1
|
Fang S, Hong S, Li Q, Li P, Coats T, Zou B, Kong G. Cross-modal similar clinical case retrieval using a modular model based on contrastive learning and k-nearest neighbor search. Int J Med Inform 2025; 193:105680. [PMID: 39500035 DOI: 10.1016/j.ijmedinf.2024.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE Electronic health record systems have made it possible for clinicians to use previously encountered similar cases to support clinical decision-making. However, most studies for similar case retrieval were based on single-modal data. The existing studies on cross-modal clinical case retrieval were limited. We aimed to develop a CRoss-Modal Retrieval (CRMR) model to retrieve similar clinical cases recorded in different data modalities. MATERIALS AND METHODS The publically available Medical Information Mart for Intensive Care-Chest X-ray (MIMIC-CXR) dataset was used for model development and testing. The CRMR model was designed as a modular model containing two feature extraction models, two feature transformation models, one feature transformation optimization model, and one case retrieval model. The ability to retrieve similar clinical cases recorded in different data modalities was facilitated by the use of contrastive deep learning and k-nearest neighbor search. RESULTS The average retrieval precision, denoted as AP@k, of the developed CRMR model, were 76.9 %@5, 76.7 %@10, 76.5 %@20, 76.3 %@50, and 77.9 %@100, respectively. Here k is the number of similar cases returned after retrieval. The average retrieval time varied from 0.013 ms to 0.016 ms with k varying from 5 to 100. Moreover, the model can retrieve similar cases with the same multiple radiographic manifestations as the query case. DISCUSSION The CRMR model has shown promising cross-modal retrieval performance in clinical case analysis, with the potential for future scalability and improvement in handling diverse disease types and data modalities. The CRMR model has promising potential to aid clinicians in making optimal and explainable clinical decisions.
Collapse
Affiliation(s)
- Shichao Fang
- National Institute of Health Data Science, Peking University, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China; Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; King's College Hospital NHS Foundation Trust, London, UK
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Qing Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China
| | - Tim Coats
- Emergency Medicine Academic Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Guilan Kong
- National Institute of Health Data Science, Peking University, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Bani Baker Q, Hammad M, Al-Smadi M, Al-Jarrah H, Al-Hamouri R, Al-Zboon SA. Enhanced COVID-19 Detection from X-ray Images with Convolutional Neural Network and Transfer Learning. J Imaging 2024; 10:250. [PMID: 39452413 PMCID: PMC11508642 DOI: 10.3390/jimaging10100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The global spread of Coronavirus (COVID-19) has prompted imperative research into scalable and effective detection methods to curb its outbreak. The early diagnosis of COVID-19 patients has emerged as a pivotal strategy in mitigating the spread of the disease. Automated COVID-19 detection using Chest X-ray (CXR) imaging has significant potential for facilitating large-scale screening and epidemic control efforts. This paper introduces a novel approach that employs state-of-the-art Convolutional Neural Network models (CNNs) for accurate COVID-19 detection. The employed datasets each comprised 15,000 X-ray images. We addressed both binary (Normal vs. Abnormal) and multi-class (Normal, COVID-19, Pneumonia) classification tasks. Comprehensive evaluations were performed by utilizing six distinct CNN-based models (Xception, Inception-V3, ResNet50, VGG19, DenseNet201, and InceptionResNet-V2) for both tasks. As a result, the Xception model demonstrated exceptional performance, achieving 98.13% accuracy, 98.14% precision, 97.65% recall, and a 97.89% F1-score in binary classification, while in multi-classification it yielded 87.73% accuracy, 90.20% precision, 87.73% recall, and an 87.49% F1-score. Moreover, the other utilized models, such as ResNet50, demonstrated competitive performance compared with many recent works.
Collapse
Affiliation(s)
- Qanita Bani Baker
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| | - Mahmoud Hammad
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| | - Mohammed Al-Smadi
- Digital Learning and Online Education Office (DLOE), Qatar University, Doha 2713, Qatar;
| | - Heba Al-Jarrah
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| | - Rahaf Al-Hamouri
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| | - Sa’ad A. Al-Zboon
- Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (M.H.); (H.A.-J.); (R.A.-H.); (S.A.A.-Z.)
| |
Collapse
|
3
|
Mapstone C, Hunter H, Brison D, Handl J, Plusa B. Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization. Biol Methods Protoc 2024; 9:bpae052. [PMID: 39114746 PMCID: PMC11305813 DOI: 10.1093/biomethods/bpae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Demand for in vitro fertilization (IVF) treatment is growing; however, success rates remain low partly due to difficulty in selecting the best embryo to be transferred. Current manual assessments are subjective and may not take advantage of the most informative moments in embryo development. Here, we apply convolutional neural networks (CNNs) to identify key windows in pre-implantation human development that can be linked to embryo viability and are therefore suitable for the early grading of IVF embryos. We show how machine learning models trained at these developmental time points can be used to refine overall embryo viability assessment. Exploiting the well-known capabilities of transfer learning, we illustrate the performance of CNN models for very limited datasets, paving the way for the use on a clinic-by-clinic basis, catering for local data heterogeneity.
