1
|
Tasca CI, Zuccarini M, Di Iorio P, Ciruela F. Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? Purinergic Signal 2024:10.1007/s11302-024-10033-y. [PMID: 39004650 DOI: 10.1007/s11302-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
Collapse
Affiliation(s)
- Carla Inês Tasca
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Laboratory of Neurochemistry-4, Neuroscience Program/Biochemistry Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907L'Hospitalet de Llobregat, Bellvitge, Spain
| |
Collapse
|
2
|
Constantino LC, Pamplona FA, Matheus FC, de Carvalho CR, Ludka FK, Massari CM, Boeck CR, Prediger RD, Tasca CI. Functional interplay between adenosine A 2A receptor and NMDA preconditioning in fear memory and glutamate uptake in the mice hippocampus. Neurobiol Learn Mem 2021; 180:107422. [PMID: 33691195 DOI: 10.1016/j.nlm.2021.107422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
N-methyl D-aspartate (NMDA) administered at subtoxic dose plays a protective role against neuronal excitotoxicity, a mechanism described as preconditioning. Since the activation of adenosinergic receptors influences the achievement of NMDA preconditioning in the hippocampus, we evaluated the potential functional interplay between adenosine A1 and A2A receptors (A1R and A2AR) activities and NMDA preconditioning. Adult male Swiss mice received saline (NaCl 0.9 g%, i.p.) or a nonconvulsant dose of NMDA (75 mg/kg, i.p.) and 24 h later they were treated with the one of the ligands: A1R agonist (CCPA, 0.2 mg/kg, i.p.) or antagonist (DPCPX, 3 mg/kg, i.p.), A2AR agonist (CGS21680, 0.05 mg/kg, i.p.) or antagonist (ZM241385, 0.1 mg/kg, i.p.) and subjected to contextual fear conditioning task. Binding properties and content of A2AR and glutamate uptake were assessed in the hippocampus of mice subjected to NMDA preconditioning. Treatment with CGS21680 increased the time of freezing during the exposure of animals to the new environment. NMDA preconditioning did not affect the freezing time of mice per se, but it prevented the response observed after the activation of A2AR. Furthermore, the activation of A2AR by CGS21680 after the preconditioning blocked the increase of glutamate uptake induced by NMDA preconditioning. The immunodetection of A2AR in total hippocampal homogenates showed no significant differences evoked by NMDA preconditioning and did not alter A2AR maximum binding for the selective ligand [3H]CGS21680. These results demonstrate changes in A2AR functionality in mice following NMDA preconditioning.
Collapse
Affiliation(s)
- Leandra C Constantino
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Fabrício A Pamplona
- Instituto Latino-Americano de Ciências da Vida e Saúde, Universidade Federal da Integração Latino-Americana (UNILA), Brazil
| | - Filipe C Matheus
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Cristiane R de Carvalho
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabiana K Ludka
- Curso de Farmácia, Universidade do Contestado, Canoinhas, SC, Brazil
| | - Caio M Massari
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carina R Boeck
- Programa de Pós-graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria, RS, Brazil
| | - Rui D Prediger
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
3
|
Thomaz DT, Andreguetti RR, Binder LB, Scheffer DDL, Corrêa AW, Silva FRMB, Tasca CI. Guanosine Neuroprotective Action in Hippocampal Slices Subjected to Oxygen and Glucose Deprivation Restores ATP Levels, Lactate Release and Glutamate Uptake Impairment: Involvement of Nitric Oxide. Neurochem Res 2020; 45:2217-2229. [PMID: 32666283 DOI: 10.1007/s11064-020-03083-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Stroke is a major cause of disability and death worldwide. Oxygen and glucose deprivation (OGD) in brain tissue preparations can reproduce several pathological features induced by stroke providing a valuable ex vivo protocol for studying the mechanism of action of neuroprotective agents. Guanosine, an endogenous guanine nucleoside, promotes neuroprotection in vivo and in vitro models of neurotoxicity. We previously showed that guanosine protective effect was mimicked by inhibition of nitric oxide synthases (NOS) activity. This study was designed to investigate the involvement of nitric oxide (NO) in the mechanisms related to the protective role of guanosine in rat hippocampal slices subjected to OGD followed by reoxygenation (OGD/R). Guanosine (100 μM) and the pan-NOS inhibitor, L-NAME (1 mM) afforded protection to hippocampal slices subjected to OGD/R. The presence of NO donors, DETA-NO (800 μM) or SNP (5 μM) increased reactive species production, and abolished the protective effect of guanosine or L-NAME against OGD/R. Guanosine or L-NAME treatment prevented the impaired ATP production, lactate release, and glutamate uptake following OGD/R. The presence of a NO donor also abolished the beneficial effects of guanosine or L-NAME on bioenergetics and glutamate uptake. These results showed, for the first time, that guanosine may regulate cellular bioenergetics in hippocampal slices subjected to OGD/R injury by a mechanism that involves the modulation of NO levels.
Collapse
Affiliation(s)
- Daniel Tonial Thomaz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rafaela Rafognatto Andreguetti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Luisa Bandeira Binder
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora da Luz Scheffer
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alisson Willms Corrêa
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carla Inês Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil. .,Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil. .,Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Latini A, de Bortoli da Silva L, da Luz Scheffer D, Pires ACS, de Matos FJ, Nesi RT, Ghisoni K, de Paula Martins R, de Oliveira PA, Prediger RD, Ghersi M, Gabach L, Pérez MF, Rubiales-Barioglio S, Raisman-Vozari R, Mongeau R, Lanfumey L, Aguiar AS. Tetrahydrobiopterin improves hippocampal nitric oxide-linked long-term memory. Mol Genet Metab 2018; 125:104-111. [PMID: 29935801 DOI: 10.1016/j.ymgme.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/09/2018] [Accepted: 06/09/2018] [Indexed: 11/24/2022]
Abstract
Tetrahydrobiopterin (BH4) is synthesized by the combined action of three metabolic pathways, namely de novo synthesis, recycling, and salvage pathways. The best-known function of BH4 is its mandatory action as a natural cofactor of the aromatic amino acid hydroxylases and nitric oxide synthases. Thus, BH4 is essential for the synthesis of nitric oxide, a retrograde neurotransmitter involved in learning and memory. We investigated the effect of BH4 (4-4000 pmol) intracerebroventricular administration on aversive memory, and on BH4 metabolism in the hippocampus of rodents. Memory-related behaviors were assessed in Swiss and C57BL/6 J mice, and in Wistar rats. It was consistently observed across all rodent species that BH4 facilitates aversive memory acquisition and consolidation by increasing the latency to step-down in the inhibitory avoidance task. This effect was associated with a reduced threshold to generate hippocampal long-term potentiation process. In addition, two inhibitors of memory formation (N(ω)-nitro-L-arginine methyl ester - L-Name - and dizocilpine - MK-801 -) blocked the enhanced effect of BH4 on memory, while the amnesic effect was not rescue by the co-administration of BH4 or a cGMP analog (8-Br-cGMP). The data strongly suggest that BH4 enhances aversive memory by activating the glutamatergic neurotransmission and the retrograde activity of NO. It was also demonstrated that BH2 can be converted into BH4 by activating the BH4 salvage pathway under physiological conditions in the hippocampus. This is the first evidence showing that BH4 enhances aversive memory and that the BH4 salvage pathway is active in the hippocampus.
