1
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2024:10.1007/s12035-024-04679-3. [PMID: 39738875 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
3
|
Muench NA, Schmitt HM, Schlamp CL, Su AJA, Washington K, Nickells RW. Preservation of Murine Whole Eyes With Supplemented UW Cold Storage Solution: Anatomical Considerations. Transl Vis Sci Technol 2024; 13:24. [PMID: 39560629 DOI: 10.1167/tvst.13.11.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Purpose Retinal ganglion cell (RGC) apoptosis and axon regeneration are the principal obstacles challenging the development of successful whole eye transplantation (WET). The purpose of this study was to create a neuroprotective cocktail that targets early events in the RGC intrinsic apoptotic program to stabilize RGCs in a potential donor eye. Methods University of Wisconsin (UW) solution was augmented with supplements known to protect RGCs. Supplements targeted tyrosine kinase signaling, histone deacetylase activity, K+ ion efflux, macroglial stasis, and provided energy support. Modified UW (mUW) solutions with individual supplements were injected into the vitreous of enucleated mouse eyes, which were then stored in cold UW solution for 24 hours. Histopathology, immunostaining of individual retinal cell types, and analysis of cell-specific messenger RNAs (mRNAs) were used to identify supplements that were combined to create optimal mUW solution. Results UW and mUW solutions reduced ocular edema and focal ischemia in globes stored in cold storage. Two major issues were noted after cold storage, including retinal detachment and reduction in glial fibrillary acidic protein staining in astrocytes. A combination of supplements resolved both these issues and performed better than the individual supplements alone. Cold storage resulted in a reduction in cell-specific mRNAs, even though it preserved the corresponding protein products. Conclusions Eyes treated with optimal mUW solution exhibited preservation of retinal and cellular architecture, but did display a decrease in mRNA levels, suggesting that cold storage induced cellular stasis. Translational Relevance Application of optimal mUW solution lowers an important barrier to the development of a successful whole eye transplantation procedure.
Collapse
Affiliation(s)
- Nicole A Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heather M Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Perfuse Therapeutics Inc., Durham, NC, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - An-Jey A Su
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kia Washington
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- https://orcid.org/0000-0002-2998-5494
| |
Collapse
|
4
|
Enayati S, Chang K, Lennikov A, Yang M, Lee C, Ashok A, Elzaridi F, Yen C, Gunes K, Xie J, Cho KS, Utheim TP, Chen DF. Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa. Neural Regen Res 2024; 19:2543-2552. [PMID: 38526290 PMCID: PMC11090438 DOI: 10.4103/1673-5374.392888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00034/figure1/v/2024-03-08T184507Z/r/image-tiff Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho-/-) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors' eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho-/- mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5-1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho-/- mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho-/- mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.
Collapse
Affiliation(s)
- Sam Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Menglu Yang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Cherin Lee
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ajay Ashok
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Farris Elzaridi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christina Yen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kasim Gunes
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkiye
| | - Jia Xie
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tor Paaske Utheim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Institute of clinical medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Shinozaki Y, Namekata K, Guo X, Harada T. Glial cells as a promising therapeutic target of glaucoma: beyond the IOP. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1310226. [PMID: 38983026 PMCID: PMC11182302 DOI: 10.3389/fopht.2023.1310226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 07/11/2024]
Abstract
Glial cells, a type of non-neuronal cell found in the central nervous system (CNS), play a critical role in maintaining homeostasis and regulating CNS functions. Recent advancements in technology have paved the way for new therapeutic strategies in the fight against glaucoma. While intraocular pressure (IOP) is the most well-known modifiable risk factor, a significant number of glaucoma patients have normal IOP levels. Because glaucoma is a complex, multifactorial disease influenced by various factors that contribute to its onset and progression, it is imperative that we consider factors beyond IOP to effectively prevent or slow down the disease's advancement. In the realm of CNS neurodegenerative diseases, glial cells have emerged as key players due to their pivotal roles in initiating and hastening disease progression. The inhibition of dysregulated glial function holds the potential to protect neurons and restore brain function. Consequently, glial cells represent an enticing therapeutic candidate for glaucoma, even though the majority of glaucoma research has historically concentrated solely on retinal ganglion cells (RGCs). In addition to the neuroprotection of RGCs, the proper regulation of glial cell function can also facilitate structural and functional recovery in the retina. In this review, we offer an overview of recent advancements in understanding the non-cell-autonomous mechanisms underlying the pathogenesis of glaucoma. Furthermore, state-of-the-art technologies have opened up possibilities for regenerating the optic nerve, which was previously believed to be incapable of regeneration. We will also delve into the potential roles of glial cells in the regeneration of the optic nerve and the restoration of visual function.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
6
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
7
|
Zhang QQ, Qu Y. Brain-derived neurotrophic factor in degenerative retinal diseases: Update and novel perspective. J Neurosci Res 2023; 101:1624-1632. [PMID: 37334646 DOI: 10.1002/jnr.25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Dysfunction and death of neuronal cells are cardinal features of degenerative retinal diseases that are known to arise as the disease progresses. Increasingly evidence suggests that abnormal expression of brain-derived neurotrophic factor (BDNF) may serve as an obligatory relay of the dysfunction and death of neuronal cells in degenerative retinal diseases. Although disorder of BDNF, whether depletion or augmentation, has been connected with neuronal apoptosis and neuroinflammation, the exact mechanisms underlying the effect of impaired BDNF expression on degenerative retinal diseases remain unclear. Here, we present an overview of how BDNF is linked to pathological mechanism of retinal degenerative diseases, summarize BDNF-based treatment strategies, and discuss possible research perspectives in the future.
Collapse
Affiliation(s)
- Qing-Qing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Choi YK. An Altered Neurovascular System in Aging-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms232214104. [PMID: 36430581 PMCID: PMC9694120 DOI: 10.3390/ijms232214104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The eye has a complex and metabolically active neurovascular system. Repeated light injuries induce aging and trigger age-dependent eye diseases. Damage to blood vessels is related to the disruption of the blood-retinal barrier (BRB), altered cellular communication, disrupted mitochondrial functions, and exacerbated aggregated protein accumulation. Vascular complications, such as insufficient blood supply and BRB disruption, have been suggested to play a role in glaucoma, age-related macular degeneration (AMD), and Alzheimer's disease (AD), resulting in neuronal cell death. Neuronal loss can induce vision loss. In this review, we discuss the importance of the neurovascular system in the eye, especially in aging-related diseases such as glaucoma, AMD, and AD. Beneficial molecular pathways to prevent or slow down retinal pathologic processes will also be discussed.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
High-Contrast Stimulation Potentiates the Neurotrophic Properties of Müller Cells and Suppresses Their Pro-Inflammatory Phenotype. Int J Mol Sci 2022; 23:ijms23158615. [PMID: 35955747 PMCID: PMC9369166 DOI: 10.3390/ijms23158615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
High-contrast visual stimulation promotes retinal regeneration and visual function, but the underlying mechanism is not fully understood. Here, we hypothesized that Müller cells (MCs), which express neurotrophins such as brain-derived neurotrophic factor (BDNF), could be key players in this retinal plasticity process. This hypothesis was tested by conducting in vivo and in vitro high-contrast stimulation of adult mice and MCs. Following stimulation, we examined the expression of BDNF and its inducible factor, VGF, in the retina and MCs. We also investigated the alterations in the expression of VGF, nuclear factor kappa B (NF-κB) and pro-inflammatory mediators in MCs, as well as their capacity to proliferate and develop a neurogenic or reactive gliosis phenotype after high-contrast stimulation and treatment with BDNF. Our results showed that high-contrast stimulation upregulated BDNF levels in MCs in vivo and in vitro. The additional BDNF treatment significantly augmented VGF production in MCs and their neuroprotective features, as evidenced by increased MC proliferation, neurodifferentiation, and decreased expression of the pro-inflammatory factors and the reactive gliosis marker GFAP. These results demonstrate that high-contrast stimulation activates the neurotrophic and neuroprotective properties of MCs, suggesting their possible direct involvement in retinal neuronal survival and improved functional outcomes in response to visual stimulation.
