1
|
Wu Z, Zang Y, Li C, He Z, Liu J, Du Z, Ma X, Jing L, Duan H, Feng J, Yan X. CD146, a therapeutic target involved in cell plasticity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1563-1578. [PMID: 38613742 DOI: 10.1007/s11427-023-2521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/28/2023] [Indexed: 04/15/2024]
Abstract
Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.
Collapse
Affiliation(s)
- Zhenzhen Wu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuzhe Zang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyi Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiheng He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Liu
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoqi Du
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinran Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Jing
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongxia Duan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
| | - Jing Feng
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China.
- Joint Laboratory of Nanozymes in Zhengzhou University, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Li R, Chen Y, Yang B, Li Z, Wang S, He J, Zhou Z, Li X, Li J, Sun Y, Guo X, Wang X, Wu Y, Zhang W, Guo G. Integrated bioinformatics analysis and experimental validation identified CDCA families as prognostic biomarkers and sensitive indicators for rapamycin treatment of glioma. PLoS One 2024; 19:e0295346. [PMID: 38181024 PMCID: PMC10769025 DOI: 10.1371/journal.pone.0295346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.
Collapse
Affiliation(s)
- Ren Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shule Wang
- Department of General and Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihan Zhou
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuepeng Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayu Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqi Sun
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Yang Q, Huang W, Hsu JC, Song L, Sun X, Li C, Cai W, Kang L. CD146-targeted nuclear medicine imaging in cancer: state of the art. VIEW 2023; 4:20220085. [PMID: 38076327 PMCID: PMC10703309 DOI: 10.1002/viw.20220085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 01/02/2024] Open
Abstract
The transmembrane glycoprotein adhesion molecule CD146 is overexpressed in a wide variety of cancers. Through molecular imaging, a specific biomarker's expression and distribution can be viewed in vivo non-invasively. Radionuclide-labeled monoclonal antibodies or relevant fragments that target CD146 may find potential applications in cancer imaging, thereby offering tremendous value in cancer diagnosis, staging, prognosis evaluation, and prediction of drug resistance. This review discusses the recent developments of CD146-targeted molecular imaging via nuclear medicine, especially in malignant melanoma, brain tumor, lung cancer, liver cancer, breast cancer, and pancreatic cancer. Many studies have proved that CD146 targeting may present a promising strategy for cancer theranostics.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing 100050, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States of America
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
4
|
Whitehead CA, Fang H, Su H, Morokoff AP, Kaye AH, Hanssen E, Nowell CJ, Drummond KJ, Greening DW, Vella LJ, Mantamadiotis T, Stylli SS. Small extracellular vesicles promote invadopodia activity in glioblastoma cells in a therapy-dependent manner. Cell Oncol (Dordr) 2023; 46:909-931. [PMID: 37014551 PMCID: PMC10356899 DOI: 10.1007/s13402-023-00786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Huaqi Su
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Microscopy Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3052, Australia
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Laura J Vella
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Level 5, Clinical Sciences Building, Parkville, VIC, 3050, Australia.
| |
Collapse
|
5
|
Huang X, Shi S, Wang H, Zhao T, Wang Y, Huang S, Su Y, Zhao C, Yang M. Advances in antibody-based drugs and their delivery through the blood-brain barrier for targeted therapy and immunotherapy of gliomas. Int Immunopharmacol 2023; 117:109990. [PMID: 37012874 DOI: 10.1016/j.intimp.2023.109990] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Gliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches. With the rapid development of molecular immunology, significant breakthroughs have been made in targeted glioma therapy and immunotherapy. Antibody-based therapy has excellent advantages in treating gliomas due to its high specificity and sensitivity. This article reviewed various targeted antibody drugs for gliomas, including anti-glioma surface marker antibodies, anti-angiogenesis antibodies, and anti-immunosuppressive signal antibodies. Notably, many antibodies have been validated clinically, such as bevacizumab, cetuximab, panitumumab, and anti-PD-1 antibodies. These antibodies can improve the targeting of glioma therapy, enhance anti-tumor immunity, reduce the proliferation and invasion of glioma, and thus prolong the survival time of patients. However, the existence of the blood-brain barrier (BBB) has caused significant difficulties in drug delivery for gliomas. Therefore, this paper also summarized drug delivery methods through the BBB, including receptor-mediated transportation, nano-based carriers, and some physical and chemical methods for drug delivery. With these exciting advancements, more antibody-based therapies will likely enter clinical practice and allow more successful control of malignant gliomas.