Collapse
Affiliation(s)
- Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Lucila de Bortoli da Silva
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ananda Christina Staats Pires
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe José de Matos
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Renata T Nesi
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karina Ghisoni
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Roberta de Paula Martins
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Paulo Alexandre de Oliveira
- LEXDON, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rui D Prediger
- LEXDON, Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marisa Ghersi
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Gabach
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariela Fernanda Pérez
- Facultad de Ciencias Químicas, CIBICI, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - Rita Raisman-Vozari
- Institut de Cerveau et de la Moelle Epinière, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Raymond Mongeau
- Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie, Université Paris Descartes, EA4475, France
| | - Laurence Lanfumey
- Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie, Université Paris Descartes, EA4475, France
| | - Aderbal Silva Aguiar
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
| |
Collapse
|
5
|
Oliveira KA, Dal-Cim TA, Lopes FG, Nedel CB, Tasca CI. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells. Purinergic Signal 2017; 13:305-318. [PMID: 28536931 DOI: 10.1007/s11302-017-9562-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A1R and A2AR) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.
Collapse
Affiliation(s)
- Karen A Oliveira
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tharine A Dal-Cim
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Flávia G Lopes
- Departamento de Biologia Celular, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cláudia B Nedel
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil.,Departamento de Biologia Celular, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Carla Inês Tasca
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, Brazil. .,Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
6
|
Oliveira KA, Dal-Cim T, Lopes FG, Ludka FK, Nedel CB, Tasca CI. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells. Mol Neurobiol 2017; 55:1509-1523. [PMID: 28181188 DOI: 10.1007/s12035-017-0423-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/25/2017] [Indexed: 12/13/2022]
Abstract
Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.
Collapse
Affiliation(s)
- Karen A Oliveira
- Programa de Pós-Graduação em Bioquímica, Florianópolis, Brazil
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900, Florianópolis, Brazil
| | - Tharine Dal-Cim
- Programa de Pós-Graduação em Neurociências, Florianópolis, Brazil
| | - Flávia G Lopes
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Fabiana K Ludka
- Programa de Pós-Graduação em Bioquímica, Florianópolis, Brazil
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900, Florianópolis, Brazil
- Curso de Farmácia, Universidade do Contestado, Canoinhas, Brazil
| | - Cláudia B Nedel
- Programa de Pós-Graduação em Neurociências, Florianópolis, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Carla I Tasca
- Programa de Pós-Graduação em Bioquímica, Florianópolis, Brazil.
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040900, Florianópolis, Brazil.
- Programa de Pós-Graduação em Neurociências, Florianópolis, Brazil.
| |
Collapse
|
7
|
Guanosine Prevents Anhedonic-Like Behavior and Impairment in Hippocampal Glutamate Transport Following Amyloid-β1–40 Administration in Mice. Mol Neurobiol 2016; 54:5482-5496. [DOI: 10.1007/s12035-016-0082-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
|
8
|
Di Liberto V, Mudò G, Garozzo R, Frinchi M, Fernandez-Dueñas V, Di Iorio P, Ciccarelli R, Caciagli F, Condorelli DF, Ciruela F, Belluardo N. The Guanine-Based Purinergic System: The Tale of An Orphan Neuromodulation. Front Pharmacol 2016; 7:158. [PMID: 27378923 PMCID: PMC4911385 DOI: 10.3389/fphar.2016.00158] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022] Open
Abstract
Guanine-based purines (GBPs) have been recently proposed to be not only metabolic agents but also extracellular signaling molecules that regulate important functions in the central nervous system. In such way, GBPs-mediated neuroprotection, behavioral responses and neuronal plasticity have been broadly described in the literature. However, while a number of these functions (i.e., GBPs neurothophic effects) have been well-established, the molecular mechanisms behind these GBPs-dependent effects are still unknown. Furthermore, no plasma membrane receptors for GBPs have been described so far, thus GBPs are still considered orphan neuromodulators. Interestingly, an intricate and controversial functional interplay between GBPs effects and adenosine receptors activity has been recently described, thus triggering the hypothesis that GBPs mechanism of action might somehow involve adenosine receptors. Here, we review recent data describing the GBPs role in the brain. We focus on the involvement of GBPs regulating neuronal plasticity, and on the new hypothesis based on putative GBPs receptors. Overall, we expect to shed some light on the GBPs world since although these molecules might represent excellent candidates for certain neurological diseases management, the lack of putative GBPs receptors precludes any high throughput screening intent for the search of effective GBPs-based drugs.