Collapse
|
10
|
Lee K, Choi JO, Hwang A, Bae HW, Kim CY. Ciliary Neurotrophic Factor Derived From Astrocytes Protects Retinal Ganglion Cells Through PI3K/AKT, JAK/STAT, and MAPK/ERK Pathways. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35925584 PMCID: PMC9363680 DOI: 10.1167/iovs.63.9.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the roles of ciliary neurotrophic factor (CNTF) on the protective effects of astrocytes on retinal ganglion cells (RGCs). Methods Primary RGCs were isolated from neonatal rats. Oxidative stress was induced, and the effects of co-culture with astrocytes and CNTF treatment on RGCs were evaluated. The pathways commonly altered by astrocytes and CNTF were investigated. Effects of each pathway were investigated using pathway inhibitors against PI3K/AKT, JAK/STAT, and MAPK/ERK. RNA sequencing was performed to identify the genes upregulated and downregulated by CNTF treatment. Results Astrocytes improved the viability and increased β3-tubulin expression in RGCs. The concentration of CNTF increased in the RGC-astrocyte co-culture medium. The protective effects of astrocytes were abolished by neutralization with the anti-CNTF antibody; thus, CNTF may play an important role in the effects mediated by astrocytes. Furthermore, CNTF treatment alone enhanced the viability and β3-tubulin expression of RGCs and increased the population of viable RGCs under oxidative stress. The PI3K/AKT pathway was associated with both RGC viability and β3-tubulin expression. However, the JAK/STAT pathway increased the viability of RGCs, whereas the MAPK/ERK pathway was associated with β3-tubulin expression. RNA sequencing revealed the CNTF-upregulated genes associated with response to DNA damage and downregulated genes associated with photoreceptor cell differentiation. Conclusions Our data revealed protective effects of astrocyte-derived CNTF on RGCs. In addition, we showed that multiple pathways exert these protective effects and identified the novel genes involved. These results may be helpful in developing treatments for RGC injury.
Collapse
Affiliation(s)
- Kwanghyun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang, Gyeonggi-do, Republic of Korea
| | - Jin-Ok Choi
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ahreum Hwang
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyoung Won Bae
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Liu H, Bell K, Herrmann A, Arnhold S, Mercieca K, Anders F, Nagel-Wolfrum K, Thanos S, Prokosch V. Crystallins Play a Crucial Role in Glaucoma and Promote Neuronal Cell Survival in an In Vitro Model Through Modulating Müller Cell Secretion. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 35816047 PMCID: PMC9284462 DOI: 10.1167/iovs.63.8.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to explore the roles of crystallins in the context of aging in glaucoma and potential mechanisms of neuroprotection in an experimental animal model of glaucoma. Methods Intraocular pressure (IOP) was significantly elevated for 8 weeks in animals at different ages (10 days, 12 weeks, and 44 weeks) by episcleral vein cauterization. Retinal ganglion cells (RGCs) were quantified by anti-Brn3a immunohistochemical staining (IHC). Proteomics using ESI-LTQ Orbitrap XL-MS was used to analyze the presence and abundance of crystallin isoforms the retinal samples, respectively. Neuroprotective property and localization of three selected crystallins CRYAB, CRYBB2, and CRYGB as most significantly changed in retina and retinal layers were determined by IHC. Their expressions and endocytic uptakes into Müller cells were analyzed by IHC and Western blotting. Müller cell secretion of neurotrophic factors into the supernatant following CRYAB, CRYBB2, and CRYGB supplementation in vitro was measured via microarray. Results IOP elevation resulted in significant RGC loss in all age groups (P < 0.001). The loss increased with aging. Proteomics analysis revealed in parallel a significant decrease of crystallin abundance – especially CRYAB, CRYBB2, and CRYGB. Significant neuroprotective effects of CRYAB, CRYBB2, and CRYGB after addition to retinal cultures were demonstrated (P < 0.001). Endocytic uptake of CRYAB, CRYBB2, and CRYGB was seen in Müller cells with subsequent increased secretion of various neurotrophic factors into the supernatant, including nerve growth factor, clusterin, and matrix metallopeptidase 9. Conclusions An age-dependent decrease in CRYAB, CRYBB2, and CRYGB abundance is found going along with increased RGC loss. Addition of CRYAB, CRYBB2, and CRYGB to culture protected RGCs in vitro. CRYAB, CRYBB2, and CRYGB were uptaken into Müller cells. Secretion of neurotrophic factors was increased as a potential mode of action.
Collapse
Affiliation(s)
- Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Katharina Bell
- Singapore Eye Research Institute and Singapore National Eye Center, Singapore; Duke-NUS Medical School, Singapore
| | - Anja Herrmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Karl Mercieca
- Department of Ophthalmology, University Medical Center Bonn, Bonn, Germany
| | - Fabian Anders
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Nagel-Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Solon Thanos
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Münster, Münster, Germany
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Borges JMP, de Jesus LB, Dos Santos Souza C, da Silva VDA, Costa SL, de Fátima Dias Costa M, El-Bachá RS. Astrocyte Reaction to Catechol-Induced Cytotoxicity Relies on the Contact with Microglia Before Isolation. Neurotox Res 2022; 40:973-994. [PMID: 35708826 DOI: 10.1007/s12640-022-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Astrocytes preserve the brain microenvironment homeostasis in order to protect other brain cells, mainly neurons, against damages. Glial cells have specific functions that are important in the context of neuronal survival in different models of central nervous system (CNS) diseases. Microglia are among these cells, secreting several molecules that can modulate astrocyte functions. Although 1,2-dihydroxybenzene (catechol) is a neurotoxic monoaromatic compound of exogenous origin, several endogenous molecules also present the catechol group. This study compared two methods to obtain astrocyte-enriched cultures from newborn Wistar rats of both sexes. In the first technique (P1), microglial cells began to be removed early 48 h after primary mixed glial cultures were plated. In the second one (P2), microglial cells were late removed 7 to 10 days after plating. Both cultures were exposed to catechol for 72 h. Catechol was more cytotoxic to P1 cultures than to P2, decreasing cellularity and changing the cell morphology. Microglial-conditioned medium (MCM) protected P1 cultures and inhibited the catechol autoxidation. P2 cultures, as well as P1 in the presence of 20% MCM, presented long, dense, and fibrillary processes positive for glial fibrillary acidic protein, which retracted the cytoplasm when exposed to catechol. The Ngf and Il1beta transcription increased in P1, meanwhile astrocytes expressed more Il10 in P2. Catechol decreased Bdnf and Il10 in P2 cultures, and it decreased the expression of Il1beta in both conditions. A prolonged contact with microglia before isolation of astrocyte-enriched cultures modifies astrocyte functions and morphology, protecting these cells against catechol-induced cytotoxicity.
Collapse
Affiliation(s)
- Julita Maria Pereira Borges
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil. .,Department of Science and Technology, Southwest Bahia State University (UESB), 45.208-409, Jequie, BA, Brazil.
| | - Lívia Bacelar de Jesus
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Cleide Dos Santos Souza
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Victor Diogenes Amaral da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Maria de Fátima Dias Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Ramon Santos El-Bachá
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil.
| |
Collapse
|
13
|
Dieguez HH, Calanni JS, Romeo HE, Alaimo A, González Fleitas MF, Iaquinandi A, Chianelli MS, Keller Sarmiento MI, Sande PH, Rosenstein RE, Dorfman D. Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration. Cell Death Dis 2021; 12:1128. [PMID: 34864827 PMCID: PMC9632251 DOI: 10.1038/s41419-021-04412-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Non-exudative age-related macular degeneration (NE-AMD), the main cause of blindness in people above 50 years old, lacks effective treatments at the moment. We have developed a new NE-AMD model through unilateral superior cervical ganglionectomy (SCGx), which elicits the disease main features in C57Bl/6J mice. The involvement of oxidative stress in the damage induced by NE-AMD to the retinal pigment epithelium (RPE) and outer retina has been strongly supported by evidence. We analysed the effect of enriched environment (EE) and visual stimulation (VS) in the RPE/outer retina damage within experimental NE-AMD. Exposure to EE starting 48 h post-SCGx, which had no effect on the choriocapillaris ubiquitous thickness increase, protected visual functions, prevented the thickness increase of the Bruch’s membrane, and the loss of the melanin of the RPE, number of melanosomes, and retinoid isomerohydrolase (RPE65) immunoreactivity, as well as the ultrastructural damage of the RPE and photoreceptors, exclusively circumscribed to the central temporal (but not nasal) region, induced by experimental NE-AMD. EE also prevented the increase in outer retina/RPE oxidative stress markers and decrease in mitochondrial mass at 6 weeks post-SCGx. Moreover, EE increased RPE and retinal brain-derived neurotrophic factor (BDNF) levels, particularly in Müller cells. When EE exposure was delayed (dEE), starting at 4 weeks post-SCGx, it restored visual functions, reversed the RPE melanin content and RPE65-immunoreactivity decrease. Exposing animals to VS protected visual functions and prevented the decrease in RPE melanin content and RPE65 immunoreactivity. These findings suggest that EE housing and VS could become an NE-AMD promising therapeutic strategy.
