1
|
Rojas-Solé C, Pinilla-González V, Lillo-Moya J, González-Fernández T, Saso L, Rodrigo R. Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy. Redox Rep 2024; 29:2289740. [PMID: 38108325 PMCID: PMC10732214 DOI: 10.1080/13510002.2023.2289740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characterised by its association with a variety of adverse events in the older persons. The mechanisms involved in the development of age-related chronic diseases are largely unknown; however, altered redox homeostasis due to ageing is one of the main theories. In this context, the present review explores the development and interaction between different age-related diseases, mainly linked by oxidative stress. In addition, drug interactions in the treatment of various diseases are described, emphasising that the holistic management of older people and their pathologies should prevail over the individual treatment of each condition.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
2
|
Mancuso C. Panax notoginseng: Pharmacological Aspects and Toxicological Issues. Nutrients 2024; 16:2120. [PMID: 38999868 PMCID: PMC11242943 DOI: 10.3390/nu16132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Current evidence suggests a beneficial role of herbal products in free radical-induced diseases. Panax notoginseng (Burk.) F. H. Chen has long occupied a leading position in traditional Chinese medicine because of the ergogenic, nootropic, and antistress activities, although these properties are also acknowledged in the Western world. The goal of this paper is to review the pharmacological and toxicological properties of P. notoginseng and discuss its potential therapeutic effect. A literature search was carried out on Pubmed, Scopus, and the Cochrane Central Register of Controlled Trials databases. The following search terms were used: "notoginseng", "gut microbiota", "immune system", "inflammation", "cardiovascular system", "central nervous system", "metabolism", "cancer", and "toxicology". Only peer-reviewed articles written in English, with the full text available, have been included. Preclinical evidence has unraveled the P. notoginseng pharmacological effects in immune-inflammatory, cardiovascular, central nervous system, metabolic, and neoplastic diseases by acting on several molecular targets. However, few clinical studies have confirmed the therapeutic properties of P. notoginseng, mainly as an adjuvant in the conventional treatment of cardiovascular disorders. Further clinical studies, which both confirm the efficacy of P. notoginseng in free radical-related diseases and delve into its toxicological aspects, are mandatory to broaden its therapeutic potential.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy; ; Tel.: +39-06-30154367; Fax: +39-06-3050159
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
3
|
Huang B, Ou G, Zhang N. Identification of key regulatory molecules in the early development stage of Alzheimer's disease. J Cell Mol Med 2024; 28:e18151. [PMID: 38429903 PMCID: PMC10907834 DOI: 10.1111/jcmm.18151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 03/03/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, the incidence of which increases with age, and the pathological changes in the brain are irreversible. Recent studies have highlighted the essential role of long noncoding RNAs (lncRNAs) in AD by acting as competing endogenous RNAs (ceRNAs). Our aim was to construct lncRNA-associated ceRNA regulatory networks composed of potential biomarkers for the early stage of AD. AD related datasets come from AlzData and GEO databases. The R package 'Limma' identifies differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases for functional enrichment analysis. Protein-protein interactions (PPIs) in DEGs were constructed in the STRING database, and Cytoscape software identified DEGs. Convergent functional genomics (CFG) analysis of differentially expressed hub genes (referred to as early-DEGs) in the brain before the development of AD pathology. The AlzData database analyses the expression levels of early-DEGs in different nerve cells. The lncRNA-miRNA-mRNA regulatory network was established according to the ceRNA hypothesis. We identified four lncRNAs (XIST, NEAT1, KCNQ1OT1 and HCG18) and four miRNAs (hsa-let-7c-5p, hsa-miR-107, hsa-miR-129-2-3p and hsa-miR-214-3p) were preliminarily identified as potential biomarkers for early AD, competitively regulating Atp6v0b, Atp6v1e1 Atp6v1f and Syt1. This study indicates that NEAT1, XIST, HCG18 and KCNQ1OT1 act as ceRNAs in competitive binding with miRNAs to regulate the expression of Atp6v0b, Atp6v1e1, Atp6v1f and Syt1 before the occurrence of pathological changes in AD.