Collapse
Affiliation(s)
- Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Roberta Garozzo
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania Catania, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| | - Víctor Fernandez-Dueñas
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Bellvitge Biomedical Research Institute, Institute of Neurosciences, University of Barcelona Barcelona, Spain
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotecnological Sciences, University of Chieti-Pescara Chieti, Italy
| | - Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Unit of Medical Biochemistry, University of Catania Catania, Italy
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Bellvitge Biomedical Research Institute, Institute of Neurosciences, University of Barcelona Barcelona, Spain
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo Palermo, Italy
| |
Collapse
|
9
|
Atorvastatin Prevents Glutamate Uptake Reduction Induced by Quinolinic Acid Via MAPKs Signaling. Neurochem Res 2016; 41:2017-28. [DOI: 10.1007/s11064-016-1913-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
10
|
Atorvastatin Prevents Cognitive Deficits Induced by Intracerebroventricular Amyloid-β1–40 Administration in Mice: Involvement of Glutamatergic and Antioxidant Systems. Neurotox Res 2015; 28:32-42. [DOI: 10.1007/s12640-015-9527-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/12/2015] [Accepted: 03/19/2015] [Indexed: 12/12/2022]
|
11
|
Constantino LC, Pamplona FA, Matheus FC, Ludka FK, Gomez-Soler M, Ciruela F, Boeck CR, Prediger RD, Tasca CI. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain. Behav Brain Res 2015; 282:103-10. [DOI: 10.1016/j.bbr.2014.12.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 12/20/2022]
|
12
|
N-Methyl-d-aspartate Preconditioning Prevents Quinolinic Acid-Induced Deregulation of Glutamate and Calcium Homeostasis in Mice Hippocampus. Neurotox Res 2014; 27:118-28. [DOI: 10.1007/s12640-014-9496-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
13
|
Zeni ALB, Vandresen-Filho S, Dal-Cim T, Martins WC, Bertoldo DB, Maraschin M, Tasca CI. Aloysia gratissima prevents cellular damage induced by glutamatergic excitotoxicity. J Pharm Pharmacol 2014; 66:1294-302. [DOI: 10.1111/jphp.12250] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/02/2014] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Aloysia gratissima aqueous extract (AE) was investigated as a putative protective agent against quinolinic acid (QA)-induced seizures in mice and hippocampal cell damage. Additionally, AE and ferulic acid (FA), the major compound of AE, were tested against neurotoxicity evoked by glutamate or its N-methyl-D-aspartate receptor (NMDAR) agonist, QA on hippocampal slices, in vitro.
Methods
Mice were treated with AE before QA infusion (36.8 nmol/site) and seizures were analysed. Cellular viability and modulation of excitatory amino acid transport were verified in hippocampal slices. In-vitro AE or FA was tested against neurotoxicity induced by glutamate or QA.
Key findings
AE did not prevent QA-induced seizures; however, it prevented cellular death and disruption of excitatory amino acid transport. In-vitro AE (0.1 or 1.0 mg/ml) or FA (1 or 10 μm), improved cell viability against citotoxicity exerted by glutamate or QA, respectively. Both AE and FA have protective effects depending on activation of the phosphatidylinositol-3 kinase (PI3K) signalling pathway.
Conclusions
AE attenuated QA-induced cell damage possibly involving the glutamate transport modulation through NMDAR interaction. FA shows a similar profile of neuroprotection promoted by AE. Therefore, AE treatment might be a useful strategy in preventing brain damage caused by exacerbation of glutamatergic toxicity in nervous system disorders.
Collapse
Affiliation(s)
- Ana L B Zeni
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Department of Natural Sciences, Natural and Exact Sciences Center, Regional University of Blumenau, Blumenau, Santa Catarina, Brazil
| | - Samuel Vandresen-Filho
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Department of Basic Sciences in Health, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Tharine Dal-Cim
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Wagner C Martins
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniela B Bertoldo
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Maraschin
- Department of Plant Morphogenesis and Biochemistry Laboratory, Plant Science Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carla I Tasca
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
14
|
Vandresen-Filho S, Martins WC, Bertoldo DB, Mancini G, Herculano BA, de Bem AF, Tasca CI. Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurochem Int 2013; 62:948-55. [DOI: 10.1016/j.neuint.2013.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
|
15
|
Duarte FS, Duzzioni M, Hoeller AA, Silva NM, Ern AL, Piermartiri TC, Tasca CI, Gavioli EC, Lemos T, Carobrez AP, De Lima TCM. Anxiogenic-like profile of Wistar adult rats based on the pilocarpine model: an animal model for trait anxiety? Psychopharmacology (Berl) 2013; 227:209-19. [PMID: 23274504 DOI: 10.1007/s00213-012-2951-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/09/2012] [Indexed: 12/19/2022]
Abstract
RATIONALE There is extensive evidence indicating the influence of seizures on emotional responses observed in human and animals, but so far few studies are focusing on the behavioral profile of animals that do not have seizures despite being treated with convulsant agents. OBJECTIVES We aimed to establish the behavioral profile, biochemical, and electrographic features of rats submitted to the pilocarpine model of temporal lobe epilepsy METHODS Rats treated with pilocarpine (20 to 350 mg/kg, i.p.) that did not develop status epilepticus or spontaneous recurrent seizures were evaluated 1 month later in the elevated plus maze (EPM), T-maze (ETM), open-field (OF), and step-down avoidance tests. Electroencephalographic (EEG), glutamate uptake, and hippocampal neuronal death assays were also performed RESULTS Pilocarpine (150 or 350 mg/kg) promoted anxiogenic-like effects in rats evaluated in the EPM, ETM, and OF tests, whereas only the highest dose evoked spike-wave discharges during EEG recordings. Hippocampal theta rhythm was increased by pilocarpine 150 or 350 mg/kg and only the highest dose reduced the L-[(3)H]-glutamate uptake and cell viability on hippocampal slices. CONCLUSIONS Subconvulsant doses of pilocarpine promote long-lasting alterations on neural circuitry, reflected by an increased theta activity in the hippocampus and an anxiety-like profile of rats evaluated 1 month after the treatment which is independent of seizure occurrence and is not related to changes in glutamate uptake or hippocampal damage. These results prompt us to suggest that a systemic administration of subconvulsant doses of pilocarpine could be useful as a new tool to model trait anxiety in rats.