Collapse
Affiliation(s)
- Xin Huang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Shuyou Shi
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Hongrui Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yibo Wang
- The College of Clinical College, Jilin University, Changchun, China
| | - Sihua Huang
- The College of Clinical College, Jilin University, Changchun, China
| | - Yingying Su
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunyan Zhao
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| | - Ming Yang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
6
|
Liang Y, Voshart D, Paridaen JTML, Oosterhof N, Liang D, Thiruvalluvan A, Zuhorn IS, den Dunnen WFA, Zhang G, Lin H, Barazzuol L, Kruyt FAE. CD146 increases stemness and aggressiveness in glioblastoma and activates YAP signaling. Cell Mol Life Sci 2022; 79:398. [PMID: 35790583 PMCID: PMC9256581 DOI: 10.1007/s00018-022-04420-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/21/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM), a highly malignant and lethal brain tumor, is characterized by diffuse invasion into the brain and chemo-radiotherapy resistance resulting in poor prognosis. In this study, we examined the involvement of the cell adhesion molecule CD146/MCAM in regulating GBM aggressiveness. Analyses of GBM transcript expression databases revealed correlations of elevated CD146 levels with higher glioma grades, IDH-wildtype and unmethylated MGMT phenotypes, poor response to chemo-radiotherapy and worse overall survival. In a panel of GBM stem cells (GSCs) variable expression levels of CD146 were detected, which strongly increased upon adherent growth. CD146 was linked with mesenchymal transition since expression increased in TGF-ß-treated U-87MG cells. Ectopic overexpression of CD146/GFP in GG16 cells enhanced the mesenchymal phenotype and resulted in increased cell invasion. Conversely, GSC23-CD146 knockouts had decreased mesenchymal marker expression and reduced cell invasion in transwell and GBM-cortical assembloid assays. Moreover, using GSC23 xenografted zebrafish, we found that CD146 depletion resulted in more compact delineated tumor formation and reduced tumor cell dissemination. Stem cell marker expression and neurosphere formation assays showed that CD146 increased the stem cell potential of GSCs. Furthermore, CD146 mediated radioresistance by stimulating cell survival signaling through suppression of p53 expression and activation of NF-κB. Interestingly, CD146 was also identified as an inducer of the oncogenic Yes-associated protein (YAP). In conclusion, CD146 carries out various pro-tumorigenic roles in GBM involving its cell surface receptor function, which include the stimulation of mesenchymal and invasive properties, stemness, and radiotherapy resistance, thus providing an interesting target for therapy.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Daniëlle Voshart
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Judith T M L Paridaen
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Nynke Oosterhof
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Guojun Zhang
- The Cancer Center and the Department of Breast Thyroid Surgery, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Rd, Xiamen, Fujian, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
7
|
Li X, Wang Y, Zhang Y, Liu B. Overexpression of MCAM induced by SMYD2-H3K36me2 in breast cancer stem cell properties. Breast Cancer 2022; 29:854-868. [PMID: 35553018 DOI: 10.1007/s12282-022-01365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Melanoma cell adhesion molecule (MCAM) is highly expressed in various malignancies. However, studies on the effects of MCAM on stemness of cancer stem cells are limited. Here, we aimed to explore the relationship between MCAM and stem cell phenotype in breast cancer (BC). METHODS We analyzed the genes differentially expressed in BC from the oncomine database, followed by TCGA-BRCA database validation. We then used gene set enrichment analysis to analyze the signaling pathways enriched to the relevant genes, followed by loss-of-function experiments to analyze the role of MCAM in the growth of BC cells and the maintenance of stem cell properties. We analyzed the cause for the MCAM overexpression using ChIP-seq and clarified the upstream mechanism by constructing SE-Deleted cells. Finally, the role of SMYD2 in the growth of BC cells and the maintenance of stem cell properties were verified by rescue experiments. RESULTS MCAM was significantly overexpressed in BC, which predicted somber prognosis in patients. Knockdown of MCAM drastically hindered the growth and metastasis of BC cells in vitro and in vivo. Subsequently, the MCAM promoter was observed to have significant H3K36me2 modification and that SMYD2 could significantly promote the expression of MCAM. In addition, further overexpression of SMYD2 in cells with MCAM knockdown increased MCAM expression and promoted the growth as well as stemness of BC cells. CONCLUSION SMYD2 can elevate the expression of MCAM by promoting its H3K36me2 modification, which in turn expedites the growth and stem cell properties of BC cells.