Collapse
Affiliation(s)
- Camilla Mapstone
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Manchester, M13 9PT, United Kingdom
- Alliance Manchester Business School, University of Manchester, Manchester, M15 6PB, United Kingdom
| | - Helen Hunter
- Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 0JH, United Kingdom
| | - Daniel Brison
- Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 0JH, United Kingdom
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, United Kingdom
| | - Julia Handl
- Alliance Manchester Business School, University of Manchester, Manchester, M15 6PB, United Kingdom
| | - Berenika Plusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
4
|
Shafi I, Ansari S, Din S, Ashraf I. Cancer detection and classification using a simplified binary state vector machine. Med Biol Eng Comput 2024; 62:1491-1501. [PMID: 38300437 DOI: 10.1007/s11517-023-03012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/27/2023] [Indexed: 02/02/2024]
Abstract
Cancer is an invasive and malignant growth of cells and is known to be one of the most fatal diseases. Its early detection is essential for decreasing the mortality rate and increasing the probability of survival. This study presents an efficient machine learning approach based on the state vector machine (SVM) to diagnose and classify tumors into malignant or benign cancer using the online lymphographic data. Further, two types of neural network architectures are also implemented to evaluate the performance of the proposed SVM-based approach. The optimal structures of the classifiers are obtained by varying the architecture, topology, learning rate, and kernel function and recording the results' accuracy. The classifiers are trained with the preprocessed data examples after noise removal and tested on the unknown cases to diagnose each example as positive or negative. Further, the positive cases are classified into different stages including metastases, malign lymph, and fibrosis. The results are evaluated against the feed-forward and generalized regression neural networks. It is found that the proposed SVM-based approach significantly improves the early detection and classification accuracy in comparison to the experienced physicians and the other machine learning approaches. The proposed approach is robust and can perform sub-class divisions for multipurpose tasks. Experimental results demonstrate that the two-class SVM gives the best results and can effectively be used for the classification of cancer. It has outperformed all other classifiers with an average accuracy of 94.90%.
Collapse
Affiliation(s)
- Imran Shafi
- College of Electrical & Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Sana Ansari
- College of Electrical & Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Sadia Din
- Department of Information & Communication Engineering, Yeungnam University, Gyeongsan, Korea.
| | - Imran Ashraf
- Department of Information & Communication Engineering, Yeungnam University, Gyeongsan, Korea.
| |
Collapse
|
5
|
Zhou Y, Mao B, Zhang J, Zhou Y, Li J, Rong Q. Orthodontic craniofacial pattern diagnosis: cephalometric geometry and machine learning. Med Biol Eng Comput 2023; 61:3345-3361. [PMID: 37672141 DOI: 10.1007/s11517-023-02919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Efficient and reliable diagnosis of craniofacial patterns is critical to orthodontic treatment. Although machine learning (ML) is time-saving and high-precision, prior knowledge should validate its reliability. This study proposed a craniofacial ML diagnostic workflow base on a cephalometric geometric model through clinical verification. A cephalometric geometric model was established to determine the landmark location by analyzing 408 X-ray lateral cephalograms. Through geometric information and feature engineering, nine supervised ML algorithms were conducted for sagittal and vertical skeleton patterns. After dimension reduction, plane decision boundary and landmark contribution contours were depicted to demonstrate the diagnostic consistency and the consistency with clinical norms. As a result, multi-layer perceptron achieved 97.56% accuracy for sagittal, while linear support vector machine reached 90.24% for the vertical. Sagittal diagnoses showed average superiority (91.60 ± 5.43)% over the vertical (82.25 ± 6.37)%, where discriminative algorithms exhibited more steady performance (93.20 ± 3.29)% than the generative (85.98 ± 9.48)%. Further, the Kruskal-Wallis H test was carried out to explore statistical differences in diagnoses. Though sagittal patterns had no statistical difference in diagnostic accuracy, the vertical showed significance. All aspects of the tests indicated that the proposed craniofacial ML workflow was highly consistent with clinical norms and could supplement practical diagnosis.
Collapse
Affiliation(s)
- Yuqing Zhou
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100081, China
| | - Bochun Mao
- Department of Orthodontics, Peking University School of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Jiwu Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100081, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Jing Li
- Department of Orthodontics, Peking University School of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.
| | - Qiguo Rong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100081, China.