Collapse
Affiliation(s)
- Filipe S Duarte
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dal-Cim T, Molz S, Egea J, Parada E, Romero A, Budni J, Martín de Saavedra MD, Barrio LD, Tasca CI, López MG. Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. Neurochem Int 2012; 61:397-404. [DOI: 10.1016/j.neuint.2012.05.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 05/17/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022]
|
17
|
Dobrachinski F, Bastos LL, Bridi JC, Corte CLD, de Ávila DS, da Rocha JBT, Soares FAA. Cooperation of non-effective concentration of glutamatergic system modulators and antioxidant against oxidative stress induced by quinolinic acid. Neurochem Res 2012; 37:1993-2003. [PMID: 22674085 DOI: 10.1007/s11064-012-0820-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 01/09/2023]
Abstract
Excessive formation of reactive oxygen species (ROS) and disruption of glutamate uptake have been hypothesized as key mechanisms contributing to quinolinic acid (QA)-induced toxicity. Thus, here we investigate if the use of diphenyl diselenide (PhSe)(2), guanosine (GUO) and MK-801, alone or in combination, could protect rat brain slices from QA-induced toxicity. QA (1 mM) increased ROS formation, thiobarbituric acid reactive substances (TBARS) and decreased cell viability after 2 h of exposure. (PhSe)(2) (1 μM) protected against this ROS formation in the cortex and the striatum and also prevented decreases in cell viability induced by QA. (PhSe)(2) (5 μM) prevented ROS formation in the hippocampus. GUO (10 and 100 μM) blocked the increase in ROS formation caused by QA and MK-801 (20 and 100 μM) abolished the pro-oxidant effect of QA. When the noneffective concentrations were used in combination produced a decrease in ROS formation, mainly (PhSe)(2) + GUO and (PhSe)(2) + GUO + MK-801. These results demonstrate that this combination could be effective to avoid toxic effects caused by high concentrations of QA. Furthermore, the data obtained in the ROS formation and cellular viability assays suggest different pathways in amelioration of QA toxicity present in the neurodegenerative process.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS CEP 97105-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mech Ageing Dev 2011; 132:560-7. [PMID: 21983475 DOI: 10.1016/j.mad.2011.09.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 01/06/2023]
Abstract
In the present study, we investigated whether mild-intensity physical exercise represents a successful strategy to enhance spatial learning and memory and hippocampal plasticity in aging rats, as previously described for long-term exposure to running wheel or treadmill exercise. Aging Wistar rats were submitted to short bouts (4-6 min) of exercise treadmill during five consecutive weeks. This mild-intensity exercise program increased muscle oxygen consumption by soleus and heart in aging rats and reversed age-related long-term spatial learning and memory impairments evaluated in the water maze and step-down inhibitory avoidance tasks. Remarkably, the observed cognitive-enhancing properties of short bouts of exercise were accompanied by the activation of serine/threonine protein kinase (AKT) and cAMP response element binding (CREB) pro-survival signaling that culminates in the marked increase on the brain-derived neurotrophic factor (BDNF) mRNA expression and BDNF protein levels on the hippocampus of aging rats. Altogether, these results indicate that short bouts of exercise represent a viable behavioral strategy to improve cognition and synaptic plasticity in aging rats which should be taken into account in further studies addressing the effects of physical exercise in aging subjects.
Collapse
|
19
|
Ganzella M, Moreira JD, Almeida RF, Böhmer AE, Saute JAM, Holmseth S, Souza DO. Effects of 3 weeks GMP oral administration on glutamatergic parameters in mice neocortex. Purinergic Signal 2011; 8:49-58. [PMID: 21881961 DOI: 10.1007/s11302-011-9258-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022] Open
Abstract
Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.
Collapse
Affiliation(s)
- Marcelo Ganzella
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, 90035-003, Porto Alegre, RS, Brazil,
| | | | | | | | | | | | | |
Collapse
|
20
|
Bicca MA, Figueiredo CP, Piermartiri TC, Meotti FC, Bouzon ZL, Tasca CI, Medeiros R, Calixto JB. The selective and competitive N-methyl-D-aspartate receptor antagonist, (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-β in mice. Neuroscience 2011; 192:631-41. [PMID: 21756976 DOI: 10.1016/j.neuroscience.2011.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
The toxicity of amyloid β (Aβ) is highly associated with Alzheimer's disease (AD), which has a high incidence in elderly people worldwide. While the current treatment for moderate and severe AD includes blockage of the N-methyl-d-aspartate receptor (NMDAR), the molecular mechanisms of its effect are still poorly understood. Herein, we report that a single i.p. administration of the selective and competitive (NMDAR) antagonist LY235959 reduced Aβ neurotoxicity by preventing the down-regulation of glial glutamate transporters (glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)), the decrease in glutamate uptake, and the production of reactive oxygen species (ROS) induced by Aβ(1-40). Importantly, the blockage of NMDAR restored the Aβ(1-40)-induced synaptic dysfunction and cognitive impairment. However, LY235959 failed to prevent the inflammatory response associated with Aβ(1-40) treatment. Altogether, our data indicate that the acute administration of Aβ promotes oxidative stress, a decrease in glutamate transporter expression, and neurotoxicity. Our results reinforce the idea that NMDAR plays a critical regulatory action in Aβ toxicity and they provide further pre-clinical evidence for the potential role of the selective and competitive NMDAR antagonists in the treatment of AD.
Collapse
Affiliation(s)
- M A Bicca
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Molz S, Dal-Cim T, Budni J, Martín-de-Saavedra MD, Egea J, Romero A, del Barrio L, Rodrigues ALS, López MG, Tasca CI. Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/ glycogen synthase kinase 3β pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 2011; 89:1400-8. [PMID: 21671255 DOI: 10.1002/jnr.22681] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/25/2011] [Accepted: 04/01/2011] [Indexed: 01/13/2023]
Abstract
Excitotoxicity and cell death induced by glutamate are involved in many neurodegenerative disorders. We have previously demonstrated that excitotoxicity induced by millimolar concentrations of glutamate in hippocampal slices involves apoptotic features and glutamate-induced glutamate release. Guanosine, an endogenous guanine nucleoside, prevents excitotoxicity by its ability to modulate glutamate transport. In this study, we have evaluated the neuroprotective effect of guanosine against glutamate-induced toxicity in hippocampal slices and the mechanism involved in such an effect. We have found that guanosine (100 μM) was neuroprotective against 1 mM glutamate-induced cell death through the inhibition of glutamate release induced by glutamate. Guanosine also induced the phosphorylation and, thus, activation of protein kinase B (PKB/Akt), a downstream target of phosphatidylinositol-3 kinase (PI3K), as well as phosphorylation of glycogen synthase kinase 3β, which has been reported to be inactivated by Akt after phosphorylation at Ser9. Glutamate treated hippocampal slices showed increased inducible nitric oxide synthase (iNOS) expression that was prevented by guanosine. Slices preincubated with SNAP (an NO donor), inhibited the protective effect of guanosine. LY294002 (30 μM), a PI3K inhibitor, attenuated guanosine-induced neuroprotection, guanosine prevention of glutamate release, and guanosine-induced GSK3β(Ser9) phosphorylation but not guanosine reduction of glutamate-induced iNOS expression. Taken together, the results of this study show that guanosine protects hippocampal slices by a mechanism that involves the PI3K/Akt/GSK3β(Ser9) pathway and prevention of glutamate-induced glutamate release. Furthermore, guanosine also reduces glutamate-induced iNOS by a PI3K/Akt-independent mechanism.