Collapse
Affiliation(s)
- Xiang Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Yuying Wang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Yuanyuan Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning, People's Republic of China
| | - Bin Liu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, People's Republic of China.
| |
Collapse
|
8
|
Liu Z, Cheng X, Pang B, Wang S, Liu B, Cao C, Qian R, Liang W, Zhu Y, Li P, Gao Y. Effects of ESCO2 or its methylation on the prognosis, clinical characteristics, immune microenvironment, and pathogenesis of low-grade glioma. Int Immunopharmacol 2022; 104:108399. [PMID: 35008004 DOI: 10.1016/j.intimp.2021.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 11/05/2022]
Abstract
The establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2) has an important regulatory effect on cell proliferation and division, which is closely related to the malignant process of glioma cells. Therefore, this study attempts to provide a target for biologically targeted therapy for low-grade glioma (LGG) by demonstrating the regulatory effect of ESCO2 during the pathological process of LGG. First, the 1064 samples of LGG transcriptomic data and corresponding clinicopathological information obtained from various databases were included in the study. Second, the chi-squared test showed that the expression of ESCO2 was associated with the malignant characteristics of LGG (recurrence and grade), and Kaplan Meier and multivariate analysis suggested that ESCO2 was an independent risk factor, resulting in a significant reduction in the overall duration of survival of patients. Third, co-expression analysis showed that the level of mRNA expression of ESCO2 was negatively regulated by multiple methylation sites (cg04108328, cg12564175, and cg26534677), and the hypermethylation status of cg12564175 could prolong the overall survival of patients. Fourth, the Tumor Immune Estimation Resource (TIMER) database shows that ESCO2 can have a positive regulatory relationship with six different immune cells, such as CD8 + T cells and macrophages, and a positive expression relationship with PD-1 and PD-L1. Finally, Gene Set Enrichment Analysis (GSEA) showed that ESCO2 may play a carcinogenic role by affecting cell replication and DNA repair. In summary, this study confirmed the carcinogenic effect of ESCO2 on LGG for the first time. It is speculated that both the mRNA of ESCO2 and its methylation site (cg12564175) can be useful biological targets for molecular targeted therapy of LGG.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Bo Pang
- Department of Neurosurgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sen Wang
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Binfeng Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Chen Cao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Rongjun Qian
- Department of Neurosurgery of the Henan Provincial People's Hospital, Henan, Zhengzhou 450003, China.
| | - Wenjia Liang
- Department of Neurosurgery of the Henan Provincial People's Hospital, Henan, Zhengzhou 450003, China
| | - Yongjie Zhu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Pengxu Li
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China.
| |
Collapse
|
9
|
Shen Y, Zhu J, Liu Q, Ding S, Dun X, He J. Up-Regulation of CD146 in Schwann Cells Following Peripheral Nerve Injury Modulates Schwann Cell Function in Regeneration. Front Cell Neurosci 2021; 15:743532. [PMID: 34720881 PMCID: PMC8552958 DOI: 10.3389/fncel.2021.743532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
CD146 is cell adhesion molecule and is implicated in a variety of physiological and pathological processes. However, the involvement of CD146 in peripheral nerve regeneration has not been studied yet. Here, we examine the spatial and temporal expression pattern of CD146 in injured mouse sciatic nerve via high-throughput data analysis, RT-PCR and immunostaining. By microarray data analysis and RT-PCR validation, we show that CD146 mRNA is significantly up-regulated in the nerve bridge and in the distal nerve stump following mouse sciatic nerve transection injury. By single cell sequencing data analysis and immunostaining, we demonstrate that CD146 is up-regulated in Schwann cells and cells associated with blood vessels following mouse peripheral nerve injury. Bioinformatic analysis revealed that CD146 not only has a key role in promoting of blood vessel regeneration but also regulates cell migration. The biological function of CD146 in Schwann cells was further investigated by knockdown of CD146 in rat primary Schwann cells. Functional assessments showed that knockdown of CD146 decreases viability and proliferation of Schwann cells but increases Schwann cell migration. Collectively, our findings imply that CD146 could be a key cell adhesion molecule that is up-regulated in injured peripheral nerves to regulate peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jun Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianyan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shiyan Ding
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinpeng Dun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
10
|