| |
Collapse
|
6
|
Casas-Rojo JM, Ventura PS, Antón Santos JM, de Latierro AO, Arévalo-Lorido JC, Mauri M, Rubio-Rivas M, González-Vega R, Giner-Galvañ V, Otero Perpiñá B, Fonseca-Aizpuru E, Muiño A, Del Corral-Beamonte E, Gómez-Huelgas R, Arnalich-Fernández F, Llorente Barrio M, Sancha-Lloret A, Rábago Lorite I, Loureiro-Amigo J, Pintos-Martínez S, García-Sardón E, Montaño-Martínez A, Rojano-Rivero MG, Ramos-Rincón JM, López-Escobar A. Improving prediction of COVID-19 mortality using machine learning in the Spanish SEMI-COVID-19 registry. Intern Emerg Med 2023; 18:1711-1722. [PMID: 37349618 DOI: 10.1007/s11739-023-03338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
COVID-19 is responsible for high mortality, but robust machine learning-based predictors of mortality are lacking. To generate a model for predicting mortality in patients hospitalized with COVID-19 using Gradient Boosting Decision Trees (GBDT). The Spanish SEMI-COVID-19 registry includes 24,514 pseudo-anonymized cases of patients hospitalized with COVID-19 from 1 February 2020 to 5 December 2021. This registry was used as a GBDT machine learning model, employing the CatBoost and BorutaShap classifier to select the most relevant indicators and generate a mortality prediction model by risk level, ranging from 0 to 1. The model was validated by separating patients according to admission date, using the period 1 February to 31 December 2020 (first and second waves, pre-vaccination period) for training, and 1 January to 30 November 2021 (vaccination period) for the test group. An ensemble of ten models with different random seeds was constructed, separating 80% of the patients for training and 20% from the end of the training period for cross-validation. The area under the receiver operating characteristics curve (AUC) was used as a performance metric. Clinical and laboratory data from 23,983 patients were analyzed. CatBoost mortality prediction models achieved an AUC performance of 84.76 (standard deviation 0.45) for patients in the test group (potentially vaccinated patients not included in model training) using 16 features. The performance of the 16-parameter GBDT model for predicting COVID-19 hospital mortality, although requiring a relatively large number of predictors, shows a high predictive capacity.
Collapse
Affiliation(s)
- José-Manuel Casas-Rojo
- Internal Medicine Department, Infanta Cristina University Hospital, Parla, 28981, Madrid, Spain
| | - Paula Sol Ventura
- Department of Pediatric Endocrinology, Hospital HM Nens, HM Hospitales, 08009, Barcelona, Spain
| | | | | | | | - Marc Mauri
- Data Scientist, Kaizen AI, Barcelona, Spain
| | - Manuel Rubio-Rivas
- Internal Medicine Department, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - Rocío González-Vega
- Internal Medicine Department, Hospital Costa del Sol, Marbella, Málaga, Spain
| | - Vicente Giner-Galvañ
- Internal Medicine Department, Hospital Universitario San Juan. San Juan de Alicante, Alicante, Spain
| | | | - Eva Fonseca-Aizpuru
- Internal Medicine Department, Hospital Universitario de Cabueñes, Gijón, Asturias, Spain
| | - Antonio Muiño
- Internal Medicine Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | | | - Ricardo Gómez-Huelgas
- Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA), Málaga, Spain
| | | | | | | | - Isabel Rábago Lorite
- Internal Medicine Department, Hospital Universitario Infanta Sofía. San Sebastián de los Reyes, Madrid, Spain
| | - José Loureiro-Amigo
- Internal Medicine Department, Hospital Moisès Broggi, Sant Joan Despí, Barcelona, Spain
| | - Santiago Pintos-Martínez
- Internal Medicine Department, Hospital Universitario de Sagunto, Puerto de Sagunto, Valencia, Spain
| | - Eva García-Sardón
- Internal Medicine Department, Hospital Universitario de Cáceres, Cáceres, Spain
| | | | | | | | - Alejandro López-Escobar
- Pediatrics Department, Clinical Research Unit, Hospital Universitario Vithas Madrid La Milagrosa, Fundación Vithas, Madrid, Spain.
| |
Collapse
|
7
|
Emilov B, Sorokin A, Seiitov M, Kobayashi BT, Chubakov T, Vesnin S, Popov I, Krylova A, Goryanin I. Diagnostic of Patients with COVID-19 Pneumonia Using Passive Medical Microwave Radiometry (MWR). Diagnostics (Basel) 2023; 13:2585. [PMID: 37568948 PMCID: PMC10417460 DOI: 10.3390/diagnostics13152585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Chest CT is widely regarded as a dependable imaging technique for detecting pneumonia in COVID-19 patients, but there is growing interest in microwave radiometry (MWR) of the lungs as a possible substitute for diagnosing lung involvement. AIM The aim of this study is to examine the utility of the MWR approach as a screening tool for diagnosing pneumonia with complications in patients with COVID-19. METHODS Our study involved two groups of participants. The control group consisted of 50 individuals (24 male and 26 female) between the ages of 20 and 70 years who underwent clinical evaluations and had no known medical conditions. The main group included 142 participants (67 men and 75 women) between the ages of 20 and 87 years who were diagnosed with COVID-19 complicated by pneumonia and were admitted to the emergency department between June 2020 to June 2021. Skin and lung temperatures were measured at 14 points, including 2 additional reference points, using a previously established method. Lung temperature data were obtained with the MWR2020 (MMWR LTD, Edinburgh, UK). All participants underwent clinical evaluations, laboratory tests, chest CT scans, MWR of the lungs, and reverse transcriptase polymerase chain reaction (RT-PCR) testing for SARS-CoV-2. RESULTS The MWR exhibits a high predictive capacity as demonstrated by its sensitivity of 97.6% and specificity of 92.7%. CONCLUSIONS MWR of the lungs can be a valuable substitute for chest CT in diagnosing pneumonia in patients with COVID-19, especially in situations where chest CT is unavailable or impractical.
