capture micro-dissected carcinoma and stromal cells from fresh frozen colorectal cancer tissues. Phosphorylation and total protein levels were measured for 30 cancer-related signaling pathway endpoints. Strength and direction of associations between signaling endpoints were identified using Spearman's rank-order correlation analysis and compared to TRIM28 levels. Expression status of TRIM28 in tumor epithelium and stromal fibroblasts was assessed using IHC in formalin fixed tissue and the epithelium to stroma protein expression ratio method. RESULTS We found distinct proteomic networks in the epithelial and stromal compartments which were linked to expression levels of TRIM28. Low levels of TRIM28 in tumor stroma (high epithelium: stroma ratio) were found in 10 out of 19 cases. Upon proteomic network analyses, these stromal high ratio cases revealed moderate signaling pathway similarity exemplified by 76 significant Spearman correlations (ρ ≥ 0.75, p ≤ 0.01). Furthermore, low levels of stromal TRIM28 correlated with elevated MDM2 levels in tumor epithelium (p = 0.01) and COX-2 levels in tumor stroma (p = 0.002). Low TRIM28 epithelium to stroma ratios were associated with elevated levels of caspases 3 and 7 in stroma (p = 0.041 and p = 0.036) and an increased signaling pathway similarity in stromal cells with 81 significant Spearman correlations (ρ ≥ 0.75, p ≤ 0.01). CONCLUSIONS By dissecting TRIM28-associated pathways in stromal fibroblasts and epithelial tumor cells, we performed comprehensive proteomic analyses of molecular networks within the tumor microenvironment. We found modulation of several signaling pathways associated with TRIM28, which may be attributed to the pleiotropic properties of TRIM28 through its translational suppression of the family of KRAB domain transcription factors in tumor stromal compartments.
Collapse
Affiliation(s)
- Seán Fitzgerald
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland.,School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Katherine M Sheehan
- Department of Pathology, Royal College of Surgeons in Ireland and Beaumont Hospital, Dublin 9, Ireland
| | - Anthony O'Grady
- Department of Pathology, Royal College of Surgeons in Ireland and Beaumont Hospital, Dublin 9, Ireland
| | - Robert Cummins
- Department of Pathology, Royal College of Surgeons in Ireland and Beaumont Hospital, Dublin 9, Ireland
| | - Richard O'Kennedy
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland.,School of Biotechnology, Dublin City University, Dublin 9, Ireland.,Research Complex, Hamid Bin Khalifa University, Education City, Doha, Qatar
| | - Elaine W Kay
- Department of Pathology, Royal College of Surgeons in Ireland and Beaumont Hospital, Dublin 9, Ireland
| | - Gregor S Kijanka
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland. .,Translational Research Institute, Immune Profiling and Cancer Group, Mater Research Institute-The University of Queensland, 37 Kent St., Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
45
|
Czerwińska P, Mazurek S, Wiznerowicz M. The complexity of TRIM28 contribution to cancer. J Biomed Sci 2017; 24:63. [PMID: 28851455 PMCID: PMC5574234 DOI: 10.1186/s12929-017-0374-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Since the first discovery in 1996, the engagement of TRIM28 in distinct aspects of cellular biology has been extensively studied resulting in identification of a complex nature of TRIM28 protein. In this review, we summarize core biological functions of TRIM28 that emerge from TRIM28 multi-domain structure and possessed enzymatic activities. Moreover, we will discuss whether the complexity of TRIM28 engagement in cancer biology makes TRIM28 a possible candidate for targeted anti-cancer therapy. Briefly, we will demonstrate the role of TRIM28 in regulation of target gene transcription, response to DNA damage, downregulation of p53 activity, stimulation of epithelial-to-mesenchymal transition, stemness sustainability, induction of autophagy and regulation of retrotransposition, to provide the answer whether TRIM28 functions as a stimulator or inhibitor of tumorigenesis. To date, number of studies demonstrate significant upregulation of TRIM28 expression in cancer tissues which correlates with worse overall patient survival, suggesting that TRIM28 supports cancer progression. Here, we present distinct aspects of TRIM28 involvement in regulation of cancer cell homeostasis which collectively imply pro-tumorigenic character of TRIM28. Thorough analyses are further needed to verify whether TRIM28 possess the potential to become a new anti-cancer target.
