1
|
Rugerio-Martínez CI, Ramos D, Segura-Olvera A, Murillo-Melo NM, Tapia-Guerrero YS, Argüello-García R, Leyva-García N, Hernández-Hernández O, Cisneros B, Suárez-Sánchez R. Dp71 Point Mutations Induce Protein Aggregation, Loss of Nuclear Lamina Integrity and Impaired Braf35 and Ibraf Function in Neuronal Cells. Int J Mol Sci 2022; 23:ijms231911876. [PMID: 36233175 PMCID: PMC9570083 DOI: 10.3390/ijms231911876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Dystrophin Dp71 is the most abundant product of the Duchenne muscular dystrophy gene in the nervous system, and mutations impairing its function have been associated with the neurodevelopmental symptoms present in a third of DMD patients. Dp71 is required for the clustering of neurotransmitter receptors and the neuronal differentiation of cultured cells; nonetheless, its precise role in neuronal cells remains to be poorly understood. In this study, we analyzed the effect of two pathogenic DMD gene point mutations on the Dp71 function in neurons. We engineered C272Y and E299del mutations to express GFP-tagged Dp71 protein variants in N1E-115 and SH-SY5Y neuronal cells. Unexpectedly, the ectopic expression of Dp71 mutants resulted in protein aggregation, which may be mechanistically caused by the effect of the mutations on Dp71 structure, as predicted by protein modeling and molecular dynamics simulations. Interestingly, Dp71 mutant variants acquired a dominant negative function that, in turn, dramatically impaired the distribution of different Dp71 protein partners, including β-dystroglycan, nuclear lamins A/C and B1, the high-mobility group (HMG)-containing protein (BRAF35) and the BRAF35-family-member inhibitor of BRAF35 (iBRAF). Further analysis of Dp71 mutants provided evidence showing a role for Dp71 in modulating both heterochromatin marker H3K9me2 organization and the neuronal genes’ expression, via its interaction with iBRAF and BRAF5.
Collapse
Affiliation(s)
- Claudia Ivette Rugerio-Martínez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Daniel Ramos
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Abel Segura-Olvera
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Nadia Mireya Murillo-Melo
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Yessica Sarai Tapia-Guerrero
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Norberto Leyva-García
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
- Correspondence: or ; Tel.: +52-55-5999-1000 (ext. 14710)
| |
Collapse
|
2
|
The Protective Effect of a Unique Mix of Polyphenols and Micronutrients against Neurodegeneration Induced by an In Vitro Model of Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23063110. [PMID: 35328530 PMCID: PMC8955775 DOI: 10.3390/ijms23063110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Parkinson’s disease (PD) is second-most common disabling neurological disorder worldwide, and unfortunately, there is not yet a definitive way to prevent it. Polyphenols have been widely shown protective efficacy against various PD symptoms. However, data on their effect on physio-pathological mechanisms underlying this disease are still lacking. In the present work, we evaluated the activity of a mixture of polyphenols and micronutrients, named A5+, in the murine neuroblastoma cell line N1E115 treated with 6-Hydroxydopamine (6-OHDA), an established neurotoxic stimulus used to induce an in vitro PD model. We demonstrate that a pretreatment of these cells with A5+ causes significant reduction of inflammation, resulting in a decrease in pro-inflammatory cytokines (IFN-γ, IL-6, TNF-α, and CXCL1), a reduction in ROS production and activation of extracellular signal-regulated kinases (ERK)1/2, and a decrease in apoptotic mechanisms with the related increase in cell viability. Intriguingly, A5+ treatment promoted cellular differentiation into dopaminergic neurons, as evident by the enhancement in the expression of tyrosine hydroxylase, a well-established dopaminergic neuronal marker. Overall, these results demonstrate the synergic and innovative efficacy of A5+ mixture against PD cellular pathological processes, although further studies are needed to clarify the mechanisms underlying its beneficial effect.