Collapse
Affiliation(s)
- Berik Emilov
- Educational-Scientific Medical Center, Kyrgyz State Medical Academy Named after Isa Akhunbaev, Bishkek 720040, Kyrgyzstan
| | - Aleksander Sorokin
- Department of Physics, Medical Informatics and Biology, Kyrgyz-Russian Slavic University Named after Boris Yeltsin, Bishkek 720000, Kyrgyzstan;
| | - Meder Seiitov
- Educational-Scientific Medical Center, Kyrgyz State Medical Academy Named after Isa Akhunbaev, Bishkek 720040, Kyrgyzstan
| | | | - Tulegen Chubakov
- Kyrgyz State Medical Institute of Post-Graduate Training and Continuous Education Named after S.B. Daniyarov, Bishkek 720040, Kyrgyzstan;
| | - Sergey Vesnin
- Medical Microwave Radiometry Ltd., Edinburgh EH10 5LZ, UK;
| | - Illarion Popov
- Faculty of Mathematics and Information Technology, Volgograd State University, 400062 Volgograd, Russia; (I.P.); (A.K.)
| | - Aleksandra Krylova
- Faculty of Mathematics and Information Technology, Volgograd State University, 400062 Volgograd, Russia; (I.P.); (A.K.)
| | - Igor Goryanin
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AZ, UK
- Biological Systems Unit, Okinawa Institute Science and Technology, Kunigami District, Okinawa 904-0495, Japan
| |
Collapse
|
8
|
Zaeri N. Artificial intelligence and machine learning responses to COVID-19 related inquiries. J Med Eng Technol 2023; 47:301-320. [PMID: 38625639 DOI: 10.1080/03091902.2024.2321846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/18/2024] [Indexed: 04/17/2024]
Abstract
Researchers and scientists can use computational-based models to turn linked data into useful information, aiding in disease diagnosis, examination, and viral containment due to recent artificial intelligence and machine learning breakthroughs. In this paper, we extensively study the role of artificial intelligence and machine learning in delivering efficient responses to the COVID-19 pandemic almost four years after its start. In this regard, we examine a large number of critical studies conducted by various academic and research communities from multiple disciplines, as well as practical implementations of artificial intelligence algorithms that suggest potential solutions in investigating different COVID-19 decision-making scenarios. We identify numerous areas where artificial intelligence and machine learning can impact this context, including diagnosis (using chest X-ray imaging and CT imaging), severity, tracking, treatment, and the drug industry. Furthermore, we analyse the dilemma's limits, restrictions, and hazards.
Collapse
Affiliation(s)
- Naser Zaeri
- Faculty of Computer Studies, Arab Open University, Kuwait
| |
Collapse
|
9
|
Wang X, Han Y, Wang B. A Two-Phase Feature Selection Method for Identifying Influential Spreaders of Disease Epidemics in Complex Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1068. [PMID: 37510015 PMCID: PMC10378310 DOI: 10.3390/e25071068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Network epidemiology plays a fundamental role in understanding the relationship between network structure and epidemic dynamics, among which identifying influential spreaders is especially important. Most previous studies aim to propose a centrality measure based on network topology to reflect the influence of spreaders, which manifest limited universality. Machine learning enhances the identification of influential spreaders by combining multiple centralities. However, several centrality measures utilized in machine learning methods, such as closeness centrality, exhibit high computational complexity when confronted with large network sizes. Here, we propose a two-phase feature selection method for identifying influential spreaders with a reduced feature dimension. Depending on the definition of influential spreaders, we obtain the optimal feature combination for different synthetic networks. Our results demonstrate that when the datasets are mildly or moderately imbalanced, for Barabasi-Albert (BA) scale-free networks, the centralities' combination with the two-hop neighborhood is fundamental, and for Erdős-Rényi (ER) random graphs, the centralities' combination with the degree centrality is essential. Meanwhile, for Watts-Strogatz (WS) small world networks, feature selection is unnecessary. We also conduct experiments on real-world networks, and the features selected display a high similarity with synthetic networks. Our method provides a new path for identifying superspreaders for the control of epidemics.