Collapse
Affiliation(s)
- Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Horacio E Romeo
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, BIOMED/UCA/CONICET, Buenos Aires, Argentina
| | - Agustina Alaimo
- Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological Chemistry, School of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Agustina Iaquinandi
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica S Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María I Keller Sarmiento
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Pablo H Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Arrigo A, Aragona E, Saladino A, Arrigo D, Fantaguzzi F, Battaglia Parodi M, Bandello F. Cognitive Dysfunctions in Glaucoma: An Overview of Morpho-Functional Mechanisms and the Impact on Higher-Order Visual Function. Front Aging Neurosci 2021; 13:747050. [PMID: 34690746 PMCID: PMC8526892 DOI: 10.3389/fnagi.2021.747050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Glaucoma is a chronic, vision-threatening disease, and a major cause of legal blindness. The current view is no longer limited to the progressive optic nerve injury, since growing evidence strongly support the interpretation of glaucoma as a complex neurodegenerative disease. However, the precise pathogenic mechanisms leading to the onset and progression of central nervous system (CNS) impairment, and the functional consequences of this damage, are still partially understood. The main aim of this review is to provide a complete and updated overview of the current knowledge regarding the CNS involvement in glaucoma, and the possible therapeutic perspectives. Methods: We made a careful survey of the current literature reporting all the relevant findings related to the cognitive dysfunctions occurring in glaucoma, with specific remarks dedicated on the higher-order visual function impairment and the possible employment of neuroprotective agents. Results: The current literature strongly support the interpretation of glaucoma as a multifaceted chronic neurodegenerative disease, widely affecting the CNS. The cognitive impairment may vary in terms of higher-order functions involvement and in the severity of the degeneration. Although several neuroprotective agents are currently available, the development of new molecules represents a major topic of investigation for future clinical trials. Conclusions: Glaucoma earned the right to be fully considered a neurodegenerative disease. Glaucomatous patients may experience a heterogeneous set of visual and cognitive symptoms, progressively deteriorating the quality of life. Neuroprotection is nowadays a necessary therapeutic goal and a future promising way to preserve visual and cognitive functions, thus improving patients' quality of life.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Davide Arrigo
- School of Medicine, University of Messina, Messina, Italy
| | - Federico Fantaguzzi
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| |
Collapse
|
15
|
Huang R, Xu Y, Lu X, Tang X, Lin J, Cui K, Yu S, Shi Y, Ye D, Liu Y, Liang X. Melatonin protects inner retinal neurons of newborn mice after hypoxia-ischemia. J Pineal Res 2021; 71:e12716. [PMID: 33426650 DOI: 10.1111/jpi.12716] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
Retinopathy of prematurity is a vision-threatening disease associated with retinal hypoxia-ischemia, leading to the death of retinal neurons and chronic neuronal degeneration. During this study, we used the oxygen-induced retinopathy mice model to mimic retinal hypoxia-ischemia phenotypes to investigate further the neuroprotective effect of melatonin on neonatal retinal neurons. Melatonin helped maintain relatively normal inner retinal architecture and thickness and preserve inner retinal neuron populations in avascular areas by rescuing retinal ganglion and bipolar cells, and horizontal and amacrine neurons, from apoptosis. Meanwhile, melatonin recovered visual dysfunction, as reflected by the improved amplitudes and implicit times of a-wave, b-wave, and oscillatory potentials. Additionally, elevated cleaved caspase-3 and Bax protein levels and reduced Bcl-2 protein levels in response to hypoxia-ischemia were diminished after melatonin treatment. Moreover, melatonin increased BDNF and downstream phospho-TrkB/Akt/ERK/CREB levels. ANA-12, a TrkB receptor antagonist, antagonized these melatonin actions and reduced melatonin-induced neuroprotection. Furthermore, melatonin rescued the reduction in melatonin receptor expression. This study suggests that melatonin exerted anti-apoptotic and neuroprotective effects in inner retinal neurons after hypoxia-ischemia, at least partly due to modulation of the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianqiang Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Harnessing Astrocytes and Müller Glial Cells in the Retina for Survival and Regeneration of Retinal Ganglion Cells. Cells 2021; 10:cells10061339. [PMID: 34071545 PMCID: PMC8229010 DOI: 10.3390/cells10061339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
Astrocytes have been associated with the failure of axon regeneration in the central nervous system (CNS), as it undergoes reactive gliosis in response to damages to the CNS and functions as a chemical and physical barrier to axon regeneration. However, beneficial roles of astrocytes have been extensively studied in the spinal cord over the years, and a growing body of evidence now suggests that inducing astrocytes to become more growth-supportive can promote axon regeneration after spinal cord injury (SCI). In retina, astrocytes and Müller cells are known to undergo reactive gliosis after damage to retina and/or optic nerve and are hypothesized to be either detrimental or beneficial to survival and axon regeneration of retinal ganglion cells (RGCs). Whether they can be induced to become more growth-supportive after retinal and optic nerve injury has yet to be determined. In this review, we pinpoint the potential molecular pathways involved in the induction of growth-supportive astrocytes in the spinal cord and suggest that stimulating the activation of these pathways in the retina could represent a new therapeutic approach to promoting survival and axon regeneration of RGCs in retinal degenerative diseases.
Collapse
|
17
|
VEGF Mediates Retinal Müller Cell Viability and Neuroprotection through BDNF in Diabetes. Biomolecules 2021; 11:biom11050712. [PMID: 34068807 PMCID: PMC8150851 DOI: 10.3390/biom11050712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
To investigate the mechanism of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) in Müller cell (MC) viability and neuroprotection in diabetic retinopathy (DR), we examined the role of VEGF in MC viability and BDNF production, and the effect of BDNF on MC viability under diabetic conditions. Mouse primary MCs and cells of a rat MC line, rMC1, were used in investigating MC viability and BDNF production under diabetic conditions. VEGF-stimulated BDNF production was confirmed in mice. The mechanism of BDNF-mediated MC viability was examined using siRNA knockdown. Under diabetic conditions, recombinant VEGF (rVEGF) stimulated MC viability and BDNF production in a dose-dependent manner. rBDNF also supported MC viability in a dose-dependent manner. Targeting BDNF receptor tropomyosin receptor kinase B (TRK-B) with siRNA knockdown substantially downregulated the activated (phosphorylated) form of serine/threonine-specific protein kinase (AKT) and extracellular signal-regulated kinase (ERK), classical survival and proliferation mediators. Finally, the loss of MC viability in TrkB siRNA transfected cells under diabetic conditions was rescued by rBDNF. Our results provide direct evidence that VEGF is a positive regulator for BDNF production in diabetes for the first time. This information is essential for developing BDNF-mediated neuroprotection in DR and hypoxic retinal diseases, and for improving anti-VEGF treatment for these blood-retina barrier disorders, in which VEGF is a major therapeutic target for vascular abnormalities.