Collapse
|
3
|
Isabel Vergara-Reyes R, Cervantes-Acosta P, Hernández-Beltrán A, Barrientos-Morales M, Domínguez-Mancera B. Leptin Chronic Effect on Differentiation, Ion Currents and Protein Expression in N1E-115 Neuroblastoma Cells. Pak J Biol Sci 2021; 24:297-309. [PMID: 34486314 DOI: 10.3923/pjbs.2021.297.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Arcuate nucleus (ARC), a component of appetite-regulatory factors, contains populations of both orexigenic and anorexigenic neurons and one of the fundamental components of its system is leptin. Studies have evidenced the critical neurotrophic role in the development of ARC. To determine such effects on neuron development, N1E-115 neuroblastoma cells were used as an ARC model. <b>Materials and Methods:</b> N1E-115 neuroblastoma cells were treated with leptin [10 nM] for 24, 48 and 72 hrs. Dimethyl sulfoxide (DMSO) 1.5% was used as a known drug that promotes neurite expression. Cells percentage (%) that developed neurites was evaluated by bright field microscopy. Patch-clamp electrophysiology was used to analyze membrane ion currents, RT-PCR for quantifying changes in mRNA expression of anorexic peptides, proopiomelanocortin (POMC) and cocaine and amphetamine-related transcript (CART), in addition to principal Na<sub>v</sub>, Ca<sub>v</sub> ion channel subunits. <b>Results:</b> N1E-115 cells treated with leptin show neurite expression after 24 hrs of treatment, similar effects were obtained with DMSO. Leptin (time-dependent) increases the inward current in comparison with the control value at 72 hrs. Outward currents were not affected by leptin. Leptin and DMSO increased Na<sup>+</sup> and Ca<sup>2+</sup> current without changes in the kinetic properties. Lastly, leptin promotes an increase in mRNA level expression of transcripts to POMC, CART, Na<sub>v</sub>1.2 and Ca<sub>v</sub>1.3. <b>Conclusion:</b> Leptin chronic treatment promotes neurite expression, Up-regulation of Na<sup>+</sup> and Ca<sup>2+</sup> ion channels determining neuronal excitability, besides increasing the mRNA level expression of anorexic peptides POMC and CART in neuroblastoma N1E-115.
Collapse
|
4
|
Piroli GG, Manuel AM, Patel T, Walla MD, Shi L, Lanci SA, Wang J, Galloway A, Ortinski PI, Smith DS, Frizzell N. Identification of Novel Protein Targets of Dimethyl Fumarate Modification in Neurons and Astrocytes Reveals Actions Independent of Nrf2 Stabilization. Mol Cell Proteomics 2019; 18:504-519. [PMID: 30587509 PMCID: PMC6398201 DOI: 10.1074/mcp.ra118.000922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/01/2018] [Indexed: 12/15/2022] Open
Abstract
The fumarate ester dimethyl fumarate (DMF) has been introduced recently as a treatment for relapsing remitting multiple sclerosis (RRMS), a chronic inflammatory condition that results in neuronal demyelination and axonal loss. DMF is known to act by depleting intracellular glutathione and modifying thiols on Keap1 protein, resulting in the stabilization of the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. We have previously shown that DMF reacts with a wide range of protein thiols, suggesting that the complete mechanisms of action of DMF are unknown. Here, we investigated other intracellular thiol residues that may also be irreversibly modified by DMF in neurons and astrocytes. Using mass spectrometry, we identified 24 novel proteins that were modified by DMF in neurons and astrocytes, including cofilin-1, tubulin and collapsin response mediator protein 2 (CRMP2). Using an in vitro functional assay, we demonstrated that DMF-modified cofilin-1 loses its activity and generates less monomeric actin, potentially inhibiting its cytoskeletal remodeling activity, which could be beneficial in the modulation of myelination during RRMS. DMF modification of tubulin did not significantly impact axonal lysosomal trafficking. We found that the oxygen consumption rate of N1E-115 neurons and the levels of proteins related to mitochondrial energy production were only slightly affected by the highest doses of DMF, confirming that DMF treatment does not impair cellular respiratory function. In summary, our work provides new insights into the mechanisms supporting the neuroprotective and remyelination benefits associated with DMF treatment in addition to the antioxidant response by Nrf2.