Collapse
Affiliation(s)
- Xiya Wang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Yuexing Han
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
- Zhejiang Laboratory, Hangzhou 311100, China
| | - Bing Wang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Yadav N, Dass R, Virmani J. Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images. Med Biol Eng Comput 2023:10.1007/s11517-023-02849-4. [PMID: 37353695 DOI: 10.1007/s11517-023-02849-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Encoder-decoder-based semantic segmentation models classify image pixels into the corresponding class, such as the ROI (region of interest) or background. In the present study, simple / dilated convolution / series / directed acyclic graph (DAG)-based encoder-decoder semantic segmentation models have been implemented, i.e., SegNet (VGG16), SegNet (VGG19), U-Net, mobileNetv2, ResNet18, ResNet50, Xception and Inception networks for the segment TTUS(Thyroid Tumor Ultrasound) images. Transfer learning has been used to train these segmentation networks using original and despeckled TTUS images. The performance of the networks has been calculated using mIoU and mDC metrics. Based on the exhaustive experiments, it has been observed that ResNet50-based segmentation model obtained the best results objectively with values 0.87 for mIoU, 0.94 for mDC, and also according to radiologist opinion on shape, margin, and echogenicity characteristics of segmented lesions. It is noted that the segmentation model, namely ResNet50, provides better segmentation based on objective and subjective assessment. It may be used in the healthcare system to identify thyroid nodules accurately in real time.
Collapse
Affiliation(s)
- Niranjan Yadav
- Department of Electronics and Communication Engineering, Deenbandhu Chhotu Ram University of Science and Technology Murthal, Sonepat, 131039, India.
| | - Rajeshwar Dass
- Department of Electronics and Communication Engineering, Deenbandhu Chhotu Ram University of Science and Technology Murthal, Sonepat, 131039, India
| | - Jitendra Virmani
- Central Scientific Instruments Organization, Council of Scientific and Industrial Research, Chandigarh, 160030, India
| |
Collapse
|
11
|
Braik M, Awadallah MA, Al-Betar M, Hammouri AI, Alzubi OA. Cognitively Enhanced Versions of Capuchin Search Algorithm for Feature Selection in Medical Diagnosis: a COVID-19 Case Study. Cognit Comput 2023:1-38. [PMID: 37362196 PMCID: PMC10241154 DOI: 10.1007/s12559-023-10149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot of attention from researchers working in machine learning and data mining. It is broadly employed in many different applications. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the performance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed methods in exploring the feature space and selecting the most useful features for classification studies.
Collapse
Affiliation(s)
- Malik Braik
- Department of Computer Science, Al-Balqa Applied University, Salt, Jordan
| | - Mohammed A. Awadallah
- Department of Computer Science, Al-Aqsa University, P.O. Box 4051, Gaza, Palestine
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
- Department of Information Technology, Al-Huson University College, Al-Balqa Applied University, Al-Huson, Irbid, Jordan
| | | | - Omar A. Alzubi
- Department of Computer Science, Al-Balqa Applied University, Salt, Jordan
| |
Collapse
|
12
|
Wang T, Nie Z, Wang R, Xu Q, Huang H, Xu H, Xie F, Liu XJ. PneuNet: deep learning for COVID-19 pneumonia diagnosis on chest X-ray image analysis using Vision Transformer. Med Biol Eng Comput 2023; 61:1395-1408. [PMID: 36719562 PMCID: PMC9887581 DOI: 10.1007/s11517-022-02746-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023]
Abstract
A long-standing challenge in pneumonia diagnosis is recognizing the pathological lung texture, especially the ground-glass appearance pathological texture. One main difficulty lies in precisely extracting and recognizing the pathological features. The patients, especially those with mild symptoms, show very little difference in lung texture, neither conventional computer vision methods nor convolutional neural networks perform well on pneumonia diagnosis based on chest X-ray (CXR) images. In the meanwhile, the Coronavirus Disease 2019 (COVID-19) pandemic continues wreaking havoc around the world, where quick and accurate diagnosis backed by CXR images is in high demand. Rather than simply recognizing the patterns, extracting feature maps from the original CXR image is what we need in the classification process. Thus, we propose a Vision Transformer (VIT)-based model called PneuNet to make an accurate diagnosis backed by channel-based attention through X-ray images of the lung, where multi-head attention is applied on channel patches rather than feature patches. The techniques presented in this paper are oriented toward the medical application of deep neural networks and VIT. Extensive experiment results show that our method can reach 94.96% accuracy in the three-categories classification problem on the test set, which outperforms previous deep learning models.