Collapse
|
18
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
19
|
Ahmad A, Nawaz MI, Siddiquei MM, Abu El-Asrar AM. Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Müller cells and diabetic rat retina. Mol Cell Biochem 2021; 476:2099-2109. [PMID: 33515385 DOI: 10.1007/s11010-021-04071-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Bürger S, Meng J, Zwanzig A, Beck M, Pankonin M, Wiedemann P, Eichler W, Unterlauft JD. Pigment Epithelium-Derived Factor (PEDF) Receptors Are Involved in Survival of Retinal Neurons. Int J Mol Sci 2020; 22:E369. [PMID: 33396450 PMCID: PMC7795132 DOI: 10.3390/ijms22010369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 02/02/2023] Open
Abstract
The demise of retinal ganglion cells (RGCs) is characteristic of diseases of the retina such as glaucoma and diabetic or ischemic retinopathies. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted protein that mediates neuroprotection and inhibition of angiogenesis in the retina. We have studied expression and regulation of two of several receptors for PEDF, patatin-like phospholipase 2 gene product/PEDF-R and laminin receptor (LR), in serum-starved RGC under normoxia and hypoxia and investigated their involvement in the survival of retinal neuronal cells. We show that PEDF-R and LR are co-expressed in RGC and R28 retinal precursor cells. Expression of both receptors was enhanced in the presence of complex secretions from retinal glial (Müller) cells and upregulated by VEGF and under hypoxic conditions. PEDF-R- and LR-knocked-down cells demonstrated a markedly attenuated expression of anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-xL) and neuroprotective mediators (PEDF, VEGF, BDNF) suggesting that both PEDF-R and LR mediate pro-survival effects of PEDF on RGC. While this study does not provide evidence for a differential survival-promoting influence of either PEDF-R or LR, it nevertheless highlights the importance of both PEDF receptors for the viability of retinal neurons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wolfram Eichler
- Department of Ophthalmology and Eye Hospital, Leipzig University, Liebigstrasse 10-14, D-04103 Leipzig, Germany; (S.B.); (J.M.); (A.Z.); (M.B.); (M.P.); (P.W.); (J.D.U.)
| | | |
Collapse
|
21
|
He YY, Wang L, Zhang T, Weng SJ, Lu J, Zhong YM. Aerobic exercise delays retinal ganglion cell death after optic nerve injury. Exp Eye Res 2020; 200:108240. [PMID: 32919994 DOI: 10.1016/j.exer.2020.108240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022]
Abstract
Aerobic exercise has been shown to play a crucial role in preventing neurological diseases and improving cognitive function. In the present study, we investigated the effect of treadmill training on retinal ganglion cells (RGCs) following optic nerve transection in adult rats. We exercised the rats on a treadmill for 5 d/week (30 min/d at a rate of 9 m/min) or placed control rats on static treadmills. After 3 weeks of exercise, the left optic nerve of each rat was transected. After the surgery, the rat was exercised for another week. The percentages of surviving RGCs in the axotomized eyes of inactive rats were 67% and 39% at 5 and 7 days postaxotomy, respectively. However, exercised rats had significant more RGCs at 5 (74% survival) and 7 days (48% survival) after axotomy. Moreover, retinal brain-derived neurotrophic factor (BDNF) protein levels were significantly upregulated in response to exercise compared with those in the axotomized eyes of inactive rats. Blocking BNDF signaling during exercise by intraperitoneal injections of ANA-12, a BDNF tropomyosin receptor kinase (TrkB) receptor antagonist, reduced the number of RGCs in exercised rats to the level of RGCs in the inactive rats, effectively abolishing the protection of RGCs afforded by exercise. The results suggest that treadmill training effectively rescues RGCs from neurodegeneration following optic nerve transection by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Yuan-Yuan He
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tao Zhang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Jun Weng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Lu
- College of Physical & Health, East China Normal University, Shanghai, 200241, China.
| | - Yong-Mei Zhong
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Lin J, Hu J, Schlotterer A, Wang J, Kolibabka M, Awwad K, Dietrich N, Breitschopf K, Wohlfart P, Kannt A, Lorenz K, Feng Y, Popp R, Hoffmann S, Fleming I, Hammes HP. Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. Am J Cancer Res 2020; 10:7857-7871. [PMID: 32685025 PMCID: PMC7359083 DOI: 10.7150/thno.43154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Vasoregression secondary to glial activation develops in various retinal diseases, including retinal degeneration and diabetic retinopathy. Photoreceptor degeneration and subsequent retinal vasoregression, characterized by pericyte loss and acellular capillary formation in the absence diabetes, are also seen in transgenic rats expressing the polycystic kidney disease (PKD) gene. Activated Müller glia contributes to retinal vasodegeneration, at least in part via the expression of the soluble epoxide hydrolase (sEH). Given that an increase in sEH expression triggered vascular destabilization in diabetes, and that vasoregression is similar in diabetic mice and PKD rats, the aim of the present study was to determine whether sEH inhibition could prevent retinal vasoregression in the PKD rat. Methods: One-month old male homozygous transgenic PKD rats were randomly allocated to receive vehicle or a sEH inhibitor (sEH-I; Sar5399, 30 mg/kg) for four weeks. Wild-type Sprague-Dawley (SD) littermates received vehicle as controls. Retinal sEH expression and activity were measured by Western blotting and LC-MS, and vasoregression was quantified in retinal digestion preparations. Microglial activation and immune response cytokines were assessed by immunofluorescence and quantitative PCR, respectively. 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) mediated Notch signaling, microglial activation and migration were assessed in vivo and in vitro. Results: This study demonstrates that sEH expression and activity were increased in PKD retinae, which led to elevated production of 19,20-DHDP and the depression of Notch signaling. The latter changes elicited pericyte loss and the recruitment of CD11b+/CD74+ microglia to the perivascular region. Microglial activation increased the expression of immune-response cytokines, and reduced levels of Notch3 and delta-like ligand 4 (Dll4). Treatment with Sar5399 decreased 19,20-DHDP generation and increased Notch3 expression. Sar5399 also prevented vasoregression by reducing pericyte loss and suppressed microglial activation as well as the expression of immune-response cytokines. Mechanistically, the activation of Notch signaling by Dll4 maintained a quiescent microglial cell phenotype, i.e. reduced both the surface presentation of CD74 and microglial migration. In contrast, in retinal explants, 19,20-DHDP and Notch inhibition both promoted CD74 expression and reversed the Dll4-induced decrease in migration. Conclusions: Our data indicate that 19,20-DHDP-induced alterations in Notch-signaling result in microglia activation and pericyte loss and contribute to retinal vasoregression in polycystic kidney disease. Moreover, sEH inhibition can ameliorate vasoregression through reduced activity of inflammatory microglia. sEH inhibition is thus an attractive new therapeutic approach to prevent retinal vasoregression.
Collapse
|
23
|
Enayati S, Chang K, Achour H, Cho KS, Xu F, Guo S, Z. Enayati K, Xie J, Zhao E, Turunen T, Sehic A, Lu L, Utheim TP, Chen DF. Electrical Stimulation Induces Retinal Müller Cell Proliferation and Their Progenitor Cell Potential. Cells 2020; 9:E781. [PMID: 32210151 PMCID: PMC7140850 DOI: 10.3390/cells9030781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Non-invasive electrical stimulation (ES) is increasingly applied to improve vision in untreatable eye conditions, such as retinitis pigmentosa and age-related macular degeneration. Our previous study suggested that ES promoted retinal function and the proliferation of progenitor-like glial cells in mice with inherited photoreceptor degeneration; however, the underlying mechanism remains obscure. Müller cells (MCs) are thought to be dormant residential progenitor cells that possess a high potential for retinal neuron repair and functional plasticity. Here, we showed that ES with a ramp waveform of 20 Hz and 300 µA of current was effective at inducing mouse MC proliferation and enhancing their expression of progenitor cell markers, such as Crx (cone-rod homeobox) and Wnt7, as well as their production of trophic factors, including ciliary neurotrophic factor. RNA sequencing revealed that calcium signaling pathway activation was a key event, with a false discovery rate of 5.33 × 10-8 (p = 1.78 × 10-10) in ES-mediated gene profiling changes. Moreover, the calcium channel blocker, nifedipine, abolished the observed effects of ES on MC proliferation and progenitor cell gene induction, supporting a central role of ES-induced Ca2+ signaling in the MC changes. Our results suggest that low-current ES may present a convenient tool for manipulating MC behavior toward neuroregeneration and repair.