Collapse
Affiliation(s)
- Gerardo G Piroli
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Allison M Manuel
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Tulsi Patel
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Michael D Walla
- §Mass Spectrometry Center, Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29205
| | - Liang Shi
- ¶Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29205
| | - Scott A Lanci
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Jingtian Wang
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Ashley Galloway
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Pavel I Ortinski
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209
| | - Deanna S Smith
- ¶Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29205
| | - Norma Frizzell
- From the ‡Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, South Carolina 29209;
| |
Collapse
|
5
|
Muñoz-Llancao P, de Gregorio C, Las Heras M, Meinohl C, Noorman K, Boddeke E, Cheng X, Lezoualc'h F, Schmidt M, Gonzalez-Billault C. Microtubule-regulating proteins and cAMP-dependent signaling in neuroblastoma differentiation. Cytoskeleton (Hoboken) 2017; 74:143-158. [PMID: 28164467 DOI: 10.1002/cm.21355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 01/15/2023]
Abstract
Neurons are highly differentiated cells responsible for the conduction and transmission of information in the nervous system. The proper function of a neuron relies on the compartmentalization of their intracellular domains. Differentiated neuroblastoma cells have been extensively used to study and understand the physiology and cell biology of neuronal cells. Here, we show that differentiation of N1E-115 neuroblastoma cells is more pronounced upon exposure of a chemical analog of cyclic AMP (cAMP), db-cAMP. We next analysed the expression of key microtubule-regulating proteins in differentiated cells and the expression and activation of key cAMP players such as EPAC, PKA and AKAP79/150. Most of the microtubule-promoting factors were up regulated during differentiation of N1E-115 cells, while microtubule-destabilizing proteins were down regulated. We observed an increase in tubulin post-translational modifications related to microtubule stability. As expected, db-cAMP increased PKA- and EPAC-dependent signalling. Consistently, pharmacological modulation of EPAC activity instructed cell differentiation, number of neurites, and neurite length in N1E-115 cells. Moreover, disruption of the PKA-AKAP interaction reduced these morphometric parameters. Interestingly, PKA and EPAC act synergistically to induce neuronal differentiation in N1E-115. Altogether these results show that the changes observed in the differentiation of N1E-115 cells proceed by regulating several microtubule-stabilizing factors, and the acquisition of a neuronal phenotype is a process involving concerted although independent functions of EPAC and PKA.
Collapse
Affiliation(s)
- Pablo Muñoz-Llancao
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Cristian de Gregorio
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Macarena Las Heras
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Christopher Meinohl
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Kevin Noorman
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Erik Boddeke
- Department of Medical Physiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, USA
| | - Frank Lezoualc'h
- Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France.,Université de Toulouse III, Paul Sabatier, Toulouse, France
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, USA
| |
Collapse
|
6
|
Electrochemically reduced water protects neural cells from oxidative damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:869121. [PMID: 25383141 PMCID: PMC4212634 DOI: 10.1155/2014/869121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50–200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca2+ influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW.
Collapse
|
7
|
Bhargava Y, Hampden-Smith K, Chachlaki K, Wood KC, Vernon J, Allerston CK, Batchelor AM, Garthwaite J. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging. Front Mol Neurosci 2013; 6:26. [PMID: 24068983 PMCID: PMC3781335 DOI: 10.3389/fnmol.2013.00026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/14/2013] [Indexed: 12/20/2022] Open
Abstract
Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T cells. Adenoviral infection of HEK293T cells with FlincG, however, had previously proved successful. Both constructs were found to harbor a mutation in the EGFP domain and had a tail of 17 amino acids at the C-terminus that differed from the published sequence. These discrepancies were systematically examined, together with mutations found beneficial for the related GCaMP family of Ca2+ biosensors, in a HEK293T cell line stably expressing both nitric oxide (NO)-activated guanylyl cyclase and phosphodiesterase-5. Restoring the mutated amino acid improved basal fluorescence whereas additional restoration of the correct C-terminal tail resulted in poor cGMP sensing as assessed by superfusion of either 8-bromo-cGMP or NO. Ultimately, two improved FlincGs were identified: one (FlincG2) had the divergent tail and gave moderate basal fluorescence and cGMP response amplitude and the other (FlincG3) had the correct tail, a GCaMP-like mutation in the EGFP region and an N-terminal tag, and was superior in both respects. All variants tested were strongly influenced by pH over the physiological range, in common with other EGFP-based biosensors. Purified FlincG3 protein exhibited a lower cGMP affinity (0.89 μM) than reported for the original FlincG (0.17 μM) but retained rapid kinetics and a 230-fold selectivity over cAMP. Successful expression of FlincG2 or FlincG3 in differentiated N1E-115 neuroblastoma cells and in primary cultures of hippocampal and dorsal root ganglion cells commends them for real-time imaging of cGMP dynamics in neural (and other) cells, and in their subcellular specializations.