Collapse
Affiliation(s)
- Tianmu Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
- Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084 China
| | - Zhenguo Nie
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
- Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084 China
| | - Ruijing Wang
- School of System & Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030 USA
| | - Qingfeng Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
- National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100060 China
| | - Hongshi Huang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, 100091 China
| | - Handing Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
- Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084 China
| | - Fugui Xie
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
- Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084 China
| | - Xin-Jun Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
- Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
13
|
Lai J, Chen Z, Zhu J, Ma W, Gan L, Xie S, Li G. Deep Learning Based Traffic Prediction Method for Digital Twin Network. Cognit Comput 2023; 15:1-19. [PMID: 37362198 PMCID: PMC10220339 DOI: 10.1007/s12559-023-10136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/18/2023] [Indexed: 06/28/2023]
Abstract
Network traffic prediction (NTP) can predict future traffic leveraging historical data, which serves as proactive methods for network resource planning, allocation, and management. Besides, NTP can also be applied for load generation in simulated and emulated as well as digital twin networks (DTNs). This paper focuses on accurately predicting background traffic matrix (TM) of typical local area network (LAN) for traffic synchronization in DTN. A survey is firstly conducted on DTN, conventional model, and deep learning based NTP methods. Then, as the major contribution, a linear feature enhanced convolutional long short-term memory (ConvLSTM) model based NTP method is proposed for LAN. An autoregressive unit is integrated into the ConvLSTM model to improve its linear prediction ability. In addition, this paper further optimizes the proposed model from both spatial and channel-wise dimensions. Particularly, a traffic pattern attention (TPA) block and a squeeze & excitation (SE) block are derived and added to the enhanced ConvLSTM (eConvLSTM) model. Comparative experiments demonstrate that the eConvLSTM model outperforms all the baselines. It can improve the prediction accuracy by reducing the mean square error (MSE) up to 10.6% for one-hop prediction and 16.8% for multi-hops prediction, compared to the legacy CovnLSTM model, with still satisfying the efficiency requirements. The further enhancement of the eConvLSTM model can additionally reduce the MSE about 2.1% for one-hop prediction and 4.2% for multi-hops prediction, with slightly degrading efficiency. The proposed eConvLSTM model based NTP method can play a vital role on DTN traffic synchronization.
Collapse
Affiliation(s)
- Junyu Lai
- School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Zhiyong Chen
- School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Junhong Zhu
- School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Wanyi Ma
- School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Lianqiang Gan
- School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Siyu Xie
- School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Gun Li
- School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731 China
| |
Collapse
|
14
|
Li L, Qin J, Lv L, Cheng M, Wang B, Xia D, Wang S. ICUnet++: an Inception-CBAM network based on Unet++ for MR spine image segmentation. INT J MACH LEARN CYB 2023; 14:1-13. [PMID: 37360883 PMCID: PMC10208197 DOI: 10.1007/s13042-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
In recent years, more attention paid to the spine caused by related diseases, spinal parsing (the multi-class segmentation of vertebrae and intervertebral disc) is an important part of the diagnosis and treatment of various spinal diseases. The more accurate the segmentation of medical images, the more convenient and quick the clinicians can evaluate and diagnose spinal diseases. Traditional medical image segmentation is often time consuming and energy consuming. In this paper, an efficient and novel automatic segmentation network model for MR spine images is designed. The proposed Inception-CBAM Unet++ (ICUnet++) model replaces the initial module with the Inception structure in the encoder-decoder stage base on Unet++ , which uses the parallel connection of multiple convolution kernels to obtain the features of different receptive fields during in the feature extraction. According to the characteristics of the attention mechanism, Attention Gate module and CBAM module are used in the network to make the attention coefficient highlight the characteristics of the local area. To evaluate the segmentation performance of network model, four evaluation metrics, namely intersection over union (IoU), dice similarity coefficient(DSC), true positive rate(TPR), positive predictive value(PPV) are used in the study. The published SpineSagT2Wdataset3 spinal MRI dataset is used during the experiments. In the experiment results, IoU reaches 83.16%, DSC is 90.32%, TPR is 90.40%, and PPV is 90.52%. It can be seen that the segmentation indicators have been significantly improved, which reflects the effectiveness of the model.
Collapse
Affiliation(s)
- Lei Li
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
| | - Juan Qin
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
| | - Lianrong Lv
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
| | - Mengdan Cheng
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
| | - Biao Wang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
| | - Dan Xia
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
| | - Shike Wang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384 China
| |
Collapse
|
15
|
De A, Wang X, Zhang Q, Wu J, Cong F. An efficient memory reserving-and-fading strategy for vector quantization based 3D brain segmentation and tumor extraction using an unsupervised deep learning network. Cogn Neurodyn 2023; 18:1-22. [PMID: 37362765 PMCID: PMC10132803 DOI: 10.1007/s11571-023-09965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/28/2023] Open
Abstract
Deep learning networks are state-of-the-art approaches for 3D brain image segmentation, and the radiological characteristics extracted from tumors are of great significance for clinical diagnosis, treatment planning, and treatment outcome evaluation. However, two problems have been the hindering factors in brain image segmentation techniques. One is that deep learning networks require large amounts of manually annotated data. Another issue is the computational efficiency of 3D deep learning networks. In this study, we propose a vector quantization (VQ)-based 3D segmentation method that employs a novel unsupervised 3D deep embedding clustering (3D-DEC) network and an efficiency memory reserving-and-fading strategy. The VQ-based 3D-DEC network is trained on volume data in an unsupervised manner to avoid manual data annotation. The memory reserving-and-fading strategy beefs up model efficiency greatly. The designed methodology makes deep learning-based model feasible for biomedical image segmentation. The experiment is divided into two parts. First, we extensively evaluate the effectiveness and robustness of the proposed model on two authoritative MRI brain tumor databases (i.e., IBSR and BrainWeb). Second, we validate the model using real 3D brain tumor data collected from our institute for clinical practice significance. Results show that our method (without data manual annotation) has superior accuracy (0.74 ± 0.04 Tanimoto coefficient on IBSR, 97.5% TP and 97.7% TN on BrainWeb, and 91% Dice, 88% sensitivity and 87% specificity on real brain data) and remarkable efficiency (speedup ratio is 18.72 on IBSR, 31.16 on BrainWeb, 31.00 on real brain data) compared to the state-of-the-art methods. The results show that our proposed model can address the lacks of manual annotations, and greatly increase computation speedup with competitive segmentation accuracy compared to other state-of-the-art 3D CNN models. Moreover, the proposed model can be used for tumor treatment follow-ups every 6 months, providing critical details for surgical and postoperative treatment by correctly extracting numerical radiomic features of tumors.