Collapse
Affiliation(s)
- Sam Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Institute of clinical medicine, University of Oslo, 0318 Oslo, Norway
| | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Hamida Achour
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Institute of clinical medicine, University of Oslo, 0318 Oslo, Norway
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.X.); (L.L.)
| | - Shuai Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Katarina Z. Enayati
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Jia Xie
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Eric Zhao
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Tytteli Turunen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| | - Amer Sehic
- Department of Oral Biology; Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway;
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (F.X.); (L.L.)
| | - Tor Paaske Utheim
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Oral Biology; Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway;
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0027 Oslo, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (S.E.); (K.C.); (H.A.); (K.-S.C.); (S.G.); (K.Z.E.); (J.X.); (E.Z.); (T.T.); (T.P.U.)
| |
Collapse
|
24
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
25
|
Bulka CM, Dammann O, Santos HP, VanderVeen DK, Smeester L, Fichorova R, O'Shea TM, Fry RC. Placental CpG Methylation of Inflammation, Angiogenic, and Neurotrophic Genes and Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2019; 60:2888-2894. [PMID: 31266060 PMCID: PMC6607927 DOI: 10.1167/iovs.18-26466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose Extremely preterm infants are at increased risk for retinopathy of prematurity (ROP). We previously identified several inflammatory proteins that were expressed early in life and are associated with an increased risk of ROP and several angiogenic and neurotrophic growth factors in the neonatal systemic circulation that are associated with a lower risk of ROP. In this paper, we report the results of a set of analyses designed to test the hypothesis that placental CpG methylation levels of 12 inflammation-, angiogenic-, and neurotrophic-associated genes predict the occurrence of prethreshold ROP in extremely preterm newborns. Methods We used placental CpG methylation data from 395 newborns from the Extremely Low Gestational Age Newborns study. Results Multivariable regression models revealed that placental DNA methylation of 16 CpG sites representing 8 genes were associated with prethreshold ROP. Specifically, CpG methylation in the serum amyloid A SAA1 and SAA2, brain-derived neurotrophic factor (BDNF), myeloperoxidase (MPO), C-reactive protein (CRP), angiopoietin 1 (ANGPT1), and tumor necrosis factor receptor superfamily member 1B (TNFRSF1B) genes was associated with a lower risk of prethreshold ROP. Conversely, CpG methylation at three probes within tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) and in two alternative probes within the BDNF and ANGPT1 genes was associated with an increased risk of ROP. Conclusions CpG methylation may be a useful marker for improving ROP prediction, opening the opportunity for early intervention to lessen disease severity.
Collapse
Affiliation(s)
- Catherine M. Bulka
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States
- Perinatal Neuroepidemiology Unit, Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Hudson P. Santos
- School of Nursing, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Deborah K. VanderVeen
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Raina Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham And Women's Hospital, Boston, Massachusetts, United States
| | - T. Michael O'Shea
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
26
|
Zhou Z, Ikegaya Y, Koyama R. The Astrocytic cAMP Pathway in Health and Disease. Int J Mol Sci 2019; 20:E779. [PMID: 30759771 PMCID: PMC6386894 DOI: 10.3390/ijms20030779] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are major glial cells that play critical roles in brain homeostasis. Abnormalities in astrocytic functions can lead to brain disorders. Astrocytes also respond to injury and disease through gliosis and immune activation, which can be both protective and detrimental. Thus, it is essential to elucidate the function of astrocytes in order to understand the physiology of the brain to develop therapeutic strategies against brain diseases. Cyclic adenosine monophosphate (cAMP) is a major second messenger that triggers various downstream cellular machinery in a wide variety of cells. The functions of astrocytes have also been suggested as being regulated by cAMP. Here, we summarize the possible roles of cAMP signaling in regulating the functions of astrocytes. Specifically, we introduce the ways in which cAMP pathways are involved in astrocyte functions, including (1) energy supply, (2) maintenance of the extracellular environment, (3) immune response, and (4) a potential role as a provider of trophic factors, and we discuss how these cAMP-regulated processes can affect brain functions in health and disease.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
- Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
27
|
Devoldere J, Peynshaert K, De Smedt SC, Remaut K. Müller cells as a target for retinal therapy. Drug Discov Today 2019; 24:1483-1498. [PMID: 30731239 DOI: 10.1016/j.drudis.2019.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Müller cells are specialized glial cells that span the entire retina from the vitreous cavity to the subretinal space. Their functional diversity and unique radial morphology render them particularly interesting targets for new therapeutic approaches. In this review, we reflect on various possibilities for selective Müller cell targeting and describe how some of their cellular mechanisms can be used for retinal neuroprotection. Intriguingly, cross-species investigation of their properties has revealed that Müller cells also have an essential role in retinal regeneration. Although many questions regarding this subject remain, it is clear that Müller cells have unique characteristics that make them suitable targets for the prevention and treatment of numerous retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Alqawlaq S, Flanagan JG, Sivak JM. All roads lead to glaucoma: Induced retinal injury cascades contribute to a common neurodegenerative outcome. Exp Eye Res 2018; 183:88-97. [PMID: 30447198 DOI: 10.1016/j.exer.2018.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
Abstract
Glaucoma describes a distinct optic neuropathy with complex etiology and a variety of associated risk factors, but with similar pathological endpoints. Risk factors such as age, increased intraocular pressure (IOP), low mean arterial pressure, and autoimmune disease, can all be associated with death of retinal ganglion cells (RGCs) and optic nerve head remodeling. Today, IOP management remains the standard of care, even though IOP elevation is not pathognomonic of glaucoma, and patients can continue to lose vision despite effective IOP control. A contemporary view of glaucoma as a complex, neurodegenerative disease has developed, along with the recognition of a need for new disease modifying retinal treatment strategies and improved outcomes. However, the distinction between risk factors triggering the disease process and retinal injury responses is not always clear. In this review, we attempt to distinguish between the various triggers, and their association with subsequent key RGC injury mechanisms. We propose that distinct glaucomatous risk factors result in similar retinal and optic nerve injury cascades, including oxidative and metabolic stress, glial reactivity, and altered inflammatory responses, which induce common molecular signals to induce RGC apoptosis. This organization forms a coherent disease framework and presents conserved targets for therapeutic intervention that are not limited to specific risk factors.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - John G Flanagan
- School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol 2018; 16:1018-1035. [PMID: 29676228 PMCID: PMC6120108 DOI: 10.2174/1570159x16666180419121247] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration is a major feature of glaucoma pathology. Neuroprotective approaches that delay or halt the progression of RGC loss are needed to prevent vision loss which can occur even after conventional medical or surgical treatments to lower intraocular pressure. OBJECTIVE The aim of this review was to examine the progress in genetics and cellular mechanisms associated with endoplasmic reticulum (ER) stress, RGC dysfunction and cell death pathways in glaucoma. MATERIALS AND METHODS Here, we review the involvement of neurotrophins like brain derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin receptor kinase (TrkB) in glaucoma. The role of ER stress markers in human and animal retinas in health and disease conditions is also discussed. Further, we analysed the literature highlighting genetic linkage in the context of primary open angle glaucoma and suggested mechanistic insights into potential therapeutic options relevant to glaucoma management. RESULTS The literature review of the neurobiology underlying neurotrophin pathways, ER stress and gene associations provide critical insights into association of RGCs death in glaucoma. Alteration in signalling pathway is associated with increased risk of misfolded protein aggregation in ER promoting RGC apoptosis. Several genes that are linked with neurotrophin signalling pathways have been reported to be associated with glaucoma pathology. CONCLUSION Understanding genetic heterogeneity and involvement of neurotrophin biology in glaucoma could help to understand the complex pathophysiology of glaucoma. Identification of novel molecular targets will be critical for drug development and provide neuroprotection to the RGCs and optic nerve.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Address correspondence to this author at the Faculty of Medicine and Health Sciences, 75, Talavera Road, Macquarie University, Sydney, NSW 2109, Australia; Tel: +61-298502760; E-mail:
| | | | | | | | | | | |
Collapse
|
30
|
LOW SERUM BRAIN-DERIVED NEUROTROPHIC FACTOR BUT NOT BRAIN-DERIVED NEUROTROPHIC FACTOR GENE VAL66MET POLYMORPHISM IS ASSOCIATED WITH DIABETIC RETINOPATHY IN CHINESE TYPE 2 DIABETIC PATIENTS. Retina 2017; 37:350-358. [PMID: 27355244 DOI: 10.1097/iae.0000000000001132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/PURPOSE The aim of our research was to investigate the potential role of brain-derived neurotrophic factor (BDNF) in diabetic retinopathy (DR). Measurement of serum circulating levels of BDNF and analysis of polymorphism of BDNF gene (Val66Met) were applied and compared with diabetic patients without DR. METHODS From February 2014 and March 2015, all eligible patients with Type 2 diabetic mellitus at our hospital were consecutively recruited (N = 404). Their serum BDNF levels were detected by enzyme-linked immunosorbent assay. BDNF val66met polymorphism genotyping was conducted according to the laboratory's standard protocol. At baseline, demographic and clinical data were taken. The relationship of BDNF with DR was investigated with the use of logistic regression models. Receiver operating characteristic curves were used to test the overall accuracy of BDNF and other markers. RESULTS Diabetic patients with DR and vision-threatening DR had significantly lower BDNF levels on admission (P < 0.0001 both). The BDNF genotyping results showed that there was no difference between the diabetic patients with DR and those without DR. Multivariate logistic regression analysis adjusted for common risk factors showed that serum BDNF levels were independent risk factors for DR (odds ratio = 0.86; 95% confidence interval [CI]: 0.80-0.92; P < 0.0001) and vision-threatening DR (odds ratio = 0.79; 95% CI: 0.75-0.85; P < 0.0001). Brain-derived neurotrophic factor improved the area under the receiver operating characteristic curve of the diabetes duration for DR from 0.69 (95% CI: 0.60-0.76) to 0.85 (95% CI: 0.79-0.90; P < 0.01) and for vision-threatening DR from 0.77 (95% CI: 0.67-0.87) to 0.86 (95% CI: 0.80-0.92; P < 0.01). CONCLUSION The present study demonstrated that, rather than Val66Met polymorphism, decreased serum levels of BDNF were associated with DR and vision-threatening DR in Chinese Type 2 diabetic patients, suggesting a possible role of BDNF in the pathogenesis of DR complications.