Collapse
Affiliation(s)
- Yogesh Bhargava
- Wolfson Institute for Biomedical Research, University College London London, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The perinucleolar compartment (PNC) is a nuclear substructure associated with, but structurally distinct from, the nucleolus. The PNC contains several RNA processing proteins and several RNA pol III transcripts, which form novel complexes. As determined by cell culture experiments and human tumor samples, the PNC forms exclusively in cancer cells and the percentage of cancer cells in a population that have one or more PNCs directly correlates with the malignancy of that population of cells. Therefore, the PNC is being developed as a prognostic marker for several malignancies. PNC elimination in cancer cells has proven to be a useful as screening method to discover probe compounds used to elucidate PNC biology and to discover compounds with the potential to be developed as minimally toxic anti-cancer drugs.
Collapse
Affiliation(s)
- John T Norton
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
9
|
Cheng L, Smith DJ, Anderson RL, Nagley P. Modulation of cellular Hsp72 levels in undifferentiated and neuron-like SH-SY5Y cells determines resistance to staurosporine-induced apoptosis. PLoS One 2011; 6:e24473. [PMID: 21915333 PMCID: PMC3167845 DOI: 10.1371/journal.pone.0024473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/11/2011] [Indexed: 12/16/2022] Open
Abstract
Increased expression of Hsp72 accompanies differentiation of human neuroblastoma SH-SY5Y cells to neuron-like cells. By modulating cellular levels of Hsp72, we demonstrate here its anti-apoptotic activity both in undifferentiated and neuron-like cells. Thermal preconditioning (43°C for 30 min) induced Hsp72, leading to cellular protection against apoptosis induced by a subsequent treatment with staurosporine. Preconditioned staurosporine-treated cells displayed decreased Bax recruitment to mitochondria and subsequent activation, as well as reduced cytochrome c redistribution from mitochondria. The data are consistent with Hsp72 blocking apoptosis upstream of Bax recruitment to mitochondria. Neuron-like cells (with elevated Hsp72) were more resistant to staurosporine by all measured indices of apoptotic signaling. Use of stable transfectants ectopically expressing moderately elevated levels of Hsp72 revealed that such cells in the undifferentiated state showed enhanced resistance to staurosporine-induced apoptosis, which was even more robust after differentiation to neuron-like cells. Overall, the protective effects of differentiation, thermal preconditioning and ectopic Hsp72 expression were additive. The strong inverse correlation between cellular Hsp72 levels and susceptibility to apoptosis support the notion that Hsp72 acts as a significant neuroprotective factor, enabling post-mitotic neurons to withstand potentially lethal stress that induces apoptosis.
Collapse
Affiliation(s)
- Lesley Cheng
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Danielle J. Smith
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
| | - Robin L. Anderson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Phillip Nagley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
10
|
Norton JT, Pollock CB, Wang C, Schink JC, Kim JJ, Huang S. Perinucleolar compartment prevalence is a phenotypic pancancer marker of malignancy. Cancer 2008; 113:861-9. [PMID: 18543322 DOI: 10.1002/cncr.23632] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The perinucleolar compartment (PNC) is a subnuclear structure localized at the nucleolar periphery. Previous studies using breast cancer as a model system demonstrated that PNC prevalence (the percentage of cells with 1 or more PNC) increased with disease progression and was associated with poor patient outcomes. METHODS To evaluate the validity of developing PNC prevalence as a novel pancancer prognostic marker, the authors investigated whether PNC prevalence was correlated with malignancy in a spectrum of tissue types and evaluated its selective association with malignancy under various experimental conditions. RESULTS PNC prevalence was low in primary and immortalized cells and in cell lines derived from hematologic malignancies, but it was heterogeneous in cell lines derived from solid tumors, including those of epithelial and nonepithelial origins. Studies using human myometrial tissue and thyroid cancer cell lines with various levels of malignancy demonstrated a correlation between high PNC prevalence and malignant potential. Furthermore, PNC prevalence corresponded directly to metastatic capacities in a series of well characterized cell lines of the same origin that were selected for various levels of metastatic capacity in a mouse model. Conversely, PNC prevalence was reduced experimentally by over expressing an antimetastatic protein in breast cancer cells. However, PNC prevalence was not associated with traits that were shared by both cancer and normal cells, including proliferation, glycolysis, and differentiation. CONCLUSIONS Together, these observations helped to verify that PNC prevalence selectively represents malignancy in a broad spectrum of solid tissue tumors, demonstrating its potential to be developed as a pancancer prognostic marker of malignancy.