Collapse
Affiliation(s)
- Simone Molz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brasil. molz.s @hotmail.com
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca²+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 2011; 183:212-20. [PMID: 21435378 DOI: 10.1016/j.neuroscience.2011.03.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 12/20/2022]
Abstract
Guanine derivatives (GD) have been implicated in many relevant brain extracellular roles, such as modulation of glutamate transmission and neuronal protection against excitotoxic damage. GD are spontaneously released to the extracellular space from cultured astrocytes and during oxygen/glucose deprivation (OGD). The aim of this study has been to evaluate the potassium channels and phosphatidilinositol-3 kinase (PI3K) pathway involvement in the mechanisms related to the neuroprotective role of guanosine in rat hippocampal slices subjected to OGD. The addition of guanosine (100 μM) to hippocampal slices subjected to 15 min of OGD and followed by 2 h of re-oxygenation is neuroprotective. The presence of K+ channel blockers, glibenclamide (20 μM) or apamin (300 nM), revealed that neuroprotective effect of guanosine was not dependent on ATP-sensitive K+ channels or small conductance Ca²+-activated K+ channels. The presence of charybdotoxin (100 nM), a large conductance Ca²+-activated K+ channel (BK) blocker, inhibited the neuroprotective effect of guanosine. Hippocampal slices subjected to OGD and re-oxygenation showed a significant reduction of glutamate uptake. Addition of guanosine in the re-oxygenation period has blocked the reduction of glutamate uptake. This guanosine effect was inhibited when hippocampal slices were pre-incubated with charybdotoxin or wortmanin (a PI3K inhibitor, 1 μM) in the re-oxygenation period. Guanosine promoted an increase in Akt protein phosphorylation. However, the presence of charybdotoxin blocked such effect. In conclusion, the neuroprotective effect of guanosine involves augmentation of glutamate uptake, which is modulated by BK channels and the activation of PI3K pathway. Moreover, neuroprotection caused by guanosine depends on the increased expression of phospho-Akt protein.
Collapse
|
23
|
Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-β1–40 administration in mice: Evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol 2010; 226:274-84. [DOI: 10.1016/j.expneurol.2010.08.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/24/2010] [Accepted: 08/26/2010] [Indexed: 01/27/2023]
|
24
|
Oses JP, Batassini C, Pochmann D, Böhmer AE, Vuaden FC, Silvestrin RB, Oliveira A, Bonan CD, Bogo MR, Souza DO, Portela LVC, Sarkis JJDF, Mello e Souza T. The hydrolysis of striatal adenine- and guanine-based purines in a 6-hydroxydopamine rat model of Parkinson's disease. Neurochem Res 2010; 36:215-22. [PMID: 21046237 DOI: 10.1007/s11064-010-0305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2010] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is characterized by a progressive neurodegeneration in the substantia nigra and a striatal dopamine decrease. Striatal extracellular adenosine and ATP modulate the dopaminergic neurotransmission whereas guanosine has a protective role in the brain. Therefore, the regulation of their levels by enzymatic activity may be relevant to the clinical feature of PD. Here it was evaluated the extracellular nucleotide hydrolysis from striatal slices 4 weeks after a unilateral infusion with 6-OHDA into the medial forebrain bundle. This infusion increased ADP, AMP, and GTP hydrolysis by 15, 25, and 41%, respectively, and decreased GDP hydrolysis by 60%. There was no change in NTPDases1, 2, 3, 5, 6, and 5'-nucleotidase transcription. Dopamine depletion changes nucleotide hydrolysis and, therefore, alters the regulation of striatal nucleotide levels. These changes observed in 6-OHDA-lesioned animals may contribute to the symptoms observed in the model and provide evidence to indicate that extracellular purine hydrolysis is a key factor in understanding PD, giving hints for new therapies.
Collapse
Affiliation(s)
- Jean Pierre Oses
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bottum K, Poon E, Haley B, Karmarkar S, Tischkau SA. Suprachiasmatic nucleus neurons display endogenous resistance to excitotoxicity. Exp Biol Med (Maywood) 2010; 235:237-46. [PMID: 20404040 DOI: 10.1258/ebm.2009.009244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive understanding of neuroprotective pathways is essential to progress in the battle against numerous neurodegenerative conditions. The hypothalamic suprachiasmatic nucleus (SCN) is endogenously resistant to glutamate (Glu) excitotoxicity in vivo. This study was designed to determine whether immortalized SCN neurons (SCN2.2 cells) retain this characteristic. We first established that SCN2.2 cells retained the ability to respond to Glu. SCN2.2 cells expressed N-methyl-d-aspartate (NMDA) receptor subtypes NR1 and NR2A/2B, suggesting the presence of functional receptors. mRNA for the NMDA receptor subunits NR2A and NR2B were higher in the SCN2.2 than in the control hypothalamic neurons (GT1-7). Specific NMDA receptor antagonists (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate and d-(-)-2-amino-5-phosphonovaleric acid blocked Glu-induced activation of gene expression. SCN2.2 cells were resistant to Glu excitotoxicity compared with GT1-7 neurons as assessed with a mitochondrial function assay, cell death by trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. SCN2.2 resistance to Glu excitoxicity was retained in the presence of the broad spectrum Glu transport inhibitor, l-trans-pyrrolidine-2,4 dicarboxylate, excluding glial Glu uptake as a major neuroprotective mechanism. Collectively, these observations demonstrate endogenous neuroprotection in SCN2.2 cells; this cell line is resistant to excitotoxicity under conditions that are toxic to other immortalized cell lines. Thus, the SCN2.2 cell line may provide insights into the molecular mechanisms that confer endogenous neuroprotection in the SCN.