Collapse
|
31
|
Nguyen CTO, Hui F, Charng J, Velaedan S, van Koeverden AK, Lim JKH, He Z, Wong VHY, Vingrys AJ, Bui BV, Ivarsson M. Retinal biomarkers provide "insight" into cortical pharmacology and disease. Pharmacol Ther 2017; 175:151-177. [PMID: 28174096 DOI: 10.1016/j.pharmthera.2017.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The retina is an easily accessible out-pouching of the central nervous system (CNS) and thus lends itself to being a biomarker of the brain. More specifically, the presence of neuronal, vascular and blood-neural barrier parallels in the eye and brain coupled with fast and inexpensive methods to quantify retinal changes make ocular biomarkers an attractive option. This includes its utility as a biomarker for a number of cerebrovascular diseases as well as a drug pharmacology and safety biomarker for the CNS. It is a rapidly emerging field, with some areas well established, such as stroke risk and multiple sclerosis, whereas others are still in development (Alzheimer's, Parkinson's, psychological disease and cortical diabetic dysfunction). The current applications and future potential of retinal biomarkers, including potential ways to improve their sensitivity and specificity are discussed. This review summarises the existing literature and provides a perspective on the strength of current retinal biomarkers and their future potential.
Collapse
Affiliation(s)
- Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Flora Hui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Shajan Velaedan
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Magnus Ivarsson
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
32
|
Toft-Kehler AK, Skytt DM, Svare A, Lefevere E, Van Hove I, Moons L, Waagepetersen HS, Kolko M. Mitochondrial function in Müller cells - Does it matter? Mitochondrion 2017; 36:43-51. [PMID: 28179130 DOI: 10.1016/j.mito.2017.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 11/17/2022]
Abstract
Growing evidence suggests that mitochondrial dysfunction might play a key role in the pathogenesis of age-related neurodegenerative inner retinal diseases such as diabetic retinopathy and glaucoma. Therefore, the present review provides a perspective on the impact of functional mitochondria in the most predominant glial cells of the retina, the Müller cells. Müller cells span the entire thickness of the neuroretina and are in close proximity to retinal cells including the retinal neurons that provides visual signaling to the brain. Among multiple functions, Müller cells are responsible for the removal of neurotransmitters, buffering potassium, and providing neurons with essential metabolites. Thus, Müller cells are responsible for a stable metabolic dialogue in the inner retina and their crucial role in supporting retinal neurons is indisputable. Müller cell functions require considerable energy production and previous literature has primarily emphasized glycolysis as the main energy provider. However, recent studies highlight the need of mitochondrial ATP production to upheld Müller cell functions. Therefore, the present review aims to provide an overview of the current evidence on the impact of mitochondrial functions in Müller cells.
Collapse
Affiliation(s)
- Anne Katrine Toft-Kehler
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.
| | - Dorte Marie Skytt
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - Alicia Svare
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Helle S Waagepetersen
- Neuromet, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen O, Denmark; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; Zealand University Hospital, Department of Ophthalmology, Vestermarksvej 23, 4000 Roskilde, Denmark.
| |
Collapse
|
33
|
Ola MS, Ahmed MM, Shams S, Al-Rejaie SS. Neuroprotective effects of quercetin in diabetic rat retina. Saudi J Biol Sci 2016; 24:1186-1194. [PMID: 28855811 PMCID: PMC5562465 DOI: 10.1016/j.sjbs.2016.11.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes and the leading cause of blindness among working adults worldwide. DR is being widely recognized as a neurodegenerative disease of the retina, since, retinal neurons are damaged soon after diabetes onset. Diabetes-induced oxidative stress is considered as central factor that dysregulates neurotrophic factors and activates apoptosis, thereby damages neurons in the diabetic retina. Flavonoids being a powerful antioxidant have been considered to protect neurons in diabetic retina. The purpose of this study was to analyze the beneficial effects of flavonoid, quercetin to protect neurons in the diabetic rat retina. We quantitated the expression levels of BDNF, NGF, TrkB, synaptophysin, Akt, Bcl-2, cytochrome c and caspase-3 using Western blotting techniques in the diabetic retina with and without quercetin treatments and compared with non-diabetic rats. In addition, we employed ELISA techniques to determine the level of BDNF. Caspase-3 activity and the level of glutathione were analyzed by biochemical methods. Our results indicate that quercetin treatment to diabetic rats caused a significant increase in the level of neurotrophic factors and inhibited the level of cytochrome c and caspase-3 activity in the diabetic retina. Furthermore, the level of an anti-apoptotic protein Bcl-2 was augmented in quercetin treated diabetic retina. Thus, quercetin, may protect the neuronal damage in diabetic retina by ameliorating the levels of neurotrophic factors and also by inhibiting the apoptosis of neurons. Therefore, this study suggests that quercetin can be a suitable therapeutic agent to prevent neurodegeneration in diabetic retinopathy.
Collapse
Affiliation(s)
- Mohammad S Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakeeb Shams
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Galindo-Romero C, Harun-Or-Rashid M, Jiménez-López M, Vidal-Sanz M, Agudo-Barriuso M, Hallböök F. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina. PLoS One 2016; 11:e0161862. [PMID: 27611432 PMCID: PMC5017579 DOI: 10.1371/journal.pone.0161862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/14/2016] [Indexed: 11/28/2022] Open
Abstract
We have studied the effect of α2-adrenergic receptor stimulation on the total excitotoxically injured chicken retinal ganglion cell population. N-methyl-D-aspartate (NMDA) was intraocularly injected at embryonic day 18 and Brn3a positive retinal ganglion cells (Brn3a+ RGCs) were counted in flat-mounted retinas using automated routines. The number and distribution of the Brn3a+ RGCs were analyzed in series of normal retinas from embryonic day 8 to post-hatch day 11 retinas and in retinas 7 or 14 days post NMDA lesion. The total number of Brn3a+ RGCs in the post-hatch retina was approximately 1.9x106 with a density of approximately 9.2x103 cells/mm2. The isodensity maps of normal retina showed that the density decreased with age as the retinal size increased. In contrast to previous studies, we did not find any specific region with increased RGC density, rather the Brn3a+ RGCs were homogeneously distributed over the central retina with decreasing density in the periphery and in the region of the pecten oculli. Injection of 5–10 μg NMDA caused 30–50% loss of Brn3a+ cells and the loss was more severe in the dorsal than in the ventral retina. Pretreatment with brimonidine reduced the loss of Brn3a+ cells both 7 and 14 days post lesion and the protective effect was higher in the dorsal than in the ventral retina. We conclude that α2-adrenergic receptor stimulation reduced the impact of the excitotoxic injury in chicken similarly to what has been shown in mammals. Furthermore, the data show that the RGCs are evenly distributed over in the retina, which challenges previous results that indicate the presence of specific high RGC-density regions of the chicken retina.