Collapse
Affiliation(s)
- Ailing De
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116000 Liaoning China
| | - Xiulin Wang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116000 Liaoning China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116000 Liaoning China
| | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116000 Liaoning China
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116000 Liaoning China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116000 Liaoning China
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
- School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116000 Liaoning China
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116000 Liaoning China
| |
Collapse
|
16
|
Chen Y, Xia R, Zou K, Yang K. RNON: image inpainting via repair network and optimization network. INT J MACH LEARN CYB 2023; 14:1-17. [PMID: 37360881 PMCID: PMC10038775 DOI: 10.1007/s13042-023-01811-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/23/2023] [Indexed: 06/28/2023]
Abstract
In the last few years, image inpainting methods based on deep learning models had shown obvious advantages compared with existing traditional methods. The former can better generate visually reasonable image structure and texture information. However, the existing premier convolutional neural networks methods usually causes the problems of excessive color difference and image texture loss and distortion phenomenon. The paper has proposed an effective image inpainting method using generative adversarial networks, which is composed of two mutually independent generative confrontation networks. Among them, the image repair network module aims to solve the problem of repairing the irregular missing areas of the image, and its generator is based on a partial convolutional network. The image optimization network module aims to solve the problem of local chromatic aberration in the repaired images, and its generator has based on deep residual networks. Through the synergy of the two network modules, the visual effect and image quality of the images has improved. The experimental results can show that the proposed method (RNON) performs better from comparisons of qualitative and quantitative evaluations with state-of-the-arts in image inpainting quality field.
Collapse
Affiliation(s)
- Yuantao Chen
- School of Computer Science and Engineering, Hunan University of Information Technology, Changsha, Hunan China
| | - Runlong Xia
- Mountain Yuelu Breeding Innovation Center Limited, Changsha, China
- Is Also With Hunan Provincial Science and Technology Affairs Center, Changsha, China
| | - Ke Zou
- Hunan WUJO High-Tech Material Corporation Limited, Loudi, China
| | - Kai Yang
- Hunan ZOOMLION Intelligent Technology Corporation Limited, Changsha, China
| |
Collapse
|
17
|
Bhosale YH, Patnaik KS. Bio-medical imaging (X-ray, CT, ultrasound, ECG), genome sequences applications of deep neural network and machine learning in diagnosis, detection, classification, and segmentation of COVID-19: a Meta-analysis & systematic review. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-54. [PMID: 37362676 PMCID: PMC10015538 DOI: 10.1007/s11042-023-15029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
This review investigates how Deep Machine Learning (DML) has dealt with the Covid-19 epidemic and provides recommendations for future Covid-19 research. Despite the fact that vaccines for this epidemic have been developed, DL methods have proven to be a valuable asset in radiologists' arsenals for the automated assessment of Covid-19. This detailed review debates the techniques and applications developed for Covid-19 findings using DL systems. It also provides insights into notable datasets used to train neural networks, data partitioning, and various performance measurement metrics. The PRISMA taxonomy has been formed based on pretrained(45 systems) and hybrid/custom(17 systems) models with radiography modalities. A total of 62 systems with respect to X-ray(32), CT(19), ultrasound(7), ECG(2), and genome sequence(2) based modalities as taxonomy are selected from the studied articles. We originate by valuing the present phase of DL and conclude with significant limitations. The restrictions contain incomprehensibility, simplification measures, learning from incomplete labeled data, and data secrecy. Moreover, DML can be utilized to detect and classify Covid-19 from other COPD illnesses. The proposed literature review has found many DL-based systems to fight against Covid19. We expect this article will assist in speeding up the procedure of DL for Covid-19 researchers, including medical, radiology technicians, and data engineers.