Collapse
Affiliation(s)
- Kathleen Bottum
- Department of Medicine, Division of Internal Medicine and Psychiatry, Southern Illinois School of Medicine, Springfield, IL 62794-9636, USA
| | | | | | | | | |
Collapse
|
26
|
Guanosine-5'-monophosphate induces cell death in rat hippocampal slices via ionotropic glutamate receptors activation and glutamate uptake inhibition. Neurochem Int 2009; 55:703-9. [PMID: 19576258 DOI: 10.1016/j.neuint.2009.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 12/23/2022]
Abstract
Guanine derivatives modulate the glutamatergic system through displacement of binding of glutamate to its receptors acting as antagonist of glutamate receptors in moderate to high micromolar concentrations. Guanosine-5'-monophosphate (GMP) is shown to be neuroprotective against glutamate- or oxygen/glucose deprivation-induced neurotoxicity and also against NMDA-induced apoptosis in hippocampal slices. However, in this study we are showing that high extracellular GMP concentrations (5mM) reduced cell viability in hippocampal brain slices. The toxic effect of GMP was not blocked by dipyridamole, a nucleoside transport inhibitor, nor mimicked by guanosine, suggesting an extracellular mode of action to GMP which does not involve its hydrolysis to guanosine. GMP-dependent cell damage was not blocked by P1 purinergic receptor antagonists, neither altered by adenosine A(1) or A(2A) receptor agonists. The blockage of the ionotropic glutamate receptors AMPA or NMDA, but not KA or metabotropic glutamate receptors, reversed the toxicity induced by GMP. GMP (5mM) induced a decrease in glutamate uptake into hippocampal slices, which was reversed by dl-TBOA. Therefore, GMP-induced hippocampal cell damage involves activation of ionotropic glutamate receptors and inhibition of glutamate transporters activity.
Collapse
|
27
|
Atorvastatin prevents hippocampal cell death due to quinolinic acid-induced seizures in mice by increasing Akt phosphorylation and glutamate uptake. Neurotox Res 2009; 16:106-15. [PMID: 19526287 DOI: 10.1007/s12640-009-9057-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/24/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Statins are cholesterol-lowering agents due to the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Recent studies have shown statins possess pleiotropic effects, which appear to be independent from its cholesterol-lowering action. In this study, we investigated whether atorvastatin would have protective effects against hippocampal cell death promoted by quinolinic acid (QA)-induced seizures in mice. Mice were pretreated with Atorvastatin (1 or 10 mg/kg) or vehicle (saline, 0.9%), orally, once a day for 7 days before the intracerebroventricular (i.c.v.) QA infusion (36.8 nmol/site). Atorvastatin treatment with 1 mg/kg/day did not significantly prevent QA-induced seizures (13.34%). However, administration of atorvastatin 10 mg/kg/day prevented the clonic and/or tonic seizures induced by QA in 29.41% of the mice. Additionally, administration of atorvastatin 10 mg/kg/day significantly prevented QA-induced cell death in the hippocampus. Atorvastatin treatment promoted an increased Akt phosphorylation, which was sustained after QA infusion in both convulsed and non-convulsed mice. Moreover, atorvastatin pretreatment prevented the reduction in glutamate uptake into hippocampal slices induced by QA i.c.v. infusion. These results show that atorvastatin attenuated QA-induced hippocampal cellular death involving the Akt pathway and glutamate transport modulation. Therefore, atorvastatin treatment might be a useful strategy in the prevention of brain injury caused by the exacerbation of glutamatergic toxicity in neurological diseases such as epilepsy.
Collapse
|
28
|
Fattorini G, Melone M, Bragina L, Candiracci C, Cozzi A, Pellegrini Giampietro DE, Torres-Ramos M, Pérez-Samartín A, Matute C, Conti F. GLT-1 expression and Glu uptake in rat cerebral cortex are increased by phencyclidine. Glia 2008; 56:1320-7. [PMID: 18615569 DOI: 10.1002/glia.20700] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using western blottings, microdialysis, and functional assays we tested the hypothesis that phencyclidine (PCP) modifies the expression and function of glutamate (Glu) transporters in the rat frontal cortex. Western blotting studies revealed that administration of PCP (10 mg/kg/day; 7 days) increased significantly the expression of the astrocytic Glu transporter GLT-1/EAAT2. Functional studies showed that PCP increased significantly Na+-dependent Glu uptake in slices and in neuron/astrocyte co-cultures, and microdialysis studies evidenced that PCP treatment reduced basal Glu output. In our experimental conditions, PCP did not induce toxicity. These studies show that PCP increases the expression of GLT-1 in the cerebral cortex, thereby increasing Glu uptake and reducing extracellular [Glu].
Collapse
Affiliation(s)
- Giorgia Fattorini
- Dipartimento di Neuroscienze, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Molz S, Tharine DC, Decker H, Tasca CI. GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices. Brain Res 2008; 1231:113-20. [PMID: 18655777 DOI: 10.1016/j.brainres.2008.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 01/11/2023]
Abstract
Glutamate is the main excitatory neurotransmitter in the mammalian nervous system and is essential for its normal functions. However, overstimulation of glutamatergic system due to hyperactivation of NMDA receptors and/or impairment of glutamate reuptake system has been implicated in many acute and chronic neurological diseases. Regulation of extracellular glutamate concentrations relies on the function of glutamate transporters which can be reversed in situations related to excitotoxicity. Guanosine-5'-monophosphate (GMP), a guanine nucleotide which displays important extracellular roles, such as trophic effects to neurons and astrocytes, behaves as antagonist of glutamate receptors and is neuroprotective in hippocampal slices against excitotoxicity or ischemic conditions. Hippocampal slices exposed to 1 or 10 mM glutamate, or 100 microM NMDA with 10 microM glycine for 1 h and evaluated after 6 or 18 h, showed reduced cell viability and DNA fragmentation, respectively. Glutamate- or NMDA-induced cell death was prevented by 50 microM MK-801, but only NMDA-induced cell damage was prevented by GMP (1 mM). Glutamate-induced cell viability impairment and glutamate-induced l-[(3)H]glutamate release were both prevented by adding DL-TBOA (10 microM). Otherwise, NMDA-induced cell viability loss was not prevented by 10 microM of DL-TBOA and NMDA did not induce l-[(3)H]glutamate release. Our results demonstrate that GMP is neuroprotective when acting selectively at NMDA receptors. Glutamate-induced hippocampal slice damage and glutamate release were blocked by glutamate transporter inhibitor, indicating that glutamate-induced toxicity also involves the reversal of glutamate uptake, which cannot be prevented by GMP.