Collapse
Affiliation(s)
- Caridad Galindo-Romero
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | - Manuel Jiménez-López
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
- * E-mail:
| |
Collapse
|
35
|
Glia-Neuron Interactions in the Retina Can Be Studied in Cocultures of Müller Cells and Retinal Ganglion Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1087647. [PMID: 27429974 PMCID: PMC4939199 DOI: 10.1155/2016/1087647] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/27/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022]
Abstract
Glia-neuron partnership is important for inner retinal homeostasis and any disturbances may result in retinal ganglion cell (RGC) death. Müller cells support RGCs with essential functions such as removing excess glutamate and providing energy sources. The aim was to explore the impact of Müller cells on RGC survival. To investigate the Müller cell/RGC interactions we developed a coculture model, in which primary Müller cells were grown in inserts on top of pure primary RGC cultures. The impact of starvation and mitochondrial inhibition on the Müller cell ability to protect RGCs was studied. Moreover, the ability of Müller cells to remove glutamate from the extracellular space was investigated. RGC survival was evaluated by cell viability assays and glutamate uptake was assessed by kinetic uptake assays. We demonstrated a significantly increased RGC survival in presence of untreated and prestarved Müller cells. Additionally, prestarved Müller cells significantly increased RGC survival after mitochondrial inhibition. Finally, we revealed a significantly increased ability to take up glutamate in starved Müller cells. Overall, our study confirms essential roles of Müller cells in RGC survival. We suggest that targeting Müller cell function could have potential for future treatment strategies to prevent blinding neurodegenerative retinal diseases.
Collapse
|
36
|
Abstract
Glaucoma is a chronic optic neuropathy characterized by progressive damage to the optic nerve, death of retinal ganglion cells and ultimately visual field loss. It is one of the leading causes of irreversible loss of vision worldwide. The most important trigger of glaucomatous damage is elevated eye pressure, and the current standard approach in glaucoma therapy is reduction of intraocular pressure (IOP). However, despite the use of effective medications or surgical treatment leading to lowering of IOP, progression of glaucomatous changes and loss of vision among patients with glaucoma is common. Therefore, it is critical to prevent vision loss through additional treatment. To implement such treatment(s), it is imperative to identify pathophysiological changes in glaucoma and develop therapeutic methods taking into account neuroprotection. Currently, there is no method of neuroprotection with long-term proven effectiveness in the treatment of glaucoma. Among the most promising molecules shown to protect the retina and optic nerve are neurotrophic factors. Thus, the current focus is on the development of safe and non-invasive methods for the long-term elevation of the intraocular level of neurotrophins through advanced gene therapy and topical eye treatment and on the search for selective agonists of neurotrophin receptors affording more efficient neuroprotection.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Department of Ophthalmology, MSW Hospital, Warsaw, Poland
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Małgorzata Skup
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
37
|
Fu S, Dong S, Zhu M, Sherry DM, Wang C, You Z, Haigh JJ, Le YZ. Müller Glia Are a Major Cellular Source of Survival Signals for Retinal Neurons in Diabetes. Diabetes 2015; 64:3554-63. [PMID: 26068541 PMCID: PMC4587642 DOI: 10.2337/db15-0180] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022]
Abstract
To dissect the role of vascular endothelial growth factor receptor-2 (VEGFR2) in Müller cells and its effect on neuroprotection in diabetic retinopathy (DR), we disrupted VEGFR2 in mouse Müller glia and determined its effect on Müller cell survival, neuronal integrity, and trophic factor production in diabetic retinas. Diabetes was induced with streptozotocin. Retinal function was measured with electroretinography. Müller cell and neuronal densities were assessed with morphometric and immunohistochemical analyses. Loss of VEGFR2 caused a gradual reduction in Müller glial density, which reached to a significant level 10 months after the onset of diabetes. This observation was accompanied by an age-dependent decrease of scotopic and photopic electroretinography amplitudes and accelerated loss of rod and cone photoreceptors, ganglion cell layer cells, and inner nuclear layer neurons and by a significant reduction of retinal glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Our results suggest that VEGFR2-mediated Müller cell survival is required for the viability of retinal neurons in diabetes. The genetically altered mice established in this study can be used as a diabetic animal model of nontoxin-induced Müller cell ablation, which will be useful for exploring the cellular mechanisms of neuronal alteration in DR.
Collapse
Affiliation(s)
- Shuhua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Shuqian Dong
- Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Meili Zhu
- Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - David M Sherry
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Changyun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhipeng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jody J Haigh
- Vascular Cell Biology Unit, VIB Inflammation Research Center, Ghent University, Ghent, Belgium Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University and Alfred Health Centre, Melbourne, Victoria, Australia Department of Clinical Haematology, Monash University and Alfred Health Centre, Melbourne, Victoria, Australia
| | - Yun-Zheng Le
- Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
38
|
Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling. Neuroscience 2015; 295:175-86. [DOI: 10.1016/j.neuroscience.2015.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/19/2022]
|
39
|
|
40
|
Braun D, Madrigal JLM, Feinstein DL. Noradrenergic regulation of glial activation: molecular mechanisms and therapeutic implications. Curr Neuropharmacol 2014; 12:342-52. [PMID: 25342942 PMCID: PMC4207074 DOI: 10.2174/1570159x12666140828220938] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 01/07/2023] Open
Abstract
It has been known for many years that the endogenous neurotransmitter noradrenaline (NA) exerts anti-inflammatory and neuroprotective effects both in vitro and in vivo. In many cases the site of action of NA are beta-adrenergic receptors (βARs), causing an increase in intracellular levels of cAMP which initiates a broad cascade of events including suppression of inflammatory transcription factor activities, alterations in nuclear localization of proteins, and induction of patterns of gene expression mediated through activity of the CREB transcription factor. These changes lead not only to reduced inflammatory events, but also contribute to neuroprotective actions of NA by increasing expression of neurotrophic substances including BDNF, GDNF, and NGF. These properties have prompted studies to determine if treatments with drugs to raise CNS NA levels could provide benefit in various neurological conditions and diseases having an inflammatory component. Moreover, increasing evidence shows that disruptions in endogenous NA levels occurs in several diseases and conditions including Alzheimer's disease (AD), Parkinson's disease (PD), Down's syndrome, posttraumatic stress disorder (PTSD), and multiple sclerosis (MS), suggesting that damage to NA producing neurons is a common factor that contributes to the initiation or progression of neuropathology. Methods to increase NA levels, or to reduce damage to noradrenergic neurons, therefore represent potential preventative as well as therapeutic approaches to disease.