Collapse
Affiliation(s)
- Patrycja Czerwińska
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland. .,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Sylwia Mazurek
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wiznerowicz
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
46
|
Das S, Kelly D, Moran B, Han K, Mulligan N, Barrett C, Buckley PG, McMahon P, McCaffrey J, Van Essen HF, Connor K, Lambrechts D, Ylstra B, Gallagher WM, O'Connor DP, Kelly CM. Postmortem Examination of an Aggressive Case of Medullary Thyroid Carcinoma Characterized by Catastrophic Genomic Abnormalities. JCO Precis Oncol 2017; 1:1600063. [PMID: 32913965 DOI: 10.1200/po.16.00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Sudipto Das
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Deirdre Kelly
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Bruce Moran
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Kathleen Han
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Niall Mulligan
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Ciara Barrett
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Patrick G Buckley
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Peter McMahon
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - John McCaffrey
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Hendrik F Van Essen
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Kate Connor
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Diether Lambrechts
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Bauke Ylstra
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - William M Gallagher
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Darran P O'Connor
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| | - Catherine M Kelly
- , , , , , , , , , , , and , University College Dublin, Belfield; , , , and , Royal College of Surgeons in Ireland; , , , , , , and , Mater Misericordiae University Hospital; , Beaumont Hospital, Dublin, Ireland; and , Vrije Universiteit Medical Center, Amsterdam, the Netherlands; and , Vesailus Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit, Leuven, Belgium
| |
Collapse
|
47
|
Damineni S, Balaji SA, Shettar A, Nayanala S, Kumar N, Kruthika BS, Subramanian K, Vijayakumar M, Mukherjee G, Gupta V, Kondaiah P. Expression of tripartite motif-containing protein 28 in primary breast carcinoma predicts metastasis and is involved in the stemness, chemoresistance, and tumor growth. Tumour Biol 2017; 39:1010428317695919. [PMID: 28381187 DOI: 10.1177/1010428317695919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The prediction of who develops metastasis has been the most difficult aspect in the management of breast cancer patients. The lymph node metastasis has been the most useful predictor of prognosis and patient management. However, a good proportion of patients with lymph node positivity remain disease free for 5 years or more, while about a third of those who were lymph node negative develop distant metastasis within the same period. This warrants a robust biomarker(s), preferably gene expression based. In order to elucidate gene-based biomarkers for prognosis of breast cancers, gene expression profiling of primary tumors and follow-up for over 5 years has been performed. The analysis revealed a network of genes centered around the tripartite motif-containing protein 28 as an important indicator of disease progression. Short hairpin RNA-mediated knockdown of tripartite motif-containing protein 28 in breast cancer cells revealed a decreased expression of epithelial-to-mesenchymal transition markers and increased expression of epithelial markers, decreased migration and invasion, and increased chemosensitivity to doxorubicin, 5-fluorouracil, and methotrexate. Furthermore, knockdown of tripartite motif-containing protein 28 resulted in the decrease of stemness as revealed by sphere formation assay as well as decreased expression of CD44 and Bmi1. Moreover, tripartite motif-containing protein 28 knockdown significantly reduced the tumor size and lung metastasis in orthotopic tumor xenograft assay in immunocompromised mice. The tumor size was further reduced when these mice were treated with doxorubicin. These data provide evidence for tripartite motif-containing protein 28 as a biomarker and a potential therapeutic target for breast cancer.
Collapse
|
48
|
Qi Z, Cai S, Cai J, Chen L, Yao Y, Chen L, Mao Y. miR-491 regulates glioma cells proliferation by targeting TRIM28 in vitro. BMC Neurol 2016; 16:248. [PMID: 27905892 PMCID: PMC5131408 DOI: 10.1186/s12883-016-0769-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023] Open
Abstract
Background MicroRNAs are significantly involved in tumorigenesis and progression of glioma. However, the critical part they play in glioma have not been fully elaborated. miR-491 and Tripartite motif containing 28 (TRIM28) are reported to aberrantly express in glioblastoma multiforme (GBM). Here, we detected miR-491 and TRIM28 expression and function in glioma cells. Methods We analyzed miR-491 expressions in 20 primary human GBM tissues and 6 control brain tissues by qRT-PCR assays and searched for The Cancer Genome Atlas (TCGA) database. Then we predicted possible mRNA target of miR-491 by TargetScan/MicroRNA and confirmed it via luciferase reporter assays. Knock-down of miR-491 and transfection of pLenti-TRIM28 were performed in U251 and U87 cells. Proliferation ability was examined by MTT and clone formation assays. Results miR-491 expression was obviously reduced in GBM cells and tissues. There was a positive correlation between the down-regulation of miR-491 and poor prognosis. Spearman’s correlation analysis demonstrated that miR-491 expression was negatively correlated with TRIM28 protein level. Possible mRNA binding sites of miR-491 predicted by TargetScan/MicroRNA were proved by luciferase assays. Clone formation and MTT assays indicated that up-regulation of miR-491 inhibited the proliferation of glioma cells. Conclusions miR-491 regulates glioma cells proliferation in vitro by targeting TRIM28. Electronic supplementary material The online version of this article (doi:10.1186/s12883-016-0769-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengyong Cai
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Cai
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China. .,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.,Department of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|