Han X, Tang S, Wang L, Xu X, Yan R, Yan S, Guo Z, Hu K, Yu T, Li M, Li Y, Zhang F, Gu N. Multicellular Spheroids Formation on Hydrogel Enhances Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells Under Magnetic Nanoparticles Induction. Int J Nanomedicine 2021; 16:5101-5115. [PMID: 34349510 PMCID: PMC8327189 DOI: 10.2147/ijn.s318991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Promotion odontogenic differentiation of dental pulp stem cells (DPSCs) is essential for dentin regeneration. Physical cellular microenvironment is of critical importance for stem cells differentiation and influences the function of other biological/chemical factors to differentiation. Methods Based on adjusting the mechanical/interfacial properties of hydrogels, multicellular spheroids (MCSs) of DPSCs generated through self-organization. The spheroids were characterized by immunofluorescent staining and flow cytometry. Quantitative real-time polymerase chain reaction, alkaline phosphatase (ALP) activity assay, ALP staining and Alizarin Red S staining were performed to evaluate the osteogenic/odontogenic differentiation of DPSCs with or without magnetic iron oxide nanoparticles (IONPs) induction. Results MCSs of DPSCs exhibited a significant upregulation of E-cadherin and N-cadherin and enriched CD146 positive subpopulation, along with a stronger osteogenic/odontogenic differentiation ability. Moreover, DPSCs spheroids showed more substantial osteogenic differentiation tendency than the classical two-dimensional cultured DPSCs under the stimulation of magnetic IONPs. Conclusion Three-dimensional spheroids culture of DPSCs based on composite viscoelastic materials combined with mechanical/magnetic stimulation may provide a theoretical basis for the subsequent development of dentin or bone regeneration technology.
Collapse
Affiliation(s)
- Xiao Han
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shijia Tang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xueqin Xu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ruhan Yan
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Sen Yan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ke Hu
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science & Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Mengping Li
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuqin Li
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ning Gu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Fukui N, Yawata T, Nakajo T, Kawanishi Y, Higashi Y, Yamashita T, Aratake T, Honke K, Ueba T. Targeting CD146 using folic acid-conjugated nanoparticles and suppression of tumor growth in a mouse glioma model. J Neurosurg 2021; 134:1772-1782. [PMID: 32707539 DOI: 10.3171/2020.4.jns193078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glioma stem cells (GSCs) are responsible for tumor initiation, therapeutic resistance, and recurrence. CD146 is mainly expressed in dividing GSCs and regulates cell cycle progression. However, the evaluation of the efficacy of targeted therapy against CD146 in vivo remains to be investigated. In this study, the authors aimed to develop gene therapy targeting GSCs using chitosan oligosaccharide lactate (COL) nanoparticles (NPs) conjugated with folic acid-polyethylene glycol (FA-PEG-COL NPs) for in vitro and in vivo delivery of CD146 small-interfering RNA (siCD146) and to determine the effect of CD146 knockdown on tumor growth. METHODS To examine the uptake of NPs by tumor cells, immunofluorescence staining, flow cytometry, and in vivo imaging were performed. The knockdown effect of siCD146 was measured by western blot and water-soluble tetrazolium salt-8 assay in mouse glioma cells. The efficacy of siRNA therapy-targeted GSCs was evaluated by monitoring tumor growth through in vivo imaging and histological analysis. RESULTS In vivo accumulation of the FA-PEG-COL NPs in subcutaneous and intracranial gliomas following NP administration via a mouse tail vein was observed. Additionally, in vitro delivery of siCD146 ionically cross-linked NPs, reduced CD146 levels, and suppressed growth in the glioma tumor sphere. Evaluation of the in vivo therapeutic effects of siCD146-cross-linked NPs in a mouse glioma model revealed significant suppression of intracranial tumor growth, with complete removal of the tumor observed in some mice on histological examination. Furthermore, delivery of siCD146 significantly reduced the Ki-67 index in residual tumor tissues relative to that in control mice. CONCLUSIONS CD146 is a potential therapeutic target, and folic acid-conjugated NPs delivering siRNA may facilitate gene therapy in malignant gliomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Takaaki Aratake
- 2Pharmacology, and
- 4Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koichi Honke
- 3Biochemistry, Kochi Medical School, Kochi University, Nankoku, Kochi; and
| | | |
Collapse
|
12
|
Zhang M, Zhang Q, Bai J, Zhao Z, Zhang J. Transcriptome analysis revealed CENPF associated with glioma prognosis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2077-2096. [PMID: 33892537 DOI: 10.3934/mbe.2021107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gliomas are common malignant tumors of the central nervous system. Despite the surgical resection and postoperative radiotherapy and chemotherapy, the prognosis of glioma remains poor. Therefore, it is important to reveal the molecular mechanisms that promotes glioma progression. Microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. The GEO2R tool was used to identify 428 differentially expressed genes (DEGs) and a core module from three microarray datasets. Heat maps were drawn based on DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the DAVID database. The core module was significantly involved in several KEGG pathways, such as "cell cycle", "viral carcinogenesis", "progesterone-mediated oocyte maturation", "p53 signaling pathway". The protein-protein interaction (PPI) networks