Collapse
Affiliation(s)
- Simone Molz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
30
|
Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38MAPK. Neurotoxicology 2008; 29:727-34. [DOI: 10.1016/j.neuro.2008.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 04/22/2008] [Accepted: 04/24/2008] [Indexed: 11/23/2022]
|
31
|
Decker H, Francisco SS, Mendes-de-Aguiar CBN, Romão LF, Boeck CR, Trentin AG, Moura-Neto V, Tasca CI. Guanine derivatives modulate extracellular matrix proteins organization and improve neuron-astrocyte co-culture. J Neurosci Res 2007; 85:1943-51. [PMID: 17526012 DOI: 10.1002/jnr.21332] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Guanine derivatives (GD) have been shown to exert relevant extracellular effects as intercellular messengers, neuromodulators in the central nervous system, and trophic effects on astrocytes and neurons. Astrocytes have been pointed out as the major source of trophic factors in the nervous system, however, several trophic effects of astrocytic-released soluble factors are mediated through modulation of extracellular matrix (ECM) proteins. In this study, we investigated the effects of guanosine-5'-monophosphate (GMP) and guanosine (GUO) on the expression and organization of ECM proteins in cerebellar astrocytes. Moreover, to evaluate the effects of astrocytes pre-treated with GMP or GUO on cerebellar neurons we used a neuron-astrocyte coculture model. GMP or GUO alters laminin and fibronectin organization from a punctate to a fibrillar pattern, however, the expression levels of the ECM proteins were not altered. Guanine derivatives-induced alteration of ECM proteins organization is mediated by activation of mitogen activated protein kinases (MAPK), CA(2+)-calmodulin-dependent protein kinase II (CaMK-II), protein kinase C (PKC), and protein kinase A (PKA) pathways. Furthermore, astrocytes treated with GMP or GUO promoted an increased number of cerebellar neurons in coculture, without altering the neuritogenesis pattern. No proliferation of neurons or astrocytes was observed due to GMP or GUO treatment. Our results show that guanine derivatives promote a reorganization of the ECM proteins produced by astrocytes, which might be responsible for a better interaction with neurons in cocultures.
Collapse
Affiliation(s)
- Helena Decker
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schmidt AP, Lara DR, Souza DO. Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 2007; 116:401-16. [PMID: 17884172 DOI: 10.1016/j.pharmthera.2007.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 01/06/2023]
Abstract
Guanine-based purines have been traditionally studied as modulators of intracellular processes, mainly G-protein activity. However, they also exert several extracellular effects not related to G proteins, including modulation of glutamatergic activity, trophic effects on neural cells, and behavioral effects. In this article, the putative roles of guanine-based purines on the nervous system are reviewed, and we propose a specific guanine-based purinergic system in addition to the well-characterized adenine-based purinergic system. Current evidence suggest that guanine-based purines modulate glutamatergic parameters, such as glutamate uptake by astrocytes and synaptic vesicles, seizures induced by glutamatergic agents, response to ischemia and excitotoxicity, and are able to affect learning, memory and anxiety. Additionally, guanine-based purines have important trophic functions affecting the development, structure, or maintenance of neural cells. Although studies addressing the mechanism of action (receptors and second messenger systems) of guanine-based purines are still insufficient, these findings point to the guanine-based purines (nucleotides and guanosine) as potential new targets for neuroprotection and neuromodulation.
Collapse
Affiliation(s)
- André P Schmidt
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
33
|
Oleskovicz SPB, Martins WC, Leal RB, Tasca CI. Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen-glucose deprivation. Neurochem Int 2007; 52:411-8. [PMID: 17822807 DOI: 10.1016/j.neuint.2007.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/17/2007] [Accepted: 07/25/2007] [Indexed: 12/23/2022]
Abstract
Guanine derivates have been implicated in many relevant extracellular roles, such as modulation of glutamate transmission, protecting neurons against excitotoxic damage. Guanine derivatives are spontaneously released to the extracellular space from cultured astrocytes during oxygen-glucose deprivation (OGD) and may act as trophic factors, glutamate receptors blockers or glutamate transport modulators, thus promoting neuroprotection. The aim of this study was to evaluate the mechanisms involved in the neuroprotective role of the nucleoside guanosine in rat hippocampal slices submitted to OGD, identifying a putative extracellular binding site and the intracellular signaling pathways related to guanosine-induced neuroprotection. Cell damage to hippocampal slices submitted to 15 min of OGD followed by 2 h of reperfusion was decreased by the addition of guanosine (100 microM) or guanosine-5'-monophosphate (GMP, 100 microM). The neuroprotective effect of guanosine was not altered by the addition of adenosine receptor antagonists, nucleosides transport inhibitor, glutamate receptor antagonists, glutamate transport inhibitors, and a non-selective Na(+) and Ca(2+) channel blocker. However, in a Ca(2+)-free medium (by adding EGTA), guanosine was ineffective. Nifedipine (a Ca(2+) channel blocker) increased the neuroprotective effect of guanosine and 4-aminopyridine, a K(+) channel blocker, reversed the neuroprotective effect of guanosine. Evaluation of the intracellular signaling pathways associated with guanosine-induced neuroprotection showed the involvement of PKA, PKC, MEK and PI-3 K pathways, but not CaMKII. Therefore, this study shows guanosine is acting via K(+) channels activation, depending on extracellular Ca(2+) levels and via modulation of the PKA, PKC, MEK and/or PI-3 K pathways.
Collapse
Affiliation(s)
- Scheyla P B Oleskovicz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
34
|
Molz S, Decker H, Dal-Cim T, Cremonez C, Cordova FM, Leal RB, Tasca CI. Glutamate-induced toxicity in hippocampal slices involves apoptotic features and p38 MAPK signaling. Neurochem Res 2007; 33:27-36. [PMID: 17616814 DOI: 10.1007/s11064-007-9402-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 06/05/2007] [Indexed: 02/02/2023]
Abstract
Glutamate excitotoxicity may culminate with neuronal and glial cell death. Glutamate induces apoptosis in vivo and in cell cultures. However, glutamate-induced apoptosis and the signaling pathways related to glutamate-induced cell death in acute hippocampal slices remain elusive. Hippocampal slices exposed to 1 or 10 mM glutamate for 1 h and evaluated after 6 h, showed reduced cell viability, without altering membrane permeability. This action of glutamate was accompanied by cytochrome c release, caspase-3 activation and DNA fragmentation. Glutamate at low concentration (10 microM) induced caspase-3 activation and DNA fragmentation, but it did not cause cytochrome c release and, it did not alter the viability of slices. Glutamate-induced impairment of hippocampal cell viability was completely blocked by MK-801 (non-competitive antagonist of NMDA receptors) and GAMS (antagonist of KA/AMPA glutamate receptors). Regarding intracellular signaling pathways, glutamate-induced cell death was not altered by a MEK1 inhibitor, PD98059. However, the p38 MAPK inhibitor, SB203580, prevented glutamate-induced cell damage. In the present study we have shown that glutamate induces apoptosis in hippocampal slices and it causes an impairment of cell viability that was dependent of ionotropic and metabotropic receptors activation and, may involve the activation of p38 MAPK pathway.