Collapse
Affiliation(s)
- Bin Huang
- Clinical LaboratoryFifth Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Guan‐yong Ou
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Ni Zhang
- Department of PhysiologyShantou University Medical CollegeShantouChina
| |
Collapse
|
4
|
Yang Y, Mei G, Yang L, Luo T, Wu R, Peng S, Peng Z, Cui J, Cheng Y. PCB126 impairs human sperm functions by affecting post-translational modifications and mitochondrial functions. CHEMOSPHERE 2024; 346:140532. [PMID: 37918541 DOI: 10.1016/j.chemosphere.2023.140532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Over the past few decades, there has been a consistent decline in semen quality across the globe, with environmental pollution being identified as the primary cause. Among the various contaminants present in the environment, persistent organic pollutants (POPs) have garnered significant attention due to their high toxicity, slow degradation, bio-accumulation, and long-range migration. PCBs, which include 210 congeners, are a crucial type of POPs that are known to have harmful effects on the environment and human health. Among the various PCB congeners, 3,3',4,4',5-pentachlorobiphenyl (PCB126) is a typical environmental endocrine-disrupting chemical that is widely distributed and has been associated with several health hazards. However, the impact and mechanism of PCB126 on human sperm function has not been fully elucidated. We aimed to investigate the effects of different concentrations of PCB126 (0.01, 0.1, 1, 10 μg/mL) on sperm motility, viability, hyperactivation, and acrosome reaction after incubation for different periods (1 and 2 h), delving deeper into the molecular mechanism of human sperm dysfunction caused by PCB126. First, we investigated the link between PCB126 treatment and the occurrence of protein modifications that are critical to sperm function regulation, such as tyrosine phosphorylation and lysine glutarylation. Second, we examined the potential impact of PCB126 on different parameters related to mitochondrial function, including reactive oxygen species, malondialdehyde levels, mitochondrial membrane potential, mitochondria respiration and adenosine triphosphate generation. Our findings indicate that exposure to environmental pollutants such as PCB126 in vitro may have a negative impact on human sperm functions by interfering with post-translational modifications and mitochondrial functions.
Collapse
Affiliation(s)
- Yebin Yang
- College of Chemistry and Biological Engineering, Yichun University, Yichun, China
| | - Guangquan Mei
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China; Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, China
| | - Liu Yang
- College of Chemistry and Biological Engineering, Yichun University, Yichun, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Runwen Wu
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Shenglin Peng
- Yichun People's Hospital, Jiangxi Province, Yichun, China
| | - Zhen Peng
- Yichun People's Hospital, Jiangxi Province, Yichun, China
| | - Jiajun Cui
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China; Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China.
| |
Collapse
|
5
|
Guo H, Yi J, Wang F, Lei T, Du H. Potential application of heat shock proteins as therapeutic targets in Parkinson's disease. Neurochem Int 2023; 162:105453. [PMID: 36402293 DOI: 10.1016/j.neuint.2022.105453] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease, and the heat shock proteins (HSPs) are proved to be of great value for PD. In addition, HSPs can maintain protein homeostasis, degrade and inhibit protein aggregation by properly folding and activating intracellular proteins in PD. This study mainly summarizes the important roles of HSPs in PD and explores their feasibility as targets. We introduced the structural and functional characteristics of HSPs and the physiological functions of HSPs in PD. HSPs can protect neurons from damage by degrading aggregates with three mechanisms, including the aggregation and removing α-Synuclein (α-Syn) aggregates, promotion the autophagy of abnormal proteins, and inhibition the apoptosis of degenerated neurons. This study underscores the importance of HSPs as targets in PD and helps to expand new mechanisms in PD treatment strategies.
Collapse
Affiliation(s)
- Haodong Guo
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingsong Yi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, Ashraf GM. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1165-1183. [PMID: 36043795 PMCID: PMC10286591 DOI: 10.2174/1570159x20666220830112408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.