and modules were built using the STRING database and the MCODE plugin, respectively, which were visualized using Cytoscape software. Identification of hub genes in the core module using the CytoHubba plugin. The top modular genes AURKA, CDC20, CDK1, CENPF, and TOP2A were associated with glioma development and prognosis. In the Human Protein Atlas (HPA) database, CDC20, CENPF and TOP2A have significant protein expression. Univariate and multivariate cox regression analysis showed that only CENPF had independent influencing factors in the CGGA database. GSEA analysis found that CENPF was significantly enriched in the cell cycle, P53 signaling pathway, MAPK signaling pathway, DNA replication, spliceosome, ubiquitin-mediated proteolysis, focal adhesion, pathway in cancer, glioma, which was highly consistent with previous studies. Our study revealed a core module that was highly correlated with glioma development. The key gene CENPF and signaling pathways were identified through a series of bioinformatics analysis. CENPF was identified as a candidate biomarker molecule.
Collapse
Affiliation(s)
- Moxuan Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi 276000, China
| | - Quan Zhang
- Weifang Medical University, Weifang 261053, China
| | - Jilin Bai
- Weifang Medical University, Weifang 261053, China
| | - Zhiming Zhao
- Weifang Medical University, Weifang 261053, China
| | - Jian Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi 276000, China
| |
Collapse
|
13
|
Ito S, Oishi M, Ogata S, Uemura T, Couraud PO, Masuda T, Ohtsuki S. Identification of Cell-Surface Proteins Endocytosed by Human Brain Microvascular Endothelial Cells In Vitro. Pharmaceutics 2020; 12:pharmaceutics12060579. [PMID: 32585920 PMCID: PMC7356521 DOI: 10.3390/pharmaceutics12060579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-surface proteins that can endocytose into brain microvascular endothelial cells serve as promising candidates for receptor-mediated transcytosis across the blood–brain barrier (BBB). Here, we comprehensively screened endocytic cell-surface proteins in hCMEC/D3 cells, a model of human brain microvascular endothelial cells, using surface biotinylation methodology and sequential window acquisition of all theoretical fragment-ion spectra-mass spectrometry (SWATH-MS)-based quantitative proteomics. Using this method, we identified 125 endocytic cell-surface proteins from hCMEC/D3 cells. Of these, 34 cell-surface proteins were selectively internalized into human brain microvascular endothelial cells, but not into human umbilical vein endothelial cells (HUVECs), a model of human peripheral microvascular endothelial cells. Two cell-surface proteins, intercellular adhesion molecule-1 (ICAM1) and podocalyxin (PODXL), were identified as BBB-localized endocytic cell-surface proteins in humans, using open mRNA and protein databases. Immunohistochemical evaluation confirmed PODXL expression in the plasma membrane of hCMEC/D3 cells and revealed that anti-PODXL antibody-labeled cell-surface PODXL internalized into hCMEC/D3 cells. Immunohistochemistry further revealed that PODXL is localized at the luminal side of human brain microvessels, supporting its potential suitability for translational applications. In conclusion, our findings highlight novel endocytic cell-surface proteins capable of internalizing into human brain microvascular endothelial cells. ICAM1 or PODXL targeted antibody or ligand-labeled biopharmaceuticals and nanocarriers may provide effective targeted delivery to the brain across the BBB for the treatment of central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Mariko Oishi
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Tatsuki Uemura
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Pierre-Olivier Couraud
- Institut Cochin, Universite de Paris, Inserm U1016, CNRS UMR8104, 22 rue Méchain, 75014 Paris, France;
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
- Correspondence: ; Tel.: +81-96-371-4323
| |
Collapse
|
14
|
Tomonobu N, Kinoshita R, Sakaguchi M. S100 Soil Sensor Receptors and Molecular Targeting Therapy Against Them in Cancer Metastasis. Transl Oncol 2020; 13:100753. [PMID: 32193075 PMCID: PMC7078545 DOI: 10.1016/j.tranon.2020.100753] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms underlying the ‘seed and soil’ theory are unknown. S100A8/A9 (a heterodimer complex of S100A8 and S100A9 proteins that exhibits a ‘soil signal’) is a ligand for Toll-like receptor 4, causing distant melanoma cells to approach the lung as a ‘seeding’ site. Unknown soil sensors for S100A8/A9 may exist, e.g., extracellular matrix metalloproteinase inducer, neuroplastin, activated leukocyte cell adhesion molecule, and melanoma cell adhesion molecule. We call these receptor proteins ‘novel S100 soil sensor receptors (novel SSSRs).’ Here we review and summarize a crucial role of the S100A8/A9-novel SSSRs' axis in cancer metastasis. The binding of S100A8/A9 to individual SSSRs is important in cancer metastasis via upregulations of the epithelial-mesenchymal transition, cellular motility, and cancer cell invasiveness, plus the formation of an inflammatory immune suppressive environment in metastatic organ(s). These metastatic cellular events are caused by the SSSR-featured signal transductions we identified that provide cancer cells a driving force for metastasis. To deprive cancer cells of these metastatic forces, we developed novel biologics that prevent the interaction of S100A8/A9 with SSSRs, followed by the efficient suppression of S100A8/A9-mediated lung-tropic metastasis in vivo.
