1
|
Zhao H, Liang K, Yu Z, Wen Y, Shi J, Zhang T, Yu X, Zu X, Fang Y. Hyperbaric oxygen preconditioning rescues prolonged underwater exercise-induced hippocampal dysfunction by regulating microglia activation and polarization. Neurosci Res 2024; 207:26-36. [PMID: 38848903 DOI: 10.1016/j.neures.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Underwater exercise is becoming increasingly prevalent, during which brain function is necessary but is also at risk. However, no study has explored how prolonged exercise affect the brain in underwater environment. Previous studies have indicated that excessive exercise in common environment causes brain dysfunction but have failed to provide appropriate interventions. Numerous evidence has indicated the neuroprotective effect of hyperbaric oxygen preconditioning (HBO-PC). The objective of this study was to investigate the cognitive effect of prolonged underwater exercise (PUE) and to explore the potential neuroprotective effect of HBO-PC in underwater environment. Rats swimming for 3 h in a simulated hyperbaric chamber (2.0 ATA) was used to establish the PUE animal model and HBO-PC (2.5 ATA for 1, 3,5 times respectively) was administrated before PUE. The results demonstrated that PUE triggers anxiety-like behaviors, cognitive impairment accompanied by hippocampal dysfunction, microglia activation and neuroinflammation. Conversely, 3 HBO-PC rescued anxiety-like behaviors and cognitive impairment. Mechanistically, 3 HBO-PC reduced microglia activation and switched the activated microglia from a pro-inflammatory to neuroprotective phenotype. These findings illustrated that PUE induces anxiety-like behaviors and cognitive impairment and HBO-PC of proper frequency may provide an appropriate and less invasive intervention for protecting the brain in underwater exercise.
Collapse
Affiliation(s)
- Houyu Zhao
- Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Kun Liang
- Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Zeyuan Yu
- Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Yukun Wen
- Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Jin Shi
- Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Tingting Zhang
- Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Xuhua Yu
- Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Yiqun Fang
- Department of Diving and Hyperbaric Medicine, Navy Special Medical Center, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Maryam K, Ali H. Aerobic and resistance exercises affect the BDNF/TrkB signaling pathway, and hippocampal neuron density of high-fat diet-induced obese elderly rats. Physiol Behav 2023; 264:114140. [PMID: 36870384 DOI: 10.1016/j.physbeh.2023.114140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Obesity, caused by a high-fat diet (HFD) in elderly, is a risk factor for insulin resistance and a precursor to diabetes and can lead to impaired cognitive function. Physical exercise has positive effects on decrease obesity and improvement brain function. We investigated which type of aerobic (AE) or resistance (RE) exercise can be more effective in reducing HFD-induced cognitive dysfunction in obese elderly rats. 48 male Wistar rats (19-monthold) were divided into six groups: Healthy control (CON), CON+AE, CON+RE, HFD, HFD+AE, and HFD+RE. Obesity was induced by 5 months of HFD feeding in older rats. After obesity confirmation, RT (with a range of 50% to 100%1RM/3 days/week) and AE (running at 8-m/min for 15-min to 26-m/min for 60-min /5 days/week) was performed for 12-weeks. Morris water maze Test was used to evaluate cognitive performance. All data were analyzed using two-way statistical test of variance. The results showed that obesity had a negative effect on glycemic index, increased inflammation, decreased antioxidant levels, decreased BDNF/TrkB and decreased nerve density in hippocampal tissue. The Morris water maze results clearly showed cognitive impairment in the obesity group. But 12 weeks after AE and RE, all the measured variables were on the improvement path, and in general, no difference was observed between the two exercise methods. Two mods of exercise (AE and RE) may be having same effects on nerve cell density, inflammatory, antioxidant and functional status of hippocampus of obese rats. Each of the AE and RE can create beneficial effects on the cognitive function of the elderly.
Collapse
Affiliation(s)
- Keshvari Maryam
- Faculty of Sport Sciences, exercise physiology department, Bu-Ali Sina University, Hamadan, Iran
| | - Heidarianpour Ali
- Faculty of Sport Sciences, exercise physiology department, Bu-Ali Sina University, Hamadan, Iran.
| |
Collapse
|
3
|
Effectiveness of supplementation with date seed (Phoenix dactylifera) as a functional food on inflammatory markers, muscle damage, and BDNF following high-intensity interval training: a randomized, double-blind, placebo-controlled trial. Eur J Nutr 2023:10.1007/s00394-023-03125-9. [PMID: 36881179 DOI: 10.1007/s00394-023-03125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE High-intensity interval training (HIIT) is one of the most effective protocols, even though acute HIIT causes inflammatory and oxidative damage. The aim of this study was to examine the effect of date seeds powder (DSP) during HIIT sessions on inflammation markers, oxidants and antioxidants, brain-derived neurotrophic factor (BDNF), exercise-induced muscle damage, and body composition. MATERIAL AND METHODS Thirty-six recreational runners (men and women), aged 18-35 years, were randomly assigned to consume 26 g/day of DSP or wheat bran powder during HIIT workouts for a period of 14 days. At baseline, at the end of the intervention, and 24 h after the intervention, blood samples were obtained to determine inflammatory, oxidant/antioxidant, and muscle damage markers, as well as BDNF. RESULTS DSP supplementation resulted in a significant downward trend in high-sensitivity C-reactive protein (Psupplement × time = 0.036), tumor necrosis factor alpha (Psupplement × time = 0.010), interleukin-6 (Psupplement × time = 0.047), malondialdehyde (Psupplement × time = 0.046), creatine kinase (Psupplement × time = 0.045), and lactate dehydrogenase (Psupplement × time = 0.040) after the intervention, as well as a significant increase in total antioxidant capacity (Psupplement × time ≤ 0.001). However, interleukin-10 (Psupplement × time = 0.523), interleukin-6/interleukin-10 (Psupplement × time = 0.061), BDNF (Psupplement × time = 0.160), and myoglobin (Psupplement × time = 0.095) levels did not change significantly in comparison to the placebo group. Moreover, analysis demonstrated that DSP supplementation over 2 weeks had no significant effect on body composition. CONCLUSION During the 2 weeks of the HIIT protocol, the consumption of date seed powder by participants who had engaged in moderate or high physical activity alleviated inflammation and muscle damage. ETHICS AND DISSEMINATION This study was approved by the Medical Ethics Committee of TBZMED (No.IR.TBZMED.REC.1399.1011). TRIAL REGISTRATION Iranian Registry of Clinical Trials website ( www.IRCt.ir/ , IRCT20150205020965N9).
Collapse
|
4
|
Effects of Treadmill Exercise on Social Behavior in Rats Exposed to Thimerosal with Respect to the Hippocampal Level of GluN1, GluN2A, and GluN2B. J Mol Neurosci 2022; 72:1345-1357. [PMID: 35597884 DOI: 10.1007/s12031-022-02027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Thimerosal (THIM) kills brain neurons via induction of apoptosis and necrosis and induces the pathological features of autism spectrum disorder (ASD) in rats. THIM also affects the function of glutamatergic receptors. On the other hand, exercise induces both improvement and impairment effects on memory, depending on intensity, type, and duration. Treadmill exercise can also alter the expression of glutamatergic receptors. In this study, we aimed to investigate the effect of THIM and three protocols of treadmill exercise on social interaction memory and hippocampal expression of GluN1, GluN2A, and GluN2B in rats. THIM was injected intramuscularly at the dose of 300 µg/kg. The three-chamber apparatus was used to evaluate social interaction memory, and western blotting was used to assess protein expression. The results showed that THIM impaired social memory. Exercise 1 impaired social affiliation in controls. Social memory was impaired in all exercise groups of controls. Exercise 1 + 2 impaired social affiliation in THIM rats. Social memory was impaired in all groups of THIM rats. Exercises 2 and 1 + 2 decreased the expression of GluN1, and exercise 1 increased the expression of GluN2A and GluN2B in controls. THIM increased the expression of GluN2B, while exercise 1 reversed this effect. All exercise protocols increased the expression of GluN2A, and exercises 2 and 1 + 2 increased the expression of GluN1 in THIM rats. In conclusion, both THIM and exercise impaired social memory. Of note, the results did not show a separate and influential role for glutamatergic subunits in modulating memory processes following THIM injection or exercise.