Collapse
Affiliation(s)
- David Braun
- Department of Anesthesiology, University of Illinois at Chicago, Chicago IL, USA, 60612
| | - Jose L M Madrigal
- Departamento de Farmacología, Universidad Complutense de Madrid, Spain
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago IL, USA, 60612 ; Jesse Brown VA Medical Center, Chicago IL, USA, 60612
| |
Collapse
|
41
|
The β-adrenergic system as a possible new target for pharmacologic treatment of neovascular retinal diseases. Prog Retin Eye Res 2014; 42:103-29. [DOI: 10.1016/j.preteyeres.2014.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022]
|
42
|
Jayaram H, Jones MF, Eastlake K, Cottrill PB, Becker S, Wiseman J, Khaw PT, Limb GA. Transplantation of photoreceptors derived from human Muller glia restore rod function in the P23H rat. Stem Cells Transl Med 2014; 3:323-33. [PMID: 24477073 PMCID: PMC3952927 DOI: 10.5966/sctm.2013-0112] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/04/2013] [Indexed: 02/07/2023] Open
Abstract
Müller glia possess stem cell characteristics that have been recognized to be responsible for the regeneration of injured retina in fish and amphibians. Although these cells are present in the adult human eye, they are not known to regenerate human retina in vivo. Human Müller glia with stem cell characteristics (hMSCs) can acquire phenotypic and genotypic characteristics of rod photoreceptors in vitro, suggesting that they may have potential for use in transplantation strategies to treat human photoreceptor degenerations. Much work has been undertaken in rodents using various sources of allogeneic stem cells to restore photoreceptor function, but the effect of human Müller glia-derived photoreceptors in the restoration of rod photoreceptor function has not been investigated. This study aimed to differentiate hMSCs into photoreceptor cells by stimulation with growth and differentiation factors in vitro to upregulate gene and protein expression of CRX, NR2E3, and rhodopsin and various phototransduction markers associated with rod photoreceptor development and function and to examine the effect of subretinal transplantation of these cells into the P23H rat, a model of primary photoreceptor degeneration. Following transplantation, hMSC-derived photoreceptor cells migrated and integrated into the outer nuclear layer of the degenerated retinas and led to significant improvement in rod photoreceptor function as shown by an increase in a-wave amplitude and slope using scotopic flash electroretinography. These observations suggest that hMSCs can be regarded as a cell source for development of cell-replacement therapies to treat human photoreceptor degenerations and may also offer potential for the development of autologous transplantation.
Collapse
|
43
|
Lorber B, Hsiao WK, Hutchings IM, Martin KR. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication 2013; 6:015001. [PMID: 24345926 DOI: 10.1088/1758-5082/6/1/015001] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine.
Collapse
Affiliation(s)
- Barbara Lorber
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | | | | | | |
Collapse
|
44
|
Stutz B, da Conceição FSL, Santos LE, Cadilhe DV, Fleming RL, Acquarone M, Gardino PF, de Melo Reis RA, Dickson PW, Dunkley PR, Rehen S, Houzel JC, de Mello FG. Murine dopaminergic Müller cells restore motor function in a model of Parkinson's disease. J Neurochem 2013; 128:829-40. [DOI: 10.1111/jnc.12475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Bernardo Stutz
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | | | - Luís Eduardo Santos
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Daniel Veloso Cadilhe
- Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Renata L. Fleming
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Mariana Acquarone
- Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Patrícia F. Gardino
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Phillip W. Dickson
- School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - Peter R. Dunkley
- School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - Stevens Rehen
- Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Jean-Christophe Houzel
- Instituto de Ciências Biomédicas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Fernando G. de Mello
- Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| |
Collapse
|
45
|
Machalińska A, Kawa MP, Pius-Sadowska E, Rogińska D, Kłos P, Baumert B, Wiszniewska B, Machaliński B. Endogenous regeneration of damaged retinal pigment epithelium following low dose sodium iodate administration: An insight into the role of glial cells in retinal repair. Exp Eye Res 2013; 112:68-78. [DOI: 10.1016/j.exer.2013.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/19/2013] [Accepted: 04/08/2013] [Indexed: 12/19/2022]
|
46
|
Ola MS, Nawaz MI, El-Asrar AA, Abouammoh M, Alhomida AS. Reduced levels of brain derived neurotrophic factor (BDNF) in the serum of diabetic retinopathy patients and in the retina of diabetic rats. Cell Mol Neurobiol 2013; 33:359-67. [PMID: 23271640 DOI: 10.1007/s10571-012-9901-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/13/2012] [Indexed: 01/18/2023]
Abstract
Diabetic retinopathy (DR) is widely recognized as a neurovascular disease. Retina, being a neuronal tissue of the eye, produces neurotrophic factors for its maintenance. However, diabetes dysregulates their levels and thereby may damage the retina. Among neurotrophins, brain derived neurotrophic factor (BDNF) is the most abundant in the retina. In this study, we investigated the level of BDNF in the serum of patients with DR and also in the serum and retina of streptozotocin-induced diabetic rats. The level of BDNF was significantly decreased in the serum of proliferative diabetic retinopathy patients as compared to that of non-diabetic healthy controls (25.5 ± 8.5-10.0 ± 8.1 ng/ml, p < 0.001) as well as compared to that of diabetic patients with no retinopathy (21.8 ± 4.7-10.0 ± 8.1 ng/ml, p < 0.001), as measured by ELISA techniques. The levels of BDNF in the serum and retina of diabetic rats were also significantly reduced compared to that of non-diabetic controls (p < 0.05). In addition, the expression level of tropomyosin-related kinase B (TrkB) was significantly decreased in diabetic rat retina compared to that of non-diabetic controls as determined by Western blotting technique. Caspase-3 activity was increased in diabetic rat retina after 3 weeks of diabetes and remained elevated until 10 weeks, which negatively correlated with the level of BDNF (r = -0.544, p = 0.013). Our results indicate that reduced levels of BDNF in diabetes may cause apoptosis and neurodegeneration early in diabetic retina, which may lead to neuro-vascular damage later in DR.
Collapse
Affiliation(s)
- M Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11415, Saudi Arabia.
| | | | | | | | | |
Collapse
|
47
|
Gubert F, Zaverucha-do-Valle C, Figueiredo FR, Bargas-Rega M, Paredes BD, Mencalha AL, Abdelhay E, Gutfilen B, Barbosa da Fonseca LM, Mendez-Otero R, Santiago MF. Bone-marrow cell therapy induces differentiation of radial glia-like cells and rescues the number of oligodendrocyte progenitors in the subventricular zone after global cerebral ischemia. Stem Cell Res 2013; 10:241-56. [DOI: 10.1016/j.scr.2012.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/29/2012] [Accepted: 11/30/2012] [Indexed: 01/17/2023] Open
|
48
|
Weber AJ. Autocrine and paracrine interactions and neuroprotection in glaucoma. Cell Tissue Res 2013; 353:219-30. [DOI: 10.1007/s00441-013-1556-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022]
|
49
|
Toops KA, Berlinicke C, Zack DJ, Nickells RW. Hydrocortisone stimulates neurite outgrowth from mouse retinal explants by modulating macroglial activity. Invest Ophthalmol Vis Sci 2012; 53:2046-61. [PMID: 22395888 DOI: 10.1167/iovs.11-8646] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE There is mounting evidence that retinal ganglion cells (RGCs) require a complex milieu of trophic factors to enhance cell survival and axon regeneration after optic nerve injury. The authors' goal was to examine the contribution of components of a combination of hormones, growth factors, steroids, and small molecules to creating a regenerative environment and to determine if any of these components modulated macroglial behavior to aid in regeneration. METHODS Postnatal day 7 mouse retinal explants embedded in collagen were used as an in vitro model of neurite regeneration. Explants were treated with the culture supplements fetal bovine serum, N2, and G5 and a mixture of G5 and N2 components, designated enhanced N2 (EN2). Explants were evaluated for neurite outgrowth over 7 days in culture. The effects of each treatment were also evaluated on cultured RGCs purified by Thy1 immunopanning. Immunohistochemistry and qPCR analysis were used to evaluate differences in gene expression in the explants due to different treatments. RESULTS EN2 stimulated significant neurite outgrowth from explants but not from purified RGCs. Elimination of hydrocortisone (HC) from EN2 reduced the mean neurites per explant by 37%. EN2-treated explants demonstrated increased expression of Gfap, Glul, Glt1, Cntf, Pedf, and VegfA compared with explants treated with EN2 without HC. Subsequent experiments showed that increased expression of Cntf and Glul was critical to the trophic effect of HC. CONCLUSIONS These data suggest that the HC in EN2 indirectly contributed to neurite outgrowth by activating macroglia to produce neurotrophic and neuroprotective molecules.
Collapse
Affiliation(s)
- Kimberly A Toops
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
50
|
Activated retinal glia mediated axon regeneration in experimental glaucoma. Neurobiol Dis 2012; 45:243-52. [DOI: 10.1016/j.nbd.2011.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 11/21/2022] Open
|