Collapse
Affiliation(s)
- John T Norton
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Proteomic studies have generated numerous datasets of potential diagnostic, prognostic, and therapeutic significance in human cancer. Two key technologies underpinning these studies in cancer tissue are two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Although surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF)-MS is the mainstay for serum or plasma analysis, other methods including isotope-coded affinity tag technology, reverse-phase protein arrays, and antibody microarrays are emerging as alternative proteomic technologies. Because there is little overlap between studies conducted with these approaches, confirmation of these advanced technologies remains an elusive goal. This problem is further exacerbated by lack of uniform patient inclusion and exclusion criteria, low patient numbers, poor supporting clinical data, absence of standardized sample preparation, and limited analytical reproducibility (in particular of 2D-PAGE). Despite these problems, there is little doubt that the proteomic approach has the potential to identify novel diagnostic biomarkers in cancer. In therapeutic proteomics, the challenge is significant due to the complexity systems under investigation (i.e., cells generate over 10(5) different polypeptides). However, the most significant contribution of therapeutic proteomics research is expected to derive not from single experiments, but from the synthesis and comparison of large datasets obtained under different conditions (e.g., normal, inflammation, cancer) and in different tissues and organs. Thus, standardized processes for storing and retrieving data obtained with different technologies by different research groups will have to be developed. Shifting the emphasis of cancer proteomics from technology development and data generation to careful study design, data organization, formatting, and mining is crucial to answer clinical questions in cancer research.
Collapse
Affiliation(s)
- M A Reymond
- Department of Surgery, University of Magdeburg, Germany
| | | |
Collapse
|
12
|
Azizi AA, Gelpi E, Yang JW, Rupp B, Godwin AK, Slater C, Slavc I, Lubec G. Mass spectrometric identification of serine hydrolase OVCA2 in the medulloblastoma cell line DAOY. Cancer Lett 2006; 241:235-49. [PMID: 16368187 DOI: 10.1016/j.canlet.2005.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/14/2005] [Accepted: 10/17/2005] [Indexed: 11/18/2022]
Abstract
OVCA2 is a putative serine-hydrolase. Performing protein profiling in human tumour cell lines, OVCA2 was detected in DAOY medulloblastoma cells as a high abundance protein. The protein was unambiguously identified by 2D gel-electrophoresis and MALDI-MS and MS/MS, its presence was confirmed by western blotting. Immunohistochemistry revealed expression in medulloblastoma and predominantly in oligodendrocytes. Computational approaches predicted functional motifs and domains, interaction with apoptosis-related protein BAG and 3D structure. In addition to the presence of OVCA2 in medulloblastoma, it was furthermore detectable in three out of 10 human tumour cell-lines as a high abundance protein probably suggesting a role in the tumour biology.
Collapse
Affiliation(s)
- Amedeo A Azizi
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 19-21, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gruber-Olipitz M, Yang JW, Stroebel T, Slavc I, Lubec G. The medulloblastoma cell line DAOY but not eleven other tumor cell lines expresses minichromosome maintenance protein 4. Cancer Lett 2006; 238:76-84. [PMID: 16051427 DOI: 10.1016/j.canlet.2005.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/08/2005] [Accepted: 06/14/2005] [Indexed: 01/04/2023]
Abstract
Minichromosome maintenance proteins (MCM) are required for initiation and elongation of chromosomal DNA, ensuring that DNA replication takes place only once. Although MCMs are considered of utmost importance in tumor biology and as potential marker proteins, they were not unambiguously identified at the protein level and we therefore aimed to characterize MCM 4 in a medulloblastoma cell line and provide a protein chemical analytical tool. In addition, we searched for this protein in twelve tumor cell lines and a series of non-tumor cells. The DAOY medulloblastoma cell line was cultivated, lysed, proteins extracted and run on two-dimensional gel electrophoresis with subsequent in-gel digestion and mass spectrometrical (MS/MS) analysis of protein spots. One spot at pI 6.2 with an observed molecular weight of 98 kDa was identified as minichromosome maintenance protein 4 by peptide fingerprinting. Sequence coverage of 35% along with 25 matched peptides and MS/MS analyses of three matching peptides warranted unambiguous identification. The use of mass spectrometrical identification unequivocally allowed determination of MCM 4 expression in a medulloblastoma cell line exclusively. Given the biological and probable clinical importance of this molecule as a tentative marker protein, a fair analytical tool, independent of antibody availability and specificity is mandatory and determinations at the transcriptional level cannot be extrapolated to protein levels per se, as there is a long and unpredictable way from mRNA to protein.
Collapse
Affiliation(s)
- Mariella Gruber-Olipitz
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|