Collapse
|
5
|
Xu L, Zhu L, Zhu L, Chen D, Cai K, Liu Z, Chen A. Moderate Exercise Combined with Enriched Environment Enhances Learning and Memory through BDNF/TrkB Signaling Pathway in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168283. [PMID: 34444034 PMCID: PMC8392212 DOI: 10.3390/ijerph18168283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effects and potential mechanisms of exercise combined with an enriched environment on learning and memory in rats. Forty healthy male Wistar rats (7 weeks old) were randomly assigned into 4 groups (N = 10 in each group): control (C) group, treadmill exercise (TE) group, enriched environment (EE) group and the TE + EE group. The Morris water maze (MWM) test was used to evaluate the learning and memory ability in all rats after eight weeks of exposure in the different conditions. Moreover, we employed enzyme-linked immunosorbent assay (ELISA) to determine the expression of brain-derived neurotrophic factor (BDNF) and receptor tyrosine kinase B (TrkB) in the rats. The data showed that the escape latency and the number of platform crossings were significantly better in the TE + EE group compared to the TE, EE or C groups (p < 0.05). In addition, there was upregulation of BDNF and TrkB in rats in the TE + EE group compared to those in the TE, EE or C groups (p < 0.05). Taken together, the data robustly demonstrate that the combination of TE + EE enhances learning and memory ability and upregulates the expression of both BDNF and TrkB in rats. Thus, the BDNF/TrkB signaling pathway might be modulating the effect of exercise and enriched environment in improving learning and memory ability in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aiguo Chen
- Correspondence: ; Tel.: +86-139-5272-5968
| |
Collapse
|
6
|
Zhang Y, Liao B, Hu S, Pan SY, Wang GP, Wang YL, Qin ZH, Luo L. High intensity interval training induces dysregulation of mitochondrial respiratory complex and mitophagy in the hippocampus of middle-aged mice. Behav Brain Res 2021; 412:113384. [PMID: 34147565 DOI: 10.1016/j.bbr.2021.113384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/25/2021] [Accepted: 05/22/2021] [Indexed: 11/28/2022]
Abstract
Autophagy is involved in aging-related cognitive impairment. Aerobic exercise training can improve cognitive function in the elderly and this effect may be associated with autophagic mechanisms and mitochondrial respiratory function. High intensity interval training (HIIT) has beneficial effects on heart and skeletal muscles by activating autophagy and/or mitophagy, but the effects of HIIT on autophagy/mitophagy in the aging brain are unknown. This study investigated the effects of HIIT on the mitochondrial respiratory complex and autophagy/mitophagy, and its relation to brain function. Thirteen middle-aged male ICR mice underwent HIIT for 7 weeks. The exercise program reduced the spontaneous behavior and exploration activities of the mice. The phosphorylation level of cAMP response element binding protein (CREB) and the protein expression of brain-derived neurotrophic factor (BDNF) decreased after the 7-week HIIT. Exercise downregulated the protein expression of Complex Ⅰ and upregulated the protein expression of Complex Ⅲ, Complex Ⅳ and Complex Ⅴ. HIIT also decreased the expression of mitophagy-related proteins in the mitochondrial fractions of the hippocampus. However, HIIT did not change the expression of autophagy-related proteins LC3, P62, Atg5, Atg7, Beclin-1 and Lamp2 in the total lysate of the hippocampus. These data indicated that HIIT might have negative effects on the plasticity of the hippocampus in middle-aged mice. The effects may be related to the dysregulation of CREB-BDNF signaling, mitochondrial respiratory complex and mitophagy induced by HIIT.
Collapse
Affiliation(s)
- Yu Zhang
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Bo Liao
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Shuai Hu
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Shan-Yao Pan
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Gui-Ping Wang
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Yu-Long Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University School of Pharmaceutical Science, Suzhou, 215123, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China.
| |
Collapse
|
7
|
Molaei A, Hatami H, Dehghan G, Sadeghian R, Khajehnasiri N. Synergistic effects of quercetin and regular exercise on the recovery of spatial memory and reduction of parameters of oxidative stress in animal model of Alzheimer's disease. EXCLI JOURNAL 2020; 19:596-612. [PMID: 32483406 PMCID: PMC7257248 DOI: 10.17179/excli2019-2082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
It has widely been reported that the brain in Alzheimer's disease (AD) is affected by increased oxidative stress, and this may have a role in the pathogenesis of this disorder. Quercetin, a polyphenol extensively found in nature, has recently been considered. Also, physical activities have a paradoxical effect on brain function in older adults. Therefore, this study aimed at investigating the synergic effects of quercetin (as chemical treatment) and exercise (as physical treatment) on AD-induced learning and memory impairment. Fifty-six adult male Wistar rats were randomly assigned into one of the following eight groups (n=7): The Control, Sham (saline), AD (intracerebroventricular administration of streptozotocin (STZ)), AD+80 mg/kg Quercetin (STZ+Q80), Quercetin vehicle (1 % Ethanol)+STZ, Exercise pretreatment (EX)+STZ, Off the treadmill+STZ, and EX+Q80+STZ. Quercetin administration was done intraperitoneally for 21 days after STZ injection. The rats ran on the treadmill for one hour a day for 60 days at a speed of 20-22 m/min. After the treatment, the spatial memory and levels of oxidative stress parameters were evaluated. The results showed that STZ caused spatial memory impairment and increased oxidative stress in the hippocampus. Exercise pretreatment or Quercetin injection improved the spatial memory impairment and oxidative stress caused by STZ injection. However, the combination of quercetin and exercise pretreatment was more effective. It can be concluded that the combined exercise pretreatment and Quercetin injection affected the antioxidant defense system and improved STZ-induced memory impairment.