Collapse
Affiliation(s)
- Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
15
|
Wu J, Su HK, Yu ZH, Xi SY, Guo CC, Hu ZY, Qu Y, Cai HP, Zhao YY, Zhao HF, Chen FR, Huang YF, To SST, Feng BH, Sai K, Chen ZP, Wang J. Skp2 modulates proliferation, senescence and tumorigenesis of glioma. Cancer Cell Int 2020; 20:71. [PMID: 32165861 PMCID: PMC7059397 DOI: 10.1186/s12935-020-1144-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gliomas represent the largest class of primary central nervous system neoplasms, many subtypes of which exhibit poor prognoses. Surgery followed by radiotherapy and chemotherapy has been used as a standard strategy but yielded unsatisfactory improvements in patient survival outcomes. The S-phase kinase protein 2 (Skp2), a critical component of the E3-ligase SCF complex, has been documented in tumorigenesis in various cancer types but its role in glioma has yet to be fully clarified. In this study, we investigated the function of Skp2 in the proliferation, stem cell maintenance, and drug sensitivity to temozolomide (TMZ) of glioma. Methods To investigate the role of Skp2 in the prognosis of patients with glioma, we first analyzed data in databases TCGA and GTEx. To further clarify the effect of Skp2 on glioma cell proliferation, we suppressed its level in glioblastoma (GBM) cell lines through knockdown and small molecule inhibitors (lovastatin and SZL-P1-41). We then detected cell growth, colony formation, sphere formation, drug sensitivity, and in vivo tumor formation in xenograft mice model. Results Skp2 mRNA level was higher in both low-grade glioma and GBM than normal brain tissues. The knockdown of Skp2 increased cell sensitivity to TMZ, decreased cell proliferation and tumorigenesis. In addition, Skp2 level was found increased upon stem cells enriching, while the knockdown of Skp2 led to reduced sphere numbers. Downregulation of Skp2 also induced senescence. Repurposing of lovastatin and novel compound SZL-P1-41 suppressed Skp2 effectively, and enhanced glioma cell sensitivity to TMZ in vitro and in vivo. Conclusion Our data demonstrated that Skp2 modulated glioma cell proliferation in vitro and in vivo, stem cell maintenance, and cell sensitivity to TMZ, which indicated that Skp2 could be a potential target for long-term treatment.
Collapse
Affiliation(s)
- Juan Wu
- 1Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, 510060 Guangdong People's Republic of China
| | - Hong-Kai Su
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Zhi-Hui Yu
- 1Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, 510060 Guangdong People's Republic of China
| | - Shao-Yan Xi
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Zhe-Yu Hu
- 3Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013 People's Republic of China
| | - Yue Qu
- 4Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong People's Republic of China
| | - Hai-Ping Cai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Yi-Ying Zhao
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Hua-Fu Zhao
- 5Institute of Translational Medicine, Department of Neurosurgery and Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035 Guangdong People's Republic of China
| | - Fu-Rong Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Yu-Fan Huang
- 1Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, 510060 Guangdong People's Republic of China
| | - Shing-Shun Tony To
- 6Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
| | - Bing-Hong Feng
- 4Department of Pharmacology, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong People's Republic of China
| | - Ke Sai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 Guangdong People's Republic of China
| |
Collapse
|