Collapse
Affiliation(s)
- Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohammed M. Karami
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Thamer M. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Wetzel C, Pfeffer T, Bulkescher R, Zemva J, Modafferi S, Polimeni A, Salinaro AT, Calabrese V, Schmitt CP, Peters V. Anserine and Carnosine Induce HSP70-Dependent H 2S Formation in Endothelial Cells and Murine Kidney. Antioxidants (Basel) 2022; 12:antiox12010066. [PMID: 36670928 PMCID: PMC9855136 DOI: 10.3390/antiox12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Anserine and carnosine have nephroprotective actions; hydrogen sulfide (H2S) protects from ischemic tissue damage, and the underlying mechanisms are debated. In view of their common interaction with HSP70, we studied possible interactions of both dipeptides with H2S. H2S formation was measured in human proximal tubular epithelial cells (HK-2); three endothelial cell lines (HUVEC, HUAEC, MCEC); and in renal murine tissue of wild-type (WT), carnosinase-1 knockout (Cndp1-KO) and Hsp70-KO mice. Diabetes was induced by streptozocin. Incubation with carnosine increased H2S synthesis capacity in tubular cells, as well as with anserine in all three endothelial cell lines. H2S dose-dependently reduced anserine/carnosine degradation rate by serum and recombinant carnosinase-1 (CN1). Endothelial Hsp70-KO reduced H2S formation and abolished the stimulation by anserine and could be restored by Hsp70 transfection. In female Hsp70-KO mice, kidney H2S formation was halved. In Cndp1-KO mice, kidney anserine concentrations were several-fold and sex-specifically increased. Kidney H2S formation capacity was increased 2-3-fold in female mice and correlated with anserine and carnosine concentrations. In diabetic Cndp1-KO mice, renal anserine and carnosine concentrations as well as H2S formation capacity were markedly reduced compared to non-diabetic Cndp1-KO littermates. Anserine and carnosine induce H2S formation in a cell-type and Hsp70-specific manner within a positive feedback loop with CN1.
Collapse
Affiliation(s)
- Charlotte Wetzel
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tilman Pfeffer
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruben Bulkescher
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Johanna Zemva
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Alessandra Polimeni
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
8
|
Exploring the Neuroprotective Mechanism of Curcumin Inhibition of Intestinal Inflammation against Parkinson's Disease Based on the Gut-Brain Axis. Pharmaceuticals (Basel) 2022; 16:ph16010039. [PMID: 36678536 PMCID: PMC9866255 DOI: 10.3390/ph16010039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disease commonly seen in aged people, in which gastrointestinal dysfunction is the most common nonmotor symptom and the activation of the gut-brain axis by intestinal inflammation may contribute to the pathogenesis of PD. In a previous study, curcumin was considered neuroprotective in PD, and this neuroprotective mechanism may act by inhibiting intestinal inflammation. Therefore, the aim of this study was to evaluate the effect of curcumin on motor dysfunction and the loss of dopaminergic neurons in a PD mouse model, induced by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using open field test and pole test behavioral assessments and the immunofluorescence and Western blot methods. Moreover, the effects of curcumin on gastrointestinal dysfunction, gastric barrier function, pro-inflammatory cytokines, and the SIRT1/NRF2 pathway in intestinal tissues in a PD mouse model were assessed using fecal parameters and intestinal dynamics, immunofluorescence, ELISA, and Western blot. A motor impairment study of an MPTP-induced mouse group prior to treatment with curcumin had a lower total movement distance and a slow average speed, while there was no statistical difference in the curcumin group. After treatment with curcumin, the total movement distance and average speed improved, the tyrosine hydroxylase (TH) rate in the substantia nigra pars compacta (SNpc) and striatum were reduced, the pyroptosis of AIM2 and caspase-1 activations were inhibited, and intestinal inflammatory factors and intestinal inflammation were reduced. Curcumin improved gastrointestinal disorders and gastrointestinal barrier function in the MPTP-induced mice and reversed MPTP-induced motor dysfunction and dopaminergic neuron loss in mice. The above effects may be partly dependent on curcumin activation of the SIRT1/NRF2 pathway in the colon. This study provides a potential opportunity to develop new preventive measures and novel therapeutic approaches that could target the gut-brain axis in the context of PD and provide a new intervention in the treatment of Parkinson's disease.