Collapse
Affiliation(s)
- Amin Molaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Homeira Hatami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Pharmacy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazli Khajehnasiri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| |
Collapse
|
8
|
da Costa Daniele TM, de Bruin PFC, de Matos RS, de Bruin GS, Maia Chaves C, de Bruin VMS. Exercise effects on brain and behavior in healthy mice, Alzheimer's disease and Parkinson's disease model-A systematic review and meta-analysis. Behav Brain Res 2020; 383:112488. [PMID: 31991178 DOI: 10.1016/j.bbr.2020.112488] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
This systematic review and meta-analysis examines how exercise modifies brain and behavior in healthy mice, dementia (D) and Parkinson disease (PD) models. A search was performed on the Medline and Scopus electronic databases (2008-2019). Search terms were "mice", "brain", "treadmill", "exercise", "physical exercise". In the total, 430 were found but only 103 were included. Animals n = 1,172; exercised 4-8 weeks (Range 24 h to 32 weeks), 60 min/day (Range 8-120 min per day), and 10/12 m/min (Range 0.2 m/min to 36 m/min). Hippocampus, cerebral cortex, striatum and whole brain were more frequently investigated. Exercise improved learning and memory. Meta-analysis showed that exercise increased: cerebral BDNF in health (n = 150; z = 5.8, CI 3.43-12.05; p < 0.001 I2 = 94.3 %), D (n = 124; z = 4.18, CI = 2.22-9.12; p < 0.001; I2 = 93.7 %) and PD (n = 16 z = 4.26, CI 5.03-48.73 p < 0.001 I2 = 94.8 %). TrkB improved in health (n = 84 z = 5.49, CI 3.8-17.73 p < 0.001, I2 = 0.000) and PD (n = 22; z = 3.1, CI = 2.58-67.3, p < 0.002 I2 = 93.8 %). Neurogenesis increased in health (n = 68; z = 7.08, CI 5.65-21.25 p < 0.001; I2 17.58) and D model (n = 116; z = 4.18, CI 2.22-9.12 p < 0.001 I2 93.7 %). Exercise augmented amyloid clearance (n = 166; z = 7.51 CI = 4.86-14.85, p < 0.001 I2 = 58.72) and reduced amyloid plaques in D models (n = 49; z = 4.65, CI = 3.94-15.3 p < 0.001 I2 = 0.000). In conclusion, exercise improved brain and behavior, neurogenesis in healthy and dementia models, reduced toxicity and cerebral amyloid. Evidence regarding inflammation, oxidative stress and energy metabolism were scarce. Studies examining acute vs chronic exercise, extreme training and the durability of exercise benefit were rare. Vascular or glucose metabolism changes were seldom reported.
Collapse
Affiliation(s)
- Thiago Medeiros da Costa Daniele
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil; Universidade de Fortaleza (UNIFOR).
| | - Pedro Felipe Carvalhedo de Bruin
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| | - Robson Salviano de Matos
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| | - Gabriela Sales de Bruin
- Universidade Federal do Ceará (UFC), Brazil; Department of Neurology, Washington University in St Louis, United States.
| | - Cauby Maia Chaves
- Universidade Federal do Ceará (UFC), Brazil; Departamento de Clínica Odontológica, UFC, Brazil.
| | - Veralice Meireles Sales de Bruin
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Ceará, Fortaleza, Brazil; Sleep and Biological Rhythms Laboratory, UFC, Brazil; Universidade Federal do Ceará (UFC), Brazil.
| |
Collapse
|
9
|
Speck AE, Aguiar AS. Letter to the Editor: Mechanisms of sex differences in exercise capacity. Am J Physiol Regul Integr Comp Physiol 2020; 318:R156-R157. [PMID: 31888353 DOI: 10.1152/ajpregu.00187.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana Elisa Speck
- Lab Biology of Exercise, Department of Health Sciences, ARA-Centro Araranguá, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil
| | - Aderbal S Aguiar
- Lab Biology of Exercise, Department of Health Sciences, ARA-Centro Araranguá, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil
| |
Collapse
|
10
|
Hagihara H, Horikawa T, Irino Y, Nakamura HK, Umemori J, Shoji H, Yoshida M, Kamitani Y, Miyakawa T. Peripheral blood metabolome predicts mood change-related activity in mouse model of bipolar disorder. Mol Brain 2019; 12:107. [PMID: 31822292 PMCID: PMC6902552 DOI: 10.1186/s13041-019-0527-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Bipolar disorder is a major mental illness characterized by severe swings in mood and activity levels which occur with variable amplitude and frequency. Attempts have been made to identify mood states and biological features associated with mood changes to compensate for current clinical diagnosis, which is mainly based on patients' subjective reports. Here, we used infradian (a cycle > 24 h) cyclic locomotor activity in a mouse model useful for the study of bipolar disorder as a proxy for mood changes. We show that metabolome patterns in peripheral blood could retrospectively predict the locomotor activity levels. We longitudinally monitored locomotor activity in the home cage, and subsequently collected peripheral blood and performed metabolomic analyses. We then constructed cross-validated linear regression models based on blood metabolome patterns to predict locomotor activity levels of individual mice. Our analysis revealed a significant correlation between actual and predicted activity levels, indicative of successful predictions. Pathway analysis of metabolites used for successful predictions showed enrichment in mitochondria metabolism-related terms, such as "Warburg effect" and "citric acid cycle." In addition, we found that peripheral blood metabolome patterns predicted expression levels of genes implicated in bipolar disorder in the hippocampus, a brain region responsible for mood regulation, suggesting that the brain-periphery axis is related to mood-change-associated behaviors. Our results may serve as a basis for predicting individual mood states through blood metabolomics in bipolar disorder and other mood disorders and may provide potential insight into systemic metabolic activity in relation to mood changes.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tomoyasu Horikawa
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, Kyoto, 619-0288, Japan
| | - Yasuhiro Irino
- Division of Evidence-based Laboratory Medicine, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hironori K Nakamura
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Juzoh Umemori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masaru Yoshida
- Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yukiyasu Kamitani
- Department of Neuroinformatics, ATR Computational Neuroscience Laboratories, Kyoto, 619-0288, Japan
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
11
|
Jahangiri Z, Gholamnezhad Z, Hosseini M, Beheshti F, Kasraie N. The effects of moderate exercise and overtraining on learning and memory, hippocampal inflammatory cytokine levels, and brain oxidative stress markers in rats. J Physiol Sci 2019; 69:993-1004. [PMID: 31637588 PMCID: PMC10717043 DOI: 10.1007/s12576-019-00719-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
To investigate the exercise intensity effects on rats' memory and learning, animals were divided into control, moderate training (MT), and overtraining (OT) groups. At training last week, learning and memory was assessed using Morris water maze (MWM) and passive avoidance (PA) tests. Finally, the rat's brains were removed for evaluating oxidative stress and inflammatory cytokines. Overtraining impaired animal's performance in MWM and PA tests. In MT group, hippocampal levels of interleukin 1 beta (IL-1β) and malondialdehyde (MDA) increased, and thiol contents in hippocampal and cortical tissues decreased compared to control. In OT group, tumor necrosis factor α, IL-1β, and C-reactive protein hippocampal levels increased, MDA and nitric oxide metabolite in hippocampal and cortical tissues increased, thiol contents, catalase and superoxide dismutase activity in hippocampal and cortical tissues decreased compared to control and MT groups. Overtraining might lead to learning and memory impairment by increasing the inflammatory cytokine and oxidative stress markers.
Collapse
Affiliation(s)
- Zahra Jahangiri
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, 9177948564, Iran
| | - Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, 9177948564, Iran.