Collapse
Affiliation(s)
- Simone Molz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianopolis, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Farooqui AA, Horrocks LA, Farooqui T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J Neurosci Res 2007; 85:1834-50. [PMID: 17393491 DOI: 10.1002/jnr.21268] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The neural membranes contain phospholipids, sphingolipids, cholesterol, and proteins. Glycerophospholipids and sphingolipids are precursors for lipid mediators involved in signal transduction processes. Degradation of glycerophospholipids by phospholipase A(2) (PLA(2)) generates arachidonic acid (AA) and docosahexaenoic acids (DHA). Arachidonic acid is metabolized to eicosanoids and DHA is metabolized to docosanoids. The catabolism of glycosphingolipids generates ceramide, ceramide 1-phosphate, sphingosine, and sphingosine 1-phosphate. These metabolites modulate PLA(2) activity. Arachidonic acid, a product derived from glycerophospholipid catabolism by PLA(2), modulates sphingomyelinase (SMase), the enzyme that generates ceramide and phosphocholine. Furthermore, sphingosine 1-phosphate modulates cyclooxygenase, an enzyme responsible for eicosanoid production in brain. This suggests that an interplay and cross talk occurs between lipid mediators of glycerophospholipid and glycosphingolipid metabolism in brain tissue. This interplay between metabolites of glycerophospholipid and sphingolipid metabolism may play an important role in initiation and maintenance of oxidative stress associated with neurologic disorders as well as in neural cell proliferation, differentiation, and apoptosis. Recent studies indicate that PLA(2) and SMase inhibitors can be used as neuroprotective and anti-apoptotic agents. Development of novel inhibitors of PLA(2) and SMase may be useful for the treatment of oxidative stress, and apoptosis associated with neurologic disorders such as stroke, Alzheimer disease, Parkinson disease, and head and spinal cord injuries.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
36
|
Brongholi K, Souza DG, Bainy ACD, Dafre AL, Tasca CI. Oxygen-glucose deprivation decreases glutathione levels and glutamate uptake in rat hippocampal slices. Brain Res 2006; 1083:211-8. [PMID: 16530736 DOI: 10.1016/j.brainres.2006.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 01/27/2006] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
Ischemia is a transitory or permanent reduction of blood flow that may provoke an excessive release of glutamate. In that condition, increased reactive oxygen species generation and/or decreased cerebral antioxidant capacity may induce cell death. Antioxidant enzymes and thiols play an important role in the cellular defenses against oxidative stress. The purpose of this study was to evaluate cell viability, glutamate uptake and antioxidant status in rat hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. After 15 min or 1 h of OGD, hippocampal slices showed a significant reduction of cell viability. Reperfusion during 1 or 2 h did not increase cell death. In this condition, the activities of antioxidant enzymes catalase, glutathione reductase, and peroxidase did not change. However, slices exposed to 15 min OGD and reperfused for 1 or 2 h showed higher superoxide dismutase activity. A significant reduction of glutathione levels was observed after 1 or 2 h of reperfusion in slices previously exposed to 1 h of OGD, although the protein-thiol content was unchanged. Slices exposed to 1 h of OGD and reperfused for 2 h showed reduced sodium-dependent l-[(3)H]glutamate uptake. The reduction of glutamate uptake was partially reversed by dl-dithiothreitol (DTT), a thiol-reducing agent, which may reduce thiol groups in glutamate transporters. Therefore, higher glutamate levels in the synaptic cleft could promote transporter reversal and impair glutamate uptake. Increased extracellular glutamate levels associated with decreased glutathione levels might exacerbate cell damage induced by oxygen and glucose deprivation.
Collapse
Affiliation(s)
- Karina Brongholi
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, 88040-900 Florianópolis, SC, Brasil
| | | | | | | | | |
Collapse
|
37
|
Staines DR. Does dysregulation of key epigenetic and biochemical pathways occur in postulated vasoactive neuropeptide autoimmune disorders? Med Hypotheses 2005; 65:1154-60. [PMID: 16026937 DOI: 10.1016/j.mehy.2005.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 05/27/2005] [Indexed: 12/26/2022]
Abstract
Autoimmune dysfunction of certain vasoactive neuropeptides (VNs) has been postulated as a contributing cause of sudden infant death syndrome (SIDS), chronic fatigue syndrome (CFS), Gulf War syndrome (GWS) and other fatigue-related disorders. This family of VNs includes pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide (VIP) and calcitonin gene related peptide (CGRP). The postulated mechanism is compromise of adenylate cyclase activation, a vital and unique step in cyclic AMP production from ATP, through autoimmune dysfunction of VNs, their receptors or their genes possibly involving cytosine-phosphate-guanine (CpG) fragments. CpG fragments are immunomodulatory dinucleotides serving as 'friend or foe' recognition systems to differentiate bacterial and viral (hypomethylated CpG) from mammalian (methylated CpG) DNA. However hypomethylation disorders affecting these fragments in mammals may convert them to dysfunctional states by promoting autoimmune inflammatory reactions. Epigenetic mechanisms acting on gene promoter regions may contribute to the development of VN autoimmune fatigue-related disorders through CpG fragments located in vital segments of VN/receptor genes by causing signalling defects with profound implications for VN function. Neurotransmitter dysfunction particularly glutamatergic transmission could also result with disruption of neuronal cellular biochemical functions such as ammonia regulation. Endosomal acidity and mitochondrial membrane potential modifiers such as chloroquine, together with immunoregulatory therapies, may have therapeutic implications in protecting against these apparent autoimmune disorders. This paper examines specific epigenetic and biochemical mechanisms possibly mediated by VN or receptor genes resulting in postulated VN autoimmune fatigue-related disorders. These mechanisms may have implications for treatment and prevention options for VN autoimmune disorders. VN autoimmune processes have implications for military medicine where radiological, chemical and biological agents may play an important role in pathogenesis.
Collapse
Affiliation(s)
- Donald R Staines
- Gold Coast Public Health Unit, 10-12 Young Street, Southport 4215, Queensland, Australia.
| |
Collapse
|