Collapse
|
9
|
Salahi S, Mousavi MA, Azizi G, Hossein-Khannazer N, Vosough M. Stem Cell-based and Advanced Therapeutic Modalities for Parkinson's Disease: A Risk-effectiveness Patient-centered Analysis. Curr Neuropharmacol 2022; 20:2320-2345. [PMID: 35105291 PMCID: PMC9890289 DOI: 10.2174/1570159x20666220201100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Sarvenaz Salahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
10
|
Understanding Acquired Brain Injury: A Review. Biomedicines 2022; 10:biomedicines10092167. [PMID: 36140268 PMCID: PMC9496189 DOI: 10.3390/biomedicines10092167] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
Any type of brain injury that transpires post-birth is referred to as Acquired Brain Injury (ABI). In general, ABI does not result from congenital disorders, degenerative diseases, or by brain trauma at birth. Although the human brain is protected from the external world by layers of tissues and bone, floating in nutrient-rich cerebrospinal fluid (CSF); it remains susceptible to harm and impairment. Brain damage resulting from ABI leads to changes in the normal neuronal tissue activity and/or structure in one or multiple areas of the brain, which can often affect normal brain functions. Impairment sustained from an ABI can last anywhere from days to a lifetime depending on the severity of the injury; however, many patients face trouble integrating themselves back into the community due to possible psychological and physiological outcomes. In this review, we discuss ABI pathologies, their types, and cellular mechanisms and summarize the therapeutic approaches for a better understanding of the subject and to create awareness among the public.
Collapse
|
11
|
Hosseini A, Samadi M, Baeeri M, Rahimifard M, Haghi-Aminjan H. The neuroprotective effects of melatonin against diabetic neuropathy: A systematic review of non-clinical studies. Front Pharmacol 2022; 13:984499. [PMID: 36120309 PMCID: PMC9470957 DOI: 10.3389/fphar.2022.984499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Backgrounds: Diabetes can cause diabetic neuropathy (DN), a nerve injury. High blood sugar (glucose) levels can harm nerves all over your body. The nerves in your legs and feet are the most commonly affected by DN. The purpose of this study was to conduct a review of melatonin’s potential neuroprotective properties against DN. Method: A full systematic search was conducted in several electronic databases (Scopus, PubMed, and Web of Science) up to March 2022 under the PRISMA guidelines. Forty-seven studies were screened using predefined inclusion and exclusion criteria. Finally, the current systematic review included nine publications that met the inclusion criteria. Result: According to in vivo findings, melatonin treatment reduces DN via inhibition of oxidative stress and inflammatory pathways. However, compared to the diabetes groups alone, melatonin treatment exhibited an anti-oxidant trend. According to other research, DN also significantly produces biochemical alterations in neuron cells/tissues. Additionally, histological alterations in neuron tissue following DN were detected. Conclusion: Nonetheless, in the majority of cases, these diabetes-induced biochemical and histological alterations were reversed when melatonin was administered. It is worth noting that the administration of melatonin ameliorates the neuropathy caused by diabetes. Melatonin exerts these neuroprotective effects via various anti-oxidant, anti-inflammatory, and other mechanisms.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| |
Collapse
|
12
|
Xu H, Miao XM, Wang WB, Wang G, Li Y. Transcriptome analysis reveals the early resistance of zebrafish larvae to oxidative stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1075-1089. [PMID: 35838812 DOI: 10.1007/s10695-022-01100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Oxidative stress is one of most common environmental stresses encountered by fish, especially during their fragile larval stage. More and more studies are aimed at understanding the antioxidant defense mechanism of fish larvae. Herein we characterized the early resistance of zebrafish larvae to oxidative stress and investigated the underlying transcriptional regulations using RNA-seq. We found that pre-exposure of zebrafish larvae to 2 mM H2O2 for 1 or 3 h significantly improved their survival under higher doses of H2O2 (3 mM), suggesting the antioxidant defenses of zebrafish larvae were rapidly built under pre-exposure of H2O2. Comparative transcriptome analysis showed that 310 (185 up and 125 down) and 512 (331 up and 181 down) differentially expressed genes were generated after 1 and 3 h of pre-exposure, respectively. KEGG enrichment analysis revealed that protein processing in endoplasmic reticulum is a highly enriched pathway; multiple genes (e.g., hsp70.1, hsp70.2, and hsp90aa1.2) encoding heat shock proteins in this pathway were sharply upregulated presumably to correct protein misfolding and maintaining the cellular normal functions during oxidative stress. More importantly, the Keap1/Nrf2 system-mediated detoxification enzyme system was significantly activated, which regulates the upregulation of target genes (e.g., gstp1, gsr, and prdx1) to scavenger reactive oxygen species, thereby defending against apoptosis. In addition, the MAPK, as a transmitter of stress signals, was activated, which may play an important role in activating antioxidant system in the early stages of oxidative stress. Altogether, these findings demonstrate that zebrafish larvae rapidly establish resistance to oxidative stress, and this involves changes in