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Narges Kasraie
- Rosenberg School of Optometry, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
12
|
The Effect of REM Sleep Deprivation on mTOR Signaling-Induced by Severe Physical Exercise. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.92002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Kerendi H, Rahmati M, Mirnasuri R, Kazemi A. High intensity interval training decreases the expressions of KIF5B and Dynein in Hippocampus of Wistar male rats. Gene 2019; 704:8-14. [PMID: 30978476 DOI: 10.1016/j.gene.2019.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Although exercise training (ET) with low to moderate intensity improves several physiological aspects of brain, the effects of high intensity interval training (HIIT) are less clear on brain plasticity and cytoplasmic transport. The present study examined the effects of HIIT on the gene and protein expressions of kinesin family member 5B (KIF5B) and Dynein in the Wistar male rat hippocampal tissue. Fourteen male Wistar rats were separated into 2 groups: (1) the training group (TG: n = 7) and (2) the control group (CG: n = 7). The exercise protocol was carried out on a rodent treadmill (5 days a week for 6 weeks). The protein contents of KIF5B and Dynein were determined by the immunohistochemical analysis. Moreover, the Real-Time polymerase chain reaction (Real-Time PCR) procedure was done to measure the KIF5B mRNA and Dynein mRNA expressions. It was observed that HIIT resulted in a significant decrease in the gene expressions of KIF5B and Dynein (P = 0.001), and also the results showed that HIIT leads to a significant decrease in KIF5B (P = 0.001) and Dynein (P = 0.02) protein content of the hippocampal tissue in comparison with sedentary rats. Our findings demonstrated that HIIT is associated with the down-regulation of gene and protein levels of KIF5B and Dynein in the rat hippocampal tissue, although the underlying mechanisms have remained unknown. These changes suggest that HIIT may have negative effects on both the anterograde and retrograde cytoplasmic transports because the cytoplasmic transport is mediated by KIF5B and Dynein.
Collapse
Affiliation(s)
- Hadi Kerendi
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, IR, Iran
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, IR, Iran.
| | - Rahim Mirnasuri
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, IR, Iran
| | - Abdolreza Kazemi
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Vali E Asr University of Rafsanjan, Rafsanjan, IR, Iran
| |
Collapse
|
14
|
Silibinin Alleviates the Learning and Memory Defects in Overtrained Rats Accompanying Reduced Neuronal Apoptosis and Senescence. Neurochem Res 2019; 44:1818-1829. [PMID: 31102026 DOI: 10.1007/s11064-019-02816-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Excessive physical exercise (overtraining; OT) increases oxidative stress and induces damage in multiple organs including the brain, especially the hippocampus that plays an important role in learning and memory. Silibinin, a natural flavonoid derived from milk thistle of Silybum marianum, has been reported to exert neuroprotective effect. In this study, rats were subjected to overtraining exercise, and the protective effects of silibinin were investigated in these models. Morris water maze and novel object recognition tests showed that silibinin significantly attenuated memory defects in overtrained rats. At the same time, the results of Nissl, TUNEL and SA-β-gal staining showed that silibinin reversed neuronal loss caused by apoptosis, and delayed cell senescence of the hippocampus in the overtrained rats, respectively. In addition, silibinin decreased malondialdehyde (MDA) levels which is associated with reactive oxygen species (ROS) generation. Silibinin prevented impairment of learning and memory caused by excessive physical exercise in rats, accompanied by reduced apoptosis and senescence in hippocampus cells.
Collapse
|
15
|
Mahboubi S, Nasehi M, Imani A, Sadat-Shirazi MS, Zarrindast MR, Vousooghi N, Noroozian M. Benefit effect of REM-sleep deprivation on memory impairment induced by intensive exercise in male wistar rats: with respect to hippocampal BDNF and TrkB. Nat Sci Sleep 2019; 11:179-188. [PMID: 31576186 PMCID: PMC6767759 DOI: 10.2147/nss.s207339] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many factors affect our learning and memory quality, but according to different studies, having a positive or negative impact pertains to their characteristics like intensity or the amount. PURPOSE The present study was conducted to investigate the effect of 24-hour REM-sleep deprivation on continuous-high intensity forced exercise-induced memory impairment and its effect on Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine kinase B (TrkB) levels in the hippocampus and Prefrontal Cortex area (PFC). MATERIAL AND METHODS Animals were conditioned to run on treadmills for 5 weeks then, were deprived of sleep for 24 h using the modified multiple platforms. The effect of intensive exercise and/or 24-h REM-SD was studied on behavioral performance using Morris Water Maze protocol for 2 days, and BDNF/TrkB levels were assessed in hippocampus and PFC after behavioral probe test using western blotting. RESULTS After 5 weeks of intensive exercise and 24-h REM-SD, spatial memory impairment and reduction of BDNF and TrkB levels were found in hippocampus and PFC. 24-h REM-SD improved memory impairment and intensive exercise-induced downregulation of BDNF and TrkB protein levels. CONCLUSION The results of the study suggested that sleep deprivation might act as a compensatory factor to reduce memory impairment when the animal is under severe stressful condition.
Collapse
Affiliation(s)
- Sarah Mahboubi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Department of Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Imani
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.,Department of Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.,Department of Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Noroozian
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran.,Department of Occupational Sleep Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.,Memory and Behavioral Neurology Division, Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Silva LA, Tromm CB, Doyenart R, Thirupathi A, Silveira PCL, Pinho RA. Effects of different frequencies of physical training on electron transport chain and oxidative damage in healthy mice. MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-6574201800040008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Luciano A. Silva
- Universidade do Extremo Sul Catarinense, Brazil; Escola superiror de Criciúma, Brazil; Centro Universitario Barriga Verde, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Dobashi S, Aiba C, Ando D, Kiuchi M, Yamakita M, Koyama K. Caloric restriction suppresses exercise-induced hippocampal BDNF expression in young male rats. ACTA ACUST UNITED AC 2018. [DOI: 10.7600/jpfsm.7.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shohei Dobashi
- Integrated Graduate School Department of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi
- Japan Society for the Promotion of Science
| | - Chinatsu Aiba
- Graduate School Department of Education, University of Yamanashi
| | - Daisuke Ando
- Graduate School Department of Interdisciplinary Research, University of Yamanashi
| | - Masataka Kiuchi
- Graduate School Department of Education, University of Yamanashi
| | - Mitsuya Yamakita
- Health Sciences Section, Center for Human and Social Sciences, Kitasato University College of Liberal Arts and Sciences
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary Research, University of Yamanashi
| |
Collapse
|
18
|
Baranowski BJ, MacPherson REK. Acute exercise induced BDNF-TrkB signalling is intact in the prefrontal cortex of obese, glucose-intolerant male mice. Appl Physiol Nutr Metab 2018; 43:1083-1089. [PMID: 29726700 DOI: 10.1139/apnm-2018-0108] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity and glucose intolerance have been directly implicated in the pathology of Alzheimer's disease. It is thought that diet-induced obesity causes a reduction in neuronal plasticity through a reduction in the neurotrophin: brain-derived neurotrophic factor (BDNF). Previous work has demonstrated that acute exercise in healthy lean animals increases BDNF-TrkB signalling in the brain. However, if this effect is intact in a state of obesity remains unknown. The purpose of this study is to determine the effects of a single bout of exercise on BDNF-TrkB signalling in the prefrontal cortex and hippocampus from obese glucose intolerant mice. Male C57BL/6 mice were fed a low-fat diet (10% kcals from lard) or a high-fat diet (HFD, 60% kcals from lard) for 7 weeks. A subset of HFD mice underwent an acute bout of exercise (treadmill running: 15 m/min, 5% incline, 120 min) followed by a recovery period of 2 h, after which point the prefrontal cortex and hippocampus were collected. The HFD increased body mass and glucose intolerance (p < 0.05). Prefrontal cortex from HFD mice demonstrated lower BDNF protein content, reduced phosphorylation of the BDNF receptor (TrkB), and its downstream effector cAMP response element-binding protein (CREB), as well as PGC-1α and ERα) protein content (p < 0.05). Two hours following the acute exercise bout, TrkB and CREB phosphorylation as well as PGC-1α and ER-α protein content were recovered (p < 0.05). Our findings demonstrate for the first time that an acute bout of exercise can recover BDNF-TrkB signalling in the prefrontal cortex of obese mice.
Collapse
Affiliation(s)
- Bradley J Baranowski
- a Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- a Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.,b Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
19
|
Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB, Mendonça VA, Lacerda AC, Massensini AR, Poortamns JR, Meeusen R, Leite HR. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol Behav 2018; 184:6-11. [DOI: 10.1016/j.physbeh.2017.10.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/18/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
|
20
|
MacPherson REK. Filling the void: a role for exercise-induced BDNF and brain amyloid precursor protein processing. Am J Physiol Regul Integr Comp Physiol 2017; 313:R585-R593. [PMID: 28814391 DOI: 10.1152/ajpregu.00255.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
Inactivity, obesity, and insulin resistance are significant risk factors for the development of Alzheimer's disease (AD). Several studies have demonstrated that diet-induced obesity, inactivity, and insulin resistance exacerbate the neuropathological hallmarks of AD. The aggregation of β-amyloid peptides is one of these hallmarks. β-Site amyloid precursor protein-cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in amyloid precursor protein (APP) processing, leading to β-amyloid peptide formation. Understanding how BACE1 content and activity are regulated is essential for establishing therapies aimed at reducing and/or slowing the progression of AD. Exercise training has been proven to reduce the risk of AD as well as decrease β-amyloid production and BACE1 content and/or activity. However, these long-term interventions also result in improvements in adiposity, circulating metabolites, glucose tolerance, and insulin sensitivity making it difficult to determine the direct effects of exercise on brain APP processing. This review highlights this large void in our knowledge and discusses our current understanding of the direct of effect of exercise on β-amyloid production. We have concentrated on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the direct effects of exercise on reducing brain BACE1 content and activity as well as β-amyloid production. Future studies should aim to generate a greater understanding of how obesity and exercise can directly alter APP processing and AD-related pathologies. This knowledge could provide evidence-based hypotheses for designing therapies to reduce the risk of AD and dementia.
Collapse
|
21
|
Exercise-induced mitochondrial dysfunction: a myth or reality? Clin Sci (Lond) 2017; 130:1407-16. [PMID: 27389587 DOI: 10.1042/cs20160200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Beneficial effects of physical activity on mitochondrial health are well substantiated in the scientific literature, with regular exercise improving mitochondrial quality and quantity in normal healthy population, and in cardiometabolic and neurodegenerative disorders and aging. However, several recent studies questioned this paradigm, suggesting that extremely heavy or exhaustive exercise fosters mitochondrial disturbances that could permanently damage its function in health and disease. Exercise-induced mitochondrial dysfunction (EIMD) might be a key proxy for negative outcomes of exhaustive exercise, being a pathophysiological substrate of heart abnormalities, chronic fatigue syndrome (CFS) or muscle degeneration. Here, we overview possible factors that mediate negative effects of exhaustive exercise on mitochondrial function and structure, and put forward alternative solutions for the management of EIMD.
Collapse
|
22
|
Cobianchi S, Arbat-Plana A, López-Álvarez VM, Navarro X. Neuroprotective Effects of Exercise Treatments After Injury: The Dual Role of Neurotrophic Factors. Curr Neuropharmacol 2017; 15:495-518. [PMID: 27026050 PMCID: PMC5543672 DOI: 10.2174/1570159x14666160330105132] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Shared connections between physical activity and neuroprotection have been studied for decades, but the mechanisms underlying this effect of specific exercise were only recently brought to light. Several evidences suggest that physical activity may be a reasonable and beneficial method to improve functional recovery in both peripheral and central nerve injuries and to delay functional decay in neurodegenerative diseases. In addition to improving cardiac and immune functions, physical activity may represent a multifunctional approach not only to improve cardiocirculatory and immune functions, but potentially modulating trophic factors signaling and, in turn, neuronal function and structure at times that may be critical for neurodegeneration and regeneration. METHODS Research content related to the effects of physical activity and specific exercise programs in normal and injured nervous system have been reviewed. RESULTS Sustained exercise, particularly if applied at moderate intensity and early after injury, exerts anti-inflammatory and pro-regenerative effects, and may boost cognitive and motor functions in aging and neurological disorders. However, newest studies show that exercise modalities can differently affect the production and function of brain-derived neurotrophic factor and other neurotrophins involved in the generation of neuropathic conditions. These findings suggest the possibility that new exercise strategies can be directed to nerve injuries with therapeutical benefits. CONCLUSION Considering the growing burden of illness worldwide, understanding of how modulation of neurotrophic factors contributes to exercise-induced neuroprotection and regeneration after peripheral nerve and spinal cord injuries is a relevant topic for research, and represents the beginning of a new non-pharmacological therapeutic approach for better rehabilitation of neural disorders.
Collapse
Affiliation(s)
- Stefano Cobianchi
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ariadna Arbat-Plana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Víctor M. López-Álvarez
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Bellaterra, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
23
|
Mahjoub S, Ghadi A, Pourbagher R, Hajian-Tilaki K, Masrour-Roudsari J. Effects of Regular Treadmill Exercise on a DNA Oxidative-Damage Marker and Total Antioxidant Capacity in Rat Hippocampal Tissue. J Clin Neurol 2016; 12:414-418. [PMID: 27486937 PMCID: PMC5063866 DOI: 10.3988/jcn.2016.12.4.414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Regular exercise can result in changes in the levels of oxidative stress in the hippocampus; however, little attention has been paid to physical-activity-induced neuronal protection to exposure to lead compounds. This study investigated the effects of regular treadmill exercise on a DNA oxidative-damage marker [8-hydroxy-2'-deoxyguanosine (8-OHdG)] and the total antioxidant capacity (TAC) of hippocampal tissue in lead-acetate exposed rats. Methods This study investigated the effects of 8 weeks of regular treadmill exercise on 8-OHdG and the TAC of hippocampal tissue in lead-acetate-exposed rats. Wistar rats were randomly divided into four groups: baseline, sham (control), lead, and exercise+lead. The exercise program involved running on a treadmill with increasing intensity five times a week for 8 weeks. Animals in the lead and exercise+lead groups received lead acetate at 20 mg/kg body weight intraperitoneally three times weekly for 8 weeks. Animals in the sham group received solvent (ethyl oleate) at 30 mg/kg body weight three times weekly for 8 weeks. TAC and 8-OHdG were measured by spectrophotometric and ELISA techniques, respectively. Data were analyzed by ANOVA and Tukey's post-hoc test with a significance cutoff of p≤0.05. Results The level of 8-OHdG and the TAC were significantly higher and lower, respectively, in the lead group than in the baseline and sham groups (p<0.01). However, the 8-OHdG level and TAC value in hippocampal tissue were significantly decreased and increased, respectively, in the exercise+lead group relative to the lead group (p<0.05). Conclusions The TAC of hippocampal tissue may be directly associated with neural protection mechanisms of exercise following lead acetate injection, and the beneficial effects of regular exercise in preventing hippocampal neuronal damage could be due to decreased hippocampal oxidative stress such as reflected by a lower 8-OHdG level and increased TAC.
Collapse
Affiliation(s)
- Soleiman Mahjoub
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Arezoo Ghadi
- Department of Chemical Engineering, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| | - Roghayeh Pourbagher
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Jila Masrour-Roudsari
- Infectious Diseases and Tropical Medicine Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
24
|
Wang Y, Xu Y, Sheng H, Ni X, Lu J. Exercise amelioration of depression-like behavior in OVX mice is associated with suppression of NLRP3 inflammasome activation in hippocampus. Behav Brain Res 2016; 307:18-24. [PMID: 27036651 DOI: 10.1016/j.bbr.2016.03.044] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 01/12/2023]
Abstract
Exercise has benefit for perimenopause women in many ways, such as affective disorders. Our previous study has demonstrated that inflammation in hippocampus contributes to development of depression-like behavior in ovariectomized (OVX) rats. Recently, oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been implicated to be involved in lipopolysaccharide (LPS)- and chronic stress-induced depression-like behavior in rodents. We sought to investigate whether ovariectomy-induced depression-like behavior is associated with NLRP3 inflammasome activation in brain and the effect of exercise on NLRP3 inflammasome activation in this model. The results showed that ovariectomy resulted in depression-like behavior in mice and an increase in levels of IL-1β and IL-18 in hippocampus. Exercise ameliorated the depression-like behavior and decreased levels of IL-1β and IL-18 in hippocampus. The level of IL-1β and IL-18 in hippocampus correlated to depression-like behavior in OVX mice. The levels of NLRP3, cleaved caspase-1 P10 and CD11b in hippocampus were increased in OVX mice compared with control group. Exercise could reduce the levels of NLRP3, cleaved caspase-1 P10 and CD11b in OVX mice. Our study suggests that NLRP3 inflammasome activation contribute to inflammation in hippocampus upon to deprivation of ovary. Exercise amelioration of depression-like behavior is associated with suppression of NLRP3 inflammasome activation in hippocampus of this model.
Collapse
Affiliation(s)
- Yujun Wang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjun Xu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Hui Sheng
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China.
| | - Jianqiang Lu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
25
|
Gradari S, Pallé A, McGreevy KR, Fontán-Lozano Á, Trejo JL. Can Exercise Make You Smarter, Happier, and Have More Neurons? A Hormetic Perspective. Front Neurosci 2016; 10:93. [PMID: 27013955 PMCID: PMC4789405 DOI: 10.3389/fnins.2016.00093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/23/2016] [Indexed: 11/15/2022] Open
Abstract
Exercise can make you smarter, happier and have more neurons depending on the dose (intensity) of the training program. It is well recognized that exercise protocols induce both positive and negative effects depending on the intensity of the exercise, among other key factors, a process described as a hormetic-like biphasic dose-response. However, no evidences have been reported till very recently about the biphasic response of some of the potential mediators of the exercise-induced actions. This hypothesis and theory will focus on the adult hippocampal neurogenesis (AHN) as a putative physical substrate for hormesis responses to exercise in the context of exercise-induced actions on cognition and mood, and on the molecular pathways which might potentially be mediating these actions.
Collapse
Affiliation(s)
- Simona Gradari
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Anna Pallé
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Kerry R McGreevy
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Ángela Fontán-Lozano
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José L Trejo
- Laboratory of Adult Neurogenesis, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
26
|
Alomari MA, Khabour OF, Alzoubi KH, Alzubi MA. Combining restricted diet with forced or voluntary exercises improves hippocampal BDNF and cognitive function in rats. Int J Neurosci 2015; 126:366-73. [PMID: 26000806 DOI: 10.3109/00207454.2015.1012587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dietary restriction (RDt) and exercise (Ex) enhances cognitive function due, at least in part, levels of neurotrophins such as brain-derived neurotrophic factor (BDNF). This study examined changes in BDNF levels and data acquisition and retention following every-other-day RDt alone, and combined with either voluntary wheel (VxRDt) or forced swimming Exs (FxRDt) in rats. Hippocampal BDNF was measured using ELISA while learning and memory formation were assessed with the radial arm water maze (RAWM) paradigm. After 6 weeks, VxRDt and FxRDt enhanced BDNF levels, and short- and long-term memories (p < 0.05). The magnitude of the increase in BDNF was significantly higher in VxRDt group than in other groups (p < 0.05). However, no differences were found in learning and memory formation between the Ex regiments (VxRDt versus FxRDt). Additionally, RDt alone neither modulated BDNF level nor enhanced learning and memory formation (p > 0.05). These results suggest more important role of Ex, as opposed to RDt, in enhancing learning and memory formation. In addition, VxRDt appears to be more potent in enhancing brain BDNF levels than FxRDt, when combined with RDt in rats.
Collapse
Affiliation(s)
- Mahmoud A Alomari
- a Department of Rehabilitation Sciences , Jordan University of Science and Technology , Irbid , Jordan
| | - Omar F Khabour
- b Department of Medical Laboratory Sciences , Jordan University of Science and Technology , Irbid , Jordan.,c Department of Biology, Faculty of Science , Taibah University , Madinah Munawara , Saudi Arabia
| | - Karem H Alzoubi
- d Department of Clinical Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad A Alzubi
- b Department of Medical Laboratory Sciences , Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
27
|
The dose-dependent antioxidant effects of physical exercise in the hippocampus of mice. Neurochem Res 2014; 39:1496-501. [PMID: 24858240 DOI: 10.1007/s11064-014-1339-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/12/2014] [Accepted: 05/17/2014] [Indexed: 12/19/2022]
Abstract
Exercise increases both the consumption of oxygen and the production of reactive species in biological tissues, and this is counterbalanced by antioxidant adaptations to regular physical training. When the intensity of exercise fluctuates between mild and moderate, it improves the status of reduction-oxidation balance in the brain and induces neuroplasticity. However, intense exercise can oxidize the brain and impair neurological function. The effect of the frequency of exercise, which is an important factor in physical training, is still unknown. The effect of periodic exercise on biomarkers of oxidative stress in the hippocampus of mice was evaluated in this study. Mice were made to run on a treadmill for 8 weeks, two, three, or five times per week, and their hippocampi and quadriceps femoris muscles were then dissected. Biomarkers of oxidative damage were negatively correlated with the frequency of exercise and mitochondrial muscular activity, while the sulfhydryl contents were positively correlated with exercise frequency. A logistic analysis revealed a dose-dependent effect of exercise on these biomarkers. In summary, these results suggested that manipulating the frequency of physical exercise could induce antioxidant-related adaptations in the hippocampi of adult mice.
Collapse
|
28
|
Camiletti-Moirón D, Aparicio VA, Aranda P, Radak Z. Does exercise reduce brain oxidative stress? A systematic review. Scand J Med Sci Sports 2013; 23:e202-12. [PMID: 23495801 DOI: 10.1111/sms.12065] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 12/26/2022]
Abstract
The aim of the present systematic review was to investigate the influence of different exercise programs on brain oxidative stress. A search of the literature was conducted up to 1 December 2012 across five databases: PUBMED, SCOPUS, SPORTS DISCUS, Web of Science, and The Cochrane Library. The search strategy used in the electronic databases mentioned was established as: (swim* OR exercise OR training) AND ("oxidative stress" AND brain) for each database. A methodological quality assessment valuation/estimation was additionally carried out in the final sample of studies. Of 1553 potentially eligible papers, 19 were included after inclusion and exclusion criteria. The methodological quality assessment showed a total score in the Quality Index between 40% and 80%, with a mean quality of 56.8%. Overall, regular moderate aerobic exercise appears to promote antioxidant capacity on brain. In contrast, anaerobic or high-intensity exercise, aerobic-exhausted exercise, or the combination of both types of training could deteriorate the antioxidant response. Future investigations should be focused on establishing a standardized exercise protocol, depending on the exercise metabolism wanted to test, which could enhance the objective knowledge in this topic.
Collapse
Affiliation(s)
- D Camiletti-Moirón
- Department of Physiology and Institute of Nutrition and Food Technology, University of Granada, Granada, Spain
| | | | | | | |
Collapse
|
29
|
Steketee MB, Moysidis SN, Weinstein JE, Kreymerman A, Silva JP, Iqbal S, Goldberg JL. Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 2012; 53:7402-11. [PMID: 23049086 DOI: 10.1167/iovs.12-10298] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Retinal ganglion cell (RGC) death and failed axonal regeneration after trauma or disease, including glaucomatous and mitochondrial optic neuropathies, are linked increasingly to dysfunctional mitochondrial dynamics. However, how mitochondrial dynamics influence axon growth largely is unstudied. We examined intrinsic mitochondrial organization in embryonic and postnatal RGCs and the roles that mitochondrial dynamics have in regulating neurite growth and guidance. METHODS RGCs were isolated from embryonic day 20 (E20) or postnatal days 5 to 7 (P5-7) Sprague-Dawley rats by anti-Thy1 immunopanning. After JC-1 loading, mitochondria were analyzed in acutely purified RGCs by flow cytometry and in RGC neurites by fluorescence microscopy. Intrinsic axon growth was modulated by overexpressing Krüppel-like family (KLF) transcription factors, or mitochondrial dynamics were altered by inhibiting dynamin related protein-1 (DRP-1) pharmacologically or by overexpressing mitofusin-2 (Mfn-2). Mitochondrial organization, neurite growth, and growth cone motility and guidance were analyzed. RESULTS Mitochondrial dynamics and function are regulated developmentally in acutely purified RGCs and in nascent RGC neurites. Mitochondrial dynamics are modulated differentially by KLFs that promote or suppress growth. Acutely inhibiting mitochondrial fission reversibly suppressed axon growth and lamellar extension. Inhibiting DRP-1 or overexpressing Mfn-2 altered growth cone responses to chondroitin sulfate proteoglycan, netrin-1, and fibronectin. CONCLUSIONS These results support the hypothesis that mitochondria locally modulate signaling in the distal neurite and growth cone to affect the direction and the rate of neurite growth.
Collapse
|
30
|
E L, Lu J, Burns JM, Swerdlow RH. Effect of exercise on mouse liver and brain bioenergetic infrastructures. Exp Physiol 2012; 98:207-19. [PMID: 22613742 DOI: 10.1113/expphysiol.2012.066688] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To assess the effects of exercise on liver and brain bioenergetic infrastructures, we exposed C57BL/6 mice to 6 weeks of moderate-intensity treadmill exercise. During the training period, fasting blood glucose was lower in exercised mice than in sedentary mice, but serum insulin levels were not reduced. At week 6, trained mice showed a paradoxical decrease in plasma lactate during exercise, which was accompanied by an increase in the liver monocarboxylate transporter 2 protein level (∼30%, P < 0.05). Exercise increased liver peroxisomal proliferator-activated receptor-γ coactivator 1α expression (approximately twofold, P < 0.001), NAD-dependent deacetylase sirtuin-1 protein (∼30%, P < 0.05), p38 protein (∼15%, P < 0.05), cytochrome c oxidase subunit 4 isoform 1 protein (∼50%, P < 0.05) and AMP-activated protein kinase phosphorylation (∼40%, P < 0.05). Despite this, liver mitochondrial DNA copy number (∼30%, P = 0.05), mitochondrial transcription factor A expression (∼15%, P < 0.05), cytochrome c oxidase subunit 2 expression (∼10%, P < 0.05), cAMP-response element binding protein phosphorylation (∼60%, P < 0.05) and brain-derived neurotrophic factor expression (∼40%, P < 0.05) were all reduced, while cytochrome oxidase and citrate synthase activities were unchanged. The only altered brain parameter observed was a reduction in tumour necrosis factor α expression (∼35%, P < 0.05); tumour necrosis factor α expression was unchanged in liver. Our data suggest that lactate produced by exercising muscle modifies the liver bioenergetic infrastructure, and enhanced liver uptake may in turn limit the ability of exercise-generated lactate to modify brain bioenergetics. Also, it appears that, at least in the liver, a dissociated mitochondrial biogenesis, in which some components are strategically enhanced while others are minimized, can occur.
Collapse
Affiliation(s)
- Lezi E
- Department of Physical Therapy and Rehabilitation Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
31
|
Speck AE, Fraga D, Soares P, Scheffer DL, Silva LA, Aguiar AS, Estreck EL, Pinho RA. Cigarette smoke inhibits brain mitochondrial adaptations of exercised mice. Neurochem Res 2011; 36:1056-61. [PMID: 21424737 DOI: 10.1007/s11064-011-0447-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2011] [Indexed: 12/11/2022]
Abstract
Physical exercise and smoking are environmental factors that generally cause opposite health-promoting adaptations. Both physical exercise and smoking converge on mitochondrial adaptations in various tissues, including the pro-oxidant nervous system. Here, we analyzed the impact of cigarette smoking on exercise-induced brain mitochondrial adaptations in the hippocampus and pre-frontal cortex of adult mice. The animals were exposed to chronic cigarette smoke followed by 8 weeks of moderate-intensity physical exercise that increased mitochondrial activity in the hippocampus and pre-frontal cortex in the non-smoker mice. However, mice previously exposed to cigarette smoke did not present these exercise-induced mitochondrial adaptations. Our results suggest that smoking can inhibit some brain health-promoting changes induced by physical exercise.
Collapse
Affiliation(s)
- Ana Elisa Speck
- Laboratório Experimental de Doenças Neurodegenerativas, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC 88049-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Aguiar A, Boemer G, Rial D, Cordova F, Mancini G, Walz R, de Bem A, Latini A, Leal R, Pinho R, Prediger R. High-intensity physical exercise disrupts implicit memory in mice: involvement of the striatal glutathione antioxidant system and intracellular signaling. Neuroscience 2010; 171:1216-27. [DOI: 10.1016/j.neuroscience.2010.09.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/17/2010] [Accepted: 09/23/2010] [Indexed: 12/13/2022]
|
33
|
Lappalainen J, Lappalainen Z, Oksala NKJ, Laaksonen DE, Khanna S, Sen CK, Atalay M. Alpha-lipoic acid does not alter stress protein response to acute exercise in diabetic brain. Cell Biochem Funct 2010; 28:644-50. [PMID: 21104931 DOI: 10.1002/cbf.1702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones which may act protective in cerebrovascular insults and peripheral diabetic neuropathy. We hypothesized that alpha-lipoic acid (LA), a natural thiol antioxidant, may enhance brain HSP response in diabetes. Rats with or without streptozotocin-induced diabetes were treated with LA or saline for 8 weeks. Half of the rats were subjected to exhaustive exercise to investigate HSP induction, and the brain tissue was analyzed. Diabetes increased constitutive HSC70 mRNA, and decreased HSP90 and glucose-regulated protein 75 (GRP75) mRNA without affecting protein levels. Exercise increased HSP90 protein and mRNA, and also GRP75 and heme oxygenase-1 (HO-1) mRNA only in non-diabetic animals. LA had no significant effect on brain HSPs, although LA increased HSC70 and HO-1 mRNA in diabetic animals and decreased HSC70 mRNA in non-diabetic animals. Eukaryotic translation elongation factor-2, essential for protein synthesis, was decreased by diabetes and suggesting a mechanism for the impaired HSP response related to translocation of the nascent chain during protein synthesis. LA supplementation does not offset the adverse effects of diabetes on brain HSP mRNA expression. Diabetes may impair HSP translation through elongation factors related to nascent chain translocation and subsequent responses to acute stress.