Collapse
Affiliation(s)
- Yogesh H. Bhosale
- Computer Science and Engineering Department, Birla Institute of Technology, Mesra, Ranchi, India
| | - K. Sridhar Patnaik
- Computer Science and Engineering Department, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
18
|
Bhosale YH, Patnaik KS. PulDi-COVID: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest X-ray images to minimize severity and mortality rates. Biomed Signal Process Control 2023; 81:104445. [PMID: 36466567 PMCID: PMC9708623 DOI: 10.1016/j.bspc.2022.104445] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/10/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
Abstract
Background and Objective In the current COVID-19 outbreak, efficient testing of COVID-19 individuals has proven vital to limiting and arresting the disease's accelerated spread globally. It has been observed that the severity and mortality ratio of COVID-19 affected patients is at greater risk because of chronic pulmonary diseases. This study looks at radiographic examinations exploiting chest X-ray images (CXI), which have become one of the utmost feasible assessment approaches for pulmonary disorders, including COVID-19. Deep Learning(DL) remains an excellent image classification method and framework; research has been conducted to predict pulmonary diseases with COVID-19 instances by developing DL classifiers with nine class CXI. However, a few claim to have strong prediction results; because of noisy and small data, their recommended DL strategies may suffer from significant deviation and generality failures. Methods Therefore, a unique CNN model(PulDi-COVID) for detecting nine diseases (atelectasis, bacterial-pneumonia, cardiomegaly, covid19, effusion, infiltration, no-finding, pneumothorax, viral-Pneumonia) using CXI has been proposed using the SSE algorithm. Several transfer-learning models: VGG16, ResNet50, VGG19, DenseNet201, MobileNetV2, NASNetMobile, ResNet152V2, DenseNet169 are trained on CXI of chronic lung diseases and COVID-19 instances. Given that the proposed thirteen SSE ensemble models solved DL's constraints by making predictions with different classifiers rather than a single, we present PulDi-COVID, an ensemble DL model that combines DL with ensemble learning. The PulDi-COVID framework is created by incorporating various snapshots of DL models, which have spearheaded chronic lung diseases with COVID-19 cases identification process with a deep neural network produced CXI by applying a suggested SSE method. That is familiar with the idea of various DL perceptions on different classes. Results PulDi-COVID findings were compared to thirteen existing studies for nine-class classification using COVID-19. Test results reveal that PulDi-COVID offers impressive outcomes for chronic diseases with COVID-19 identification with a 99.70% accuracy, 98.68% precision, 98.67% recall, 98.67% F1 score, lowest 12 CXIs zero-one loss, 99.24% AUC-ROC score, and lowest 1.33% error rate. Overall test results are superior to the existing Convolutional Neural Network(CNN). To the best of our knowledge, the observed results for nine-class classification are significantly superior to the state-of-the-art approaches employed for COVID-19 detection. Furthermore, the CXI that we used to assess our algorithm is one of the larger datasets for COVID detection with pulmonary diseases. Conclusion The empirical findings of our suggested approach PulDi-COVID show that it outperforms previously developed methods. The suggested SSE method with PulDi-COVID can effectively fulfill the COVID-19 speedy detection needs with different lung diseases for physicians to minimize patient severity and mortality.
Collapse
Affiliation(s)
- Yogesh H Bhosale
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - K Sridhar Patnaik
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
19
|
Ho ML, Arnold CW, Decker SJ, Hazle JD, Krupinski EA, Mankoff DA. Institutional Strategies to Maintain and Grow Imaging Research During the COVID-19 Pandemic. Acad Radiol 2023; 30:631-639. [PMID: 36764883 PMCID: PMC9816088 DOI: 10.1016/j.acra.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023]
Abstract
Understanding imaging research experiences, challenges, and strategies for academic radiology departments during and after COVID-19 is critical to prepare for future disruptive events. We summarize key insights and programmatic initiatives at major academic hospitals across the world, based on literature review and meetings of the Radiological Society of North America Vice Chairs of Research (RSNA VCR) group. Through expert discussion and case studies, we provide suggested guidelines to maintain and grow radiology research in the postpandemic era.
Collapse
Affiliation(s)
- Mai-Lan Ho
- Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio.
| | | | | | - John D. Hazle
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
20
|
Pendharkar PC. A Radial Basis Function Neural Network for Stochastic Frontier Analyses of General Multivariate Production and Cost Functions. Neural Process Lett 2023; 55:1-22. [PMID: 36624804 PMCID: PMC9815069 DOI: 10.1007/s11063-022-11137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Production function techniques often impose functional form and other restrictions that limit their applicability. One common limitation in popular production function techniques is the requirement that all inputs and outputs must be positive numbers. There is a need to develop a production function analysis technique that is less restrictive in the assumptions it makes, and inputs it can process. This paper proposes such a general technique by linking fields of neural networks and econometrics. Specifically, two radial basis function (RBF) neural networks are proposed for stochastic production and cost frontier analyses. The functional forms of production and cost functions are considered unknown except that they are multivariate. Using simulated and real-world datasets, experiments are performed, and results are provided. The results illustrate that the proposed technique has broad applicability and performs equal to or better than the traditional stochastic frontier analysis technique.
Collapse
Affiliation(s)
- Parag C. Pendharkar
- School of Business Administration, Pennsylvania State University at Harrisburg, 777 West Harrisburg Pike, Middletown, PA 17057 USA
| |
Collapse
|