1
|
López-Ramos JC, Martínez-Lara E, Serrano J, Fernández P, Parras GG, Ruiz-Marcos A, Rodrigo J. Nitric oxide synthase system in the brain development of neonatal hypothyroid rats. Neuroscience 2025; 565:155-171. [PMID: 39461663 DOI: 10.1016/j.neuroscience.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Thyroid hormones play an important morphogenetic role during the fetal and neonatal periods and regulate numerous metabolic processes. In the central nervous system, they control myelination and overall brain development, regional gene expression, and regulation of oxygen consumption. Their deficiency in the fetal and neonatal periods causes severe mental retardation, due to lack of thyroid function, or to iodine deficiency. At the same time, nitric oxide is an atypical neurotransmitter that also has special relevance in neuronal development and plasticity and functions as a vasodilator, regulating cerebral blood flow. Although under physiological conditions it functions as a neuroprotector, in excess it can be neurotoxic. We have studied, by immunocytochemical and Western blot techniques, the evolution of the expression of neuronal and inducible isoforms of the enzyme nitric oxide synthase, and of nitrotyrosine as a marker of protein nitration produced by the presence of nitric oxide, during the early stages of postnatal brain development. We induced hypothyroidism by administering mercaptomethylimidazole to pregnant mothers, from the seventh day of gestation until the sacrifice of the offspring. The results show a delay in the evolution of the expression of the two isoforms of the enzyme nitric oxide synthase in hypothyroid animals, followed by an anomalous overexpression in later stages. Finally, the expression of nitrotyrosine follows an evolution that is synchronized with that shown by both isoenzymes in control and hypothyroid animals.
Collapse
Affiliation(s)
- Juan Carlos López-Ramos
- División de Neurociencias, Universidad Pablo de Olavide, ES-41013 Sevilla, Spain; Instituto Cajal, Avda. Doctor Arce, 24, 28002 Madrid, Spain.
| | - Esther Martínez-Lara
- Departmento de Biología Experimental, Campus de Las Lagunillas s/n, Universidad de Jaén, 23071 Jaén, Spain
| | - Julia Serrano
- Instituto Cajal, Avda. Doctor Arce, 24, 28002 Madrid, Spain
| | | | - Gloria G Parras
- División de Neurociencias, Universidad Pablo de Olavide, ES-41013 Sevilla, Spain
| | | | - José Rodrigo
- Instituto Cajal, Avda. Doctor Arce, 24, 28002 Madrid, Spain
| |
Collapse
|
2
|
Khadrawy YA, Khoder NM, Sawie HG, Sharada HM, Hosny EN, Abdulla MS. The Neuroprotective Effect of α-Lipoic Acid and/or Metformin against the Behavioral and Neurochemical Changes Induced by Hypothyroidism in Rat. Neuroendocrinology 2022; 112:1129-1142. [PMID: 35354137 DOI: 10.1159/000524367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The present study evaluates the neuroprotective effect of α-lipoic acid (ALA) and/or metformin (MET) on the behavioral and neurochemical changes induced by hypothyroidism. METHODS Rats were divided into control, rat model of hypothyroidism induced by propylthiouracil, and rat model of hypothyroidism treated with ALA, MET, or their combination. RESULTS Behaviorally, hypothyroid rats revealed impaired memory and reduced motor activity as indicated from the novel object recognition test and open-field test, respectively. Hypothyroidism induced a significant increase in lipid peroxidation (malondialdehyde [MDA]) and a significant decrease in reduced glutathione (GSH) and nitric oxide (NO) in the cortex and hippocampus. These were associated with a significant increase in tumor necrosis factor-α (TNF-α) and a significant decrease in brain-derived neurotrophic factor (BDNF). Hypothyroidism decreased significantly the levels of serotonin (5-HT), norepinephrine (NE), and dopamine (DA) and reduced the activities of acetylcholinesterase (AchE) and Na+, K+-ATPase in the cortex and hippocampus. Treatment of hypothyroid rats with ALA and/or MET showed an improvement in memory function and motor activity. Moreover, ALA and/or MET prevented the increase in MDA and TNF-α, and the decline in GSH, NO, BDNF, 5-HT, NE, and DA. It also restored AchE and Na+, K+-ATPase activities in the studied brain regions. CONCLUSION ALA and/or MET has a potential neuroprotective effect against the adverse behavioral and neurochemical changes induced by hypothyroidism in rats.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Noha M Khoder
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hussein G Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hayat M Sharada
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mohga S Abdulla
- Chemistry Department, Faculty of Science, Helwan University, Helwan, Egypt
| |
Collapse
|
3
|
Cros-Brunsó L, Camacho-Rodríguez L, Martínez-González Á, Llévenes P, Salaices M, García-Redondo AB, Blanco-Rivero J. A Blunted Sympathetic Function and an Enhanced Nitrergic Activity Contribute to Reduce Mesenteric Resistance in Hyperthyroidism. Int J Mol Sci 2021; 22:ijms22020570. [PMID: 33430047 PMCID: PMC7826714 DOI: 10.3390/ijms22020570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
We aimed to determine whether an experimental model of hyperthyroidism could alter the function of sympathetic and nitrergic components of mesenteric innervation. For this purpose, male Wistar rats were divided into (1) control rats (CT) and (2) rats infused with L-Thyroxine (HT). Body weight gain and adipose tissue accumulation were lower in HT rats, while systolic blood pressure and citrate synthase activity in the soleus muscle were increased by HT. In segments from the superior mesenteric artery, the application of an electrical field stimulation (EFS) induced a vasoconstrictor response, which was lower in arteries from HT animals. The alpha-adrenoceptor antagonist phentolamine diminished EFS-induced vasoconstriction to a lower extent in HT arteries, while the purinergic receptor antagonist suramin reduced contractile response to EFS only in segments from CT. In line with this, noradrenaline release, tyrosine hydroxylase expression and activation and dopamine β hydroxylase expression were diminished in HT. The unspecific nitric oxide synthase (NOS) inhibitor L-NAME increased EFS-induced vasoconstriction more markedly in segments from HT rats. NO release was enhanced in HT, probably due to an enhancement in neuronal NOS activity, in which a hyperactivation of both PKC and PI3K-AKT signaling pathways might play a relevant role. In conclusion, perivascular mesenteric innervation might contribute to reduce the vascular resistance observed in hyperthyroidism.
Collapse
Affiliation(s)
- Laia Cros-Brunsó
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (L.C.-B.); (L.C.-R.); (Á.M.-G.); (P.L.)
| | - Laura Camacho-Rodríguez
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (L.C.-B.); (L.C.-R.); (Á.M.-G.); (P.L.)
| | - Ángel Martínez-González
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (L.C.-B.); (L.C.-R.); (Á.M.-G.); (P.L.)
| | - Pablo Llévenes
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (L.C.-B.); (L.C.-R.); (Á.M.-G.); (P.L.)
| | - Mercedes Salaices
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Research Institute University Hospital la Paz (IdIPaz), Calle de Pedro Rico 6, 28029 Madrid, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana Belen García-Redondo
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (L.C.-B.); (L.C.-R.); (Á.M.-G.); (P.L.)
- Research Institute University Hospital la Paz (IdIPaz), Calle de Pedro Rico 6, 28029 Madrid, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Correspondence: (A.B.G.-R.); (J.B.-R.); Tel.: +34-91-497-5446 (A.B.G.-R. & J.B.-R.)
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (L.C.-B.); (L.C.-R.); (Á.M.-G.); (P.L.)
- Research Institute University Hospital la Paz (IdIPaz), Calle de Pedro Rico 6, 28029 Madrid, Spain
- Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Correspondence: (A.B.G.-R.); (J.B.-R.); Tel.: +34-91-497-5446 (A.B.G.-R. & J.B.-R.)
| |
Collapse
|
4
|
Gluvic ZM, Obradovic MM, Sudar-Milovanovic EM, Zafirovic SS, Radak DJ, Essack MM, Bajic VB, Takashi G, Isenovic ER. Regulation of nitric oxide production in hypothyroidism. Biomed Pharmacother 2020; 124:109881. [PMID: 31986413 DOI: 10.1016/j.biopha.2020.109881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/25/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypothyroidism is a common endocrine disorder that predominantly occurs in females. It is associated with an increased risk of cardiovascular diseases (CVD), but the molecular mechanism is not known. Disturbance in lipid metabolism, the regulation of oxidative stress, and inflammation characterize the progression of subclinical hypothyroidism. The initiation and progression of endothelial dysfunction also exhibit these changes, which is the initial step in developing CVD. Animal and human studies highlight the critical role of nitric oxide (NO) as a reliable biomarker for cardiovascular risk in subclinical and clinical hypothyroidism. In this review, we summarize the recent literature findings associated with NO production by the thyroid hormones in both physiological and pathophysiological conditions. We also discuss the levothyroxine treatment effect on serum NO levels in hypothyroid patients.
Collapse
Affiliation(s)
- Zoran M Gluvic
- Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia; School of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Milan M Obradovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | - Emina M Sudar-Milovanovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | - Sonja S Zafirovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| | | | - Magbubah M Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia.
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia.
| | - Gojobori Takashi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, Saudi Arabia; King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Esma R Isenovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia.
| |
Collapse
|
5
|
Tan B, Babur E, Koşar B, Varol S, Dursun N, Süer C. Age-dependent evaluation of long-term depression responses in hyperthyroid rats: Possible roles of oxidative intracellular redox status. Brain Res 2019; 1720:146314. [DOI: 10.1016/j.brainres.2019.146314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
|
6
|
Bavarsad K, Hosseini M, Hadjzadeh MAR, Sahebkar A. The effects of thyroid hormones on memory impairment and Alzheimer's disease. J Cell Physiol 2019; 234:14633-14640. [PMID: 30680727 DOI: 10.1002/jcp.28198] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Thyroid hormones (THs) have a wide and important range of effects within the central nervous system beginning from fetal life and continuing throughout the adult life. Thyroid disorders are one of the major causes of cognitive impairment including Alzheimer's disease (AD). Several studies in recent years have indicated an association between hypothyroidism or hyperthyroidism and AD. Despite available evidence for this association, it remains unclear whether thyroid dysfunction results from or contributes to the progression of AD. This review discusses the role of THs in learning and memory and summarizes the studies that have linked thyroid function and AD. Eventually, we elaborate how THs may be effective in treating AD by putting forward potential mechanisms.
Collapse
Affiliation(s)
- Kowsar Bavarsad
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Llévenes P, Balfagón G, Blanco-Rivero J. Thyroid hormones affect nitrergic innervation function in rat mesenteric artery: Role of the PI3K/AKT pathway. Vascul Pharmacol 2018; 108:36-45. [PMID: 29751093 DOI: 10.1016/j.vph.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/20/2018] [Accepted: 05/06/2018] [Indexed: 01/30/2023]
Abstract
We aimed to determine the influence of nitrergic innervation function on the decreased mesenteric arterial tone induced by high levels of triiodothyronine (T3), as a model of acute thyroiditis, as well as the mechanism/s implicated. We analysed in mesenteric segments from male Wistar rats the effect of 10 nmol/L T3 (2 h) on the vasomotor response to electrical field stimulation (EFS) in the presence/absence of specific neuronal NOS (nNOS) inhibitor L-NPA, or superoxide anion scavenger tempol. Nitric oxide (NO) release was measured in the presence/absence of tempol or PI3K inhibitor LY294002. Superoxide anion and peroxynitrite releases, nNOS, PI3K, AKT and superoxide dismutase (SOD) 1 and 2 expressions, nNOS and AKT phosphorylation, and SOD activity were analysed. T3 decreased EFS-induced vasoconstriction. L-NPA increased EFS-induced vasoconstriction more markedly in T3-incubated segments. T3 increased NO release. Tempol decreased EFS-induced vasoconstriction and augmented NO release only in segments without T3. LY294002 decreased NO release in T3-incubated segments. T3 diminished superoxide anion and peroxynitrite formation, enhanced SOD-2 expression, nNOS and AKT phosphorylations and SOD activity, and did not modify nNOS, PI3K, AKT and SOD-1 expressions. In conclusion, these results show a compensatory mechanism aimed at reducing the enhanced blood pressure that appears during acute thyroiditis.
Collapse
Affiliation(s)
- Pablo Llévenes
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Gloria Balfagón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdIPaz), Spain
| | - Javier Blanco-Rivero
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdIPaz), Spain.
| |
Collapse
|
8
|
Afarinesh MR, Behzadi G. The Effects of De-Whiskering and Congenital Hypothyroidism on The Development of Nitrergic Neurons in Rat Primary Somatosensory and Motor Cortices. CELL JOURNAL 2018; 20:157-167. [PMID: 29633592 PMCID: PMC5893286 DOI: 10.22074/cellj.2018.5112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 11/25/2022]
Abstract
Objective The aim of the present study is to investigate the effects of chronic whisker deprivation on possible alterations to
the development of nitrergic neurons in the whisker part of the somatosensory (wS1) and motor (wM1) cortices in offspring
with congenital hypothyroidism (CH).
Materials and Methods In the experimental study, CH was induced by adding propylthiouracil to the rats drinking water from
embryonic day 16 to postnatal day (PND) 60. In whisker-deprived (WD) pups, all the whiskers were trimmed from PND 1 to
60. Nitrergic interneurons in the wS1/M1 cortices were detected by NADPH-diaphorase histochemistry staining technique in
the control (Ctl), Ctl+WD, Hypo and Hypo+WD groups.
Results In both wS1 and wM1 cortices the number of nitrergic neurons was significantly reduced in the Hypo and
Hypo+WD groups compared to Ctl and Ctl+WD groups, respectively (P<0.05) while bilateral whisker deprivation had no
remarkable effect. The mean soma diameter size of NADPH-d labeled neurons in the Ctl+WD and Hypo+WD groups
was decreased compared to the Ctl and Hypo groups, respectively. A similar patterns of decreased NADPH-d labeled
neurons in the wS1/M1 cortices occur in the processes of nitrergic neurons in both congenital hypothyroidism and
whisker deprivation.
Conclusion Our results suggest that both congenital hypothyroidism and whisker deprivation may disturb normal
development of the wS1 and wM1 cortical circuits in which nitrergic neurons are involved.
Collapse
Affiliation(s)
- Mohammad Reza Afarinesh
- Isfahan Neuroscience Research Center (INRC), Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Gila Behzadi
- Functional Neuroanatomy Labaratory, Department of Physiology, Faculty of Medicine, Shahid Beheshti Medicine Science University, Tehran, Iran
| |
Collapse
|
9
|
Liu YY, Brent GA. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol Ther 2018; 186:176-185. [PMID: 29378220 DOI: 10.1016/j.pharmthera.2018.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) is essential for normal brain development and may also promote recovery and neuronal regeneration after brain injury. TH acts predominantly through the nuclear receptors, TH receptor alpha (THRA) and beta (THRB). Additional factors that impact TH action in the brain include metabolism, activation of thyroxine (T4) to triiodothyronine (T3) by the enzyme 5'-deiodinase Type 2 (Dio2), inactivation by the enzyme 5-deiodinase Type 3 (Dio3) to reverse T3 (rT3), which occurs in glial cells, and uptake by the Mct8 transporter in neurons. Traumatic brain injury (TBI) is associated with inflammation, metabolic alterations and neural death. In clinical studies, central hypothyroidism, due to hypothalamic and pituitary dysfunction, has been found in some individuals after brain injury. TH has been shown, in animal models, to be protective for the damage incurred from brain injury and may have a role to limit injury and promote recovery. Although clinical trials have not yet been reported, findings from in vitro and in vivo models inform potential treatment strategies utilizing TH for protection and promotion of recovery after brain injury.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Gregory A Brent
- Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States.
| |
Collapse
|
10
|
Li J, Donangelo I, Abe K, Scremin O, Ke S, Li F, Milanesi A, Liu YY, Brent GA. Thyroid hormone treatment activates protective pathways in both in vivo and in vitro models of neuronal injury. Mol Cell Endocrinol 2017; 452:120-130. [PMID: 28549992 DOI: 10.1016/j.mce.2017.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023]
Abstract
Thyroid hormone plays an important role in brain development and adult brain function, and may influence neuronal recovery after Traumatic Brain Injury (TBI). We utilized both animal and cell culture models to determine the effects of thyroid hormone treatment, post TBI or during hypoxia, on genes important for neuronal survival and neurogenesis. We show that TBI in rats is associated with a reduction in serum thyroxine (T4) and triiodothyronine (T3). A single dose of levothyroxine (T4), one hour after injury, increased serum T4 and normalized serum T3 levels. Expression of genes important for thyroid hormone action in the brain, MCT8 and Type 2 deiodinase (Dio2) mRNA, diminished after injury, but were partially restored with T4 treatment. mRNA from the Type 3 deiodinase (Dio3) gene, which inactivates T4 to reverse T3 (rT3), was induced 2.7 fold by TBI, and further stimulated 6.7-fold by T4 treatment. T4 treatment significantly increased the expression of mRNA from Bcl2, VEGFA, Sox2 and neurotrophin, genes important for neuronal survival and recovery. The cortex, compared to the hippocampus and cerebellum, sustained the greatest injury and had the most significant change in gene expression as a result of injury and the greatest response to T4 treatment. We utilized hypoxia to study the effect of neuronal injury in vitro. Neuroblastoma cells were exposed to reduced oxygen tension, 0.2%, and were compared to cells grown at control oxygen levels of 21%. T3 treatment significantly increased hypoxia inducible factor (HIF)-2α protein, but not HIF-1α. In a hypoxia time course exposure, expression of hypoxia-mediated genes (VEGF, Enolase, HIF2α, c-Jun) peaked at least 8 h earlier with T3-treatment, compared to cells grown without T3. The early induction of these genes may promote cellular growth after injury. After hypoxic injury, T3 induced mRNA expression of the genes, KLF9 and hairless, important for T3-mediated brain function. The findings from both in vitro and in vivo studies support a role of thyroid hormone in activating pathways important for neuronal protection and promotion of neuronal recovery after injury.
Collapse
Affiliation(s)
- Jianrong Li
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Endocrinology, Union Hospital, Fujian Medical University, China
| | - Ines Donangelo
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kiyomi Abe
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Oscar Scremin
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Sujie Ke
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Feng Li
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Anna Milanesi
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - Gregory A Brent
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
11
|
Recovery following Thyroxine Treatment Withdrawal, but Not Propylthiouracil, Averts In Vivo and Ex Vivo Thyroxine-Provoked Cardiac Complications in Adult FVB/N Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6071031. [PMID: 28791308 PMCID: PMC5534272 DOI: 10.1155/2017/6071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
Persistent cardiovascular pathology has been described in hyperthyroid patients even with effective antithyroid treatment. Here, we studied the effect of a well-known antithyroid drug, propylthiouracil (PTU; 20 mg/kg/day), on thyroxine (T4; 500 µg/kg/day)-induced increase in blood pressure (BP), cardiac hypertrophy, and altered responses of the contractile myocardium both in vivo and ex vivo after 2 weeks of treatment. Furthermore, the potential recovery through 2 weeks of T4 treatment discontinuation was also investigated. PTU and T4 recovery partially reduced the T4-prompted increase in BP. Alternatively, PTU significantly improved the in vivo left ventricular (LV) function with no considerable effects on cardiac hypertrophy or ex vivo right ventricular (RV) contractile alterations subsequent to T4 treatment. Conversely, T4 recovery considerably enhanced the T4-provoked cardiac changes both in vivo and ex vivo. Altogether, our data is in agreement with the proposal that hyperthyroidism-induced cardiovascular pathology could persevere even with antithyroid treatments, such as PTU. However, this cannot be generalized and further investigation with different antithyroid treatments should be executed. Moreover, we reveal that recovery following experimental hyperthyroidism could potentially ameliorate cardiac function and decrease the risk for additional cardiac complications, yet, this appears to be model-dependent and should be cautiously construed.
Collapse
|
12
|
Sifuentes MM, Lechleiter JD. Thyroid Hormone Stimulation of Adult Brain Fatty Acid Oxidation. VITAMINS AND HORMONES 2017; 106:163-193. [PMID: 29407434 DOI: 10.1016/bs.vh.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Thyroid hormone is a critical modulator of brain metabolism, and it is highly controlled in the central nervous system. Recent research has uncovered an important role of thyroid hormone in the regulation of fatty acid oxidation (FAO), an energetic process essential for neurodevelopment that continues to support brain metabolism during adulthood. Thyroid hormone stimulation of FAO has been shown to be protective in astrocytes and mouse models of brain injury, yet a clear mechanism of this relationship has not been elucidated. Thyroid hormone interacts with multiple receptors located in the nucleus and the mitochondria, initiating rapid and long-term effects via both genomic and nongenomic pathways. This has complicated efforts to isolate and study-specific interactions. This chapter presents the primary signaling pathways that have been identified to play a role in the thyroid hormone-mediated increase in FAO. Investigation of the impact of thyroid hormone on FAO in the adult brain has challenged classical models of brain metabolism and widened the window of potential neuroprotective strategies. A detailed understanding of these pathways is essential for any researchers aiming to expand the field of neuroenergetics.
Collapse
|
13
|
Baghcheghi Y, Salmani H, Beheshti F, Hosseini M. Contribution of Brain Tissue Oxidative Damage in Hypothyroidism-associated Learning and Memory Impairments. Adv Biomed Res 2017; 6:59. [PMID: 28584813 PMCID: PMC5450450 DOI: 10.4103/2277-9175.206699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Kong L, Wei Q, Fedail JS, Shi F, Nagaoka K, Watanabe G. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats. J Reprod Dev 2015; 61:219-27. [PMID: 25797533 PMCID: PMC4495068 DOI: 10.1262/jrd.2014-129] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Thyroid hormones and oxidative stress play significant roles in the normal functioning of the female reproductive system. Nitric oxide (NO), a free radical synthesized by nitric oxide synthases (NOS), participates in the regulation of thyroid function and is also a good biomarker for assessment of the oxidative stress status. Therefore, the purpose of this study was to investigate effects of thyroid hormones on uterine antioxidative status in young adult rats. Thirty immature female Sprague-Dawley rats were randomly divided into three groups: control, hypothyroid (hypo-T) and hyperthyroid (hyper-T). The results showed the body weights decreased significantly in both the hypo-T and hyper-T groups and that uterine weights were decreased significantly in the hypo-T group. The serum concentrations of total triiodothyronine (T3) and thyroxine (T4), as well as estradiol (E2), were significantly decreased in the hypo-T group, but increased in the hyper-T group. The progesterone
(P4) concentrations in the hypo- and hyperthyroid rats markedly decreased. Immunohistochemistry results provided evidence that thyroid hormone nuclear receptor α/β (TRα/β) and three NOS isoforms were located in different cell types of rat uteri. The NO content and total NOS and inducible NOS (iNOS) activities were markedly diminished in the hypo-T group but increased in the hyper-T group. Moreover, the activities of both glutathione peroxidase (GSH-Px) and catalase (CAT) exhibited significant decreases and increases in the hypo-T and hyper-T groups, respectively. The malondialdehyde (MDA) contents in both the hypo-T and hyper-T groups showed a significant increase. Total superoxide dismutase (T-SOD) activity in the hypo- and hyper-T rats markedly decreased. In conclusion, these results indicated that thyroid hormones have an important influence on the modulation of uterine antioxidative status.
Collapse
Affiliation(s)
- Lingfa Kong
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Fedail JS, Zheng K, Wei Q, Kong L, Shi F. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats. Endocrine 2014; 46:594-604. [PMID: 24254997 DOI: 10.1007/s12020-013-0092-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022]
Abstract
Thyroid hormones (TH) play a critical role in ovarian follicular development, maturation and the maintenance of various endocrine functions. However, whether TH can affect ovarian follicular development in neonatal and immature rats remains unclear. Therefore, the aim of the present study was to elucidate the effect of TH on ovarian follicular development in neonatal and immature rats. Thirty female post-lactation mothers of Sprague-Dawley rat pups were randomly divided into three groups: control, hyperthyroid (hyper), and hypothyroid (hypo). On postnatal days (PND) 10 and 21, body weights, serum hormones, ovarian histologic changes, and immunohistochemistry of thyroid hormone receptor alpha 1 (TRα1) and nitric oxide synthase types (NOS), and NOS activities, were determined. The data showed that body weights significantly decreased in both hyper and hypo groups compared with the control group (P < 0.05). In addition, the hyper group had increased serum concentrations of T3, T4, and E2; whereas the hypo group manifested reduced serum concentrations of T3, T4, and E2 on PND 10 and 21. The hyper and hypo groups showed significantly reduced total number of primordial, primary and secondary follicles on PND 10 and 21 compared with the control group (P < 0.05). Similarly, antral follicle numbers in the hyper and hypo groups were significantly decreased on PND 21 compared with the control group (P < 0.05). Immunostaining indicated that TRα1 and NOS were expressed in ovarian surface epithelium and oocytes of growing and antral follicles, with strong staining of the granulosa and theca cells of follicles. NOS activities were significantly augmented in the hyper, but diminished in the hypo groups on PND 10 and 21. In summary, our findings suggest that TH play important roles in ovarian functions and in the regulation of NOS activity. Our results also indicate that a relationship exists between the TH and NO signaling pathways during the process of ovarian follicular development in neonatal and immature rats.
Collapse
Affiliation(s)
- Jaafar Sulieman Fedail
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | |
Collapse
|
16
|
Serfőző Z, Lontay B, Kukor Z, Erdődi F. Chronic inhibition of nitric oxide synthase activity by NG-nitro-L-arginine induces nitric oxide synthase expression in the developing rat cerebellum. Neurochem Int 2012; 60:605-15. [PMID: 22391324 DOI: 10.1016/j.neuint.2012.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/18/2012] [Indexed: 01/22/2023]
Abstract
Studies on chronic inhibition of nitric oxide synthase (NOS) in the CNS suggest a plastic change in nitric oxide (NO) synthesis in areas related to motor control, which might protect the animal from the functional and behavioral consequences of NO deficiency. In the present study, the acute and chronic effect of the substrate analogue inhibitor N(G)-nitro-l-arginine (l-NNA) was examined on NO production, NO-sensitive cyclic guanosine monophosphate (cGMP) levels and the expression of NOS isoforms in the developing rat cerebellum. Acute intraperitoneal administration of the inhibitor (5-200mg/kg) to 21-day-old rats reduced NOS activity and NO concentration dose dependently by 70-90% and the tissue cGMP level by 60-80%. By contrast, chronic application of l-NNA between postnatal days 4-21 diminished the total NOS activity and NO concentration only by 30%, and the tissue cGMP level by 10-50%. Chronic treatment of 10mg/kg l-NNA induced neuronal (n)NOS expression in granule cells, as revealed by in situ hybridization, NADPH-diaphorase histochemistry and Western-blot, but it had no significant influence on tissue cGMP level or on layer formation of the cerebellum. However, a higher concentration (50mg/kg) of l-NNA decreased the intensity of the NADPH-diaphorase reaction in granule cells, significantly reduced cGMP production, and retarded layer formation and induced inducible (i)NOS expression & activity in glial cells. Treatments did not affect endothelial (e)NOS expression. The administration of the biologically inactive isomer D-NNA (50mg/kg) or saline was ineffective. The present findings suggest the existence of a concentration-dependent compensatory mechanism against experimentally-induced cronich inhibition of NOS, including nNOS or iNOS up-regulation, which might maintain a steady-state NO level in the developing cerebellum.
Collapse
Affiliation(s)
- Zoltán Serfőző
- Department of Experimental Zoology, Balaton Limnological Institute, Center for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3, H-8237 Tihany, Hungary.
| | | | | | | |
Collapse
|
17
|
PTU-induced hypothyroidism modulates antioxidant defence status in the developing cerebellum. Int J Dev Neurosci 2010; 28:251-62. [PMID: 20123122 DOI: 10.1016/j.ijdevneu.2010.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/11/2010] [Accepted: 01/25/2010] [Indexed: 12/28/2022] Open
Abstract
The objective of the present study was to evaluate the effect of 6-n-propylthiouracil (PTU)-induced hypothyroidism on oxidative stress parameters, expression of antioxidant defence enzymes, cell proliferation and apoptosis in the developing cerebellum. PTU challenged neonates showed significant decrease in serum T(3) and T(4) levels and marked increase in TSH levels. Significantly elevated levels of cerebellar H(2)O(2) and lipid peroxidation were observed in 7 days old hypothyroid rats, along with increased activities of superoxide dismutase and glutathione peroxidase and decline in catalase activity. In 30 days old hypothyroid rats, a significant decline in cerebellar lipid peroxidation, superoxide dismutase and glutathione peroxidase activity and expression was observed along with an up-regulation in catalase activity and expression. Expression of antioxidant enzymes was studied by Western blot and semi-quantitative rt-PCR. A distinct increase in cell proliferation as indicated by proliferating cell nuclear antigen (PCNA) immunoreactivity was observed in the internal granular layer of cerebellum of 7 days old hypothyroid rats and significant drop in PCNA positive cells in the cerebellar molecular layer and internal granular layer of 30 days old PTU treated rats as compared to controls. In situ end labeling by TUNEL assay showed increased apoptosis in cerebellum of hypothyroid rats in comparison to controls. These results suggest that the antioxidant defence system of the developing cerebellum is sensitive to thyroid hormone deficiency and consequent alterations in oxidative stress status may play a role in regulation of cell proliferation of the cerebellum during neonatal brain development.
Collapse
|
18
|
Hosseini M, Dastghaib SS, Rafatpanah H, Hadjzadeh MAR, Nahrevanian H, Farrokhi I. Nitric oxide contributes to learning and memory deficits observed in hypothyroid rats during neonatal and juvenile growth. Clinics (Sao Paulo) 2010; 65:1175-81. [PMID: 21243293 PMCID: PMC2999716 DOI: 10.1590/s1807-59322010001100021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 08/23/2010] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Severe cognitive impairment follows thyroid hormone deficiency during the neonatal period. The role of nitric oxide (NO) in learning and memory has been widely investigated. METHODS This study aimed to investigate the effect of hypothyroidism during neonatal and juvenile periods on NO metabolites in the hippocampi of rats and on learning and memory. Animals were divided into two groups and treated for 60 days from the first day of lactation. The control group received regular water, whereas animals in a separate group were given water supplemented with 0.03% methimazole to induce hypothyroidism. Male offspring were selected and tested in the Morris water maze. Samples of blood were collected to measure the metabolites of NO, NO2, NO3 and thyroxine. The animals were then sacrificed, and their hippocampi were removed to measure the tissue concentrations of NO2 and NO3. DISCUSSION Compared to the control group's offspring, serum thyroxine levels in the methimazole group's offspring were significantly lower (P<0.01). In addition, the swim distance and time latency were significantly higher in the methimazole group (P<0.001), and the time spent by this group in the target quadrant (Q1) during the probe trial was significantly lower (P<0.001). There was no significant difference in the plasma levels of NO metabolites between the two groups; however, significantly higher NO metabolite levels in the hippocampi of the methimazole group were observed compared to controls (P<0.05). CONCLUSION These results suggest that the increased NO level in the hippocampus may play a role in the learning and memory deficits observed in childhood hypothyroidism; however, the precise underlying mechanism(s) remains to be elucidated.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | | | |
Collapse
|
19
|
Akbari Z, Rohani MH, Behzadi G. NADPH-d/NOS reactivity in the lumbar dorsal horn of congenitally hypothyroid pups before and after formalin pain induction. Int J Dev Neurosci 2009; 27:779-87. [PMID: 19720128 DOI: 10.1016/j.ijdevneu.2009.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 06/22/2009] [Accepted: 08/24/2009] [Indexed: 11/16/2022] Open
Abstract
We have previously demonstrated that congenitally hypothyroid rat pups exhibit altered behavioral response to formalin pain induction during postnatal period. In the present study, using NADPH-diaphorase histochemistry and NOS immunostaining, we investigated the effect of congenital hypothyroidism on the NOS expression in spinal cord of intact neonates at postnatal days of 15 and 21. We also examined the effect of thyroid dysfunction on the NADPH-d/NOS expression in response to formalin nociception. Congenital hypothyroidism induced by propylthiouracil (PTU) treatment started from gestational day 16 and continued to postnatal day 15 or 21. Congenitally hypothyroid pups exhibited marked reduction in NADPH-d reactive cells (84% and 66% in P15 and P21, respectively; P<0.001) and NOS-ir cells (52% and 91% in P15 and P21, respectively; P<0.001) in superficial lumbar dorsal horn laminae (I-II) as compared to that of normal pups. Moreover, in congenitally hypothyroid pups the NADPH-d/NOS expression following hindpaw formalin injection did not change significantly. Our results demonstrate that congenital hypothyroidism affect developmental expression of NOS in spinal dorsal horn, which may in part explain the altered behavioral pain response as we previously reported in hypothyroid pups.
Collapse
Affiliation(s)
- Zahra Akbari
- Neuroscience Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
20
|
Sinha RA, Pathak A, Mohan V, Bandyopadhyay S, Rastogi L, Godbole MM. Maternal thyroid hormone: a strong repressor of neuronal nitric oxide synthase in rat embryonic neocortex. Endocrinology 2008; 149:4396-401. [PMID: 18467447 DOI: 10.1210/en.2007-1617] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding of how maternal thyroid inadequacy during early gestation poses a risk for developmental outcomes is still a challenge for the neuroendocrine community. Early neocortical neurogenesis is accompanied by maternal thyroid hormone (TH) transfer to fetal brain, appearance of TH receptors, and absence of antineurogenesis signals, followed by optimization of neuronal numbers through apoptosis. However, the effects of TH deprivation on neurogenesis and neuronal cell death before the onset of fetal thyroid are still not clear. We show that maternal TH deficiency during early gestational period causes massive premature elevation in the expression of neuronal nitric oxide synthase (nNOS) with an associated neuronal death in embryonic rat neocortex. Maternal hypothyroidism was induced by feeding methimazole (0.025% wt/vol) in the drinking water to pregnant Sprague Dawley rats from embryonic d 6. Cerebral cortices from fetuses were harvested at different embryonic stages (embryonic d 14, 16, and 18) of hypothyroid and euthyroid groups. Immunoblotting and real-time PCR results showed that both protein and RNA levels of nNOS were prematurely increased under maternal hypothyroidism, and showed reversibility upon T4 administration. Immunohistochemistry revealed an increased nNOS immunoreactivity in both the cortical plate and proliferative zone of neocortex along with a corroborative decrease in the microtubule associated protein-2 positive neurons under maternal TH insufficiency. Results combined, put forth nNOS as a novel target of maternal TH action in embryonic neocortex, and underscore the importance of prenatal screening and timely rectification of maternal TH insufficiency, even of a moderate degree.
Collapse
Affiliation(s)
- Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226 014, India
| | | | | | | | | | | |
Collapse
|