Collapse
Affiliation(s)
- Jani Lappalainen
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Aerobic exercise alters analgesia and neurotrophin-3 synthesis in an animal model of chronic widespread pain. Phys Ther 2010; 90:714-25. [PMID: 20338916 PMCID: PMC3171655 DOI: 10.2522/ptj.20090168] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Present literature and clinical practice provide strong support for the use of aerobic exercise in reducing pain and improving function for individuals with chronic musculoskeletal pain syndromes. However, the molecular basis for the positive actions of exercise remains poorly understood. Recent studies suggest that neurotrophin-3 (NT-3) may act in an analgesic fashion in various pain states. OBJECTIVE The purpose of the present study was to examine the effects of moderate-intensity aerobic exercise on pain-like behavior and NT-3 in an animal model of widespread pain. DESIGN This was a repeated-measures, observational cross-sectional study. METHODS Forty female mice were injected with either normal (pH 7.2; n=20) or acidic (pH 4.0; n=20) saline in the gastrocnemius muscle to induce widespread hyperalgesia and exercised for 3 weeks. Cutaneous (von Frey monofilament) and muscular (forceps compression) mechanical sensitivity were assessed. Neurotrophin-3 was quantified in 2 hind-limb skeletal muscles for both messenger RNA (mRNA) and protein levels after exercise training. Data were analyzed with 2-factor analysis of variance for repeated measures (group x time). RESULTS Moderate-intensity aerobic exercise reduced cutaneous and deep tissue hyperalgesia induced by acidic saline and stimulated NT-3 synthesis in skeletal muscle. The increase in NT-3 was more pronounced at the protein level compared with mRNA expression. In addition, the increase in NT-3 protein was significant in the gastrocnemius muscle but not in the soleus muscle, suggesting that exercise can preferentially target NT-3 synthesis in specific muscle types. LIMITATIONS Results are limited to animal models and cannot be generalized to chronic pain syndromes in humans. CONCLUSIONS This is the first study demonstrating the effect of exercise on deep tissue mechanical hyperalgesia in a rodent model of pain and providing a possible molecular basis for exercise training in reducing muscular pain.
Collapse
|
35
|
da Silva LA, Pinho CA, Rocha LGC, Tuon T, Silveira PCL, Pinho RA. Effect of different models of physical exercise on oxidative stress markers in mouse liver. Appl Physiol Nutr Metab 2009; 34:60-5. [PMID: 19234586 DOI: 10.1139/h08-132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effect of different protocols of physical exercise on oxidative stress markers in mouse liver. Twenty-eight male CF1 mice (30-35 g) were distributed into 4 groups (n = 7) - untrained (UT), continuous running (CR), downhill running (D-HR), and intermittent running (IR) - and underwent an 8-week training program. Forty-eight hours after the last training session, the animals were killed, and their livers were removed. Blood lactate, creatine kinase, citrate synthase, thiobarbituric acid reactive species, carbonyl, superoxide dismutase (SOD), and catalase (CAT) activities were assayed. Results show a decrease in the level of lipoperoxidation and protein carbonylation in the CR and D-HR groups. SOD activity was significantly increased and CAT activity was reduced in the CR and D-HR groups. Our findings indicate that CR and D-HR may be important for decreasing oxidative damage and in the regulation of antioxidant enzymes (SOD and CAT) in the livers of trained mice.
Collapse
Affiliation(s)
- Luciano A da Silva
- Universidade do Extremo Sul Catarinense-UNESC, Laboratorio de Fisiologia e Bioquimica do Exercicio, Bloco da Saude, Av Universitaria, 1105, Bairro Universitario, 88806-000, Criciuma, Santa Catarina, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Silva LA, Pinho CA, Scarabelot KS, Fraga DB, Volpato AMJ, Boeck CR, De Souza CT, Streck EL, Pinho RA. Physical exercise increases mitochondrial function and reduces oxidative damage in skeletal muscle. Eur J Appl Physiol 2009; 105:861-7. [DOI: 10.1007/s00421-008-0971-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
|
37
|
Exercise, fitness, and neurocognitive function in older adults: the "selective improvement" and "cardiovascular fitness" hypotheses. Ann Behav Med 2008; 36:280-91. [PMID: 18825471 DOI: 10.1007/s12160-008-9064-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although basic research has uncovered biological mechanisms by which exercise could maintain and enhance adult brain health, experimental human studies with older adults have produced equivocal results. PURPOSE This randomized clinical trial aimed to investigate the hypotheses that (a) the effects of exercise training on the performance of neurocognitive tasks in older adults is selective, influencing mainly tasks with a substantial executive control component and (b) performance in neurocognitive tasks is related to cardiorespiratory fitness. METHODS Fifty-seven older adults (65-79 years) participated in aerobic or strength-and-flexibility exercise training for 10 months. Neurocognitive tasks were selected to reflect a range from little (e.g., simple reaction time) to substantial (i.e., Stroop Word-Color conflict) executive control. RESULTS Performance in tasks requiring little executive control was unaffected by participating in aerobic exercise. Improvements in Stroop Word-Color task performance were found only for the aerobic exercise group. Changes in aerobic fitness were unrelated to changes in neurocognitive function. CONCLUSIONS Aerobic exercise in older adults can have a beneficial effect on the performance of speeded tasks that rely heavily on executive control. Improvements in aerobic fitness do not appear to be a prerequisite for this beneficial effect.
Collapse
|
38
|
Downhill training upregulates mice hippocampal and striatal brain-derived neurotrophic factor levels. J Neural Transm (Vienna) 2008; 115:1251-5. [DOI: 10.1007/s00702-008-0071-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
|
39
|
The effect of n-acetylcysteine and deferoxamine on exercise-induced oxidative damage in striatum and hippocampus of mice. Neurochem Res 2007; 33:729-36. [PMID: 17940892 DOI: 10.1007/s11064-007-9485-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/21/2007] [Indexed: 12/21/2022]
Abstract
The aim of this study was to analyze the effects of intense exercise on brain redox status, associated with antioxidant supplementation of N-acetylcysteine (NAC), deferoxamine (DFX) or a combination of both. Seventy-two C57BL-6 adult male mice were randomly assigned to 8 groups: control, NAC, DFX, NAC plus DFX, exercise, exercise with NAC, exercise with DFX, and exercise with NAC plus DFX. They were given antioxidant supplementation, exercise training on a treadmill for 12 weeks, and sacrificed 48 h after the last exercise session. Training significantly increased (P < 0.05) soleus citrate synthase (CS) activity when compared to control. Blood lactate levels classified the exercise as intense. Exercise significantly increased (P < 0.05) oxidation of biomolecules and superoxide dismutase activity in striatum and hippocampus. Training significantly increased (P < 0.05) catalase activity in striatum. NAC and DFX supplementation significantly protected (P < 0.05) against oxidative damage. These results indicate intense exercise as oxidant and NAC and DFX as antioxidant to the hippocampus and the striatum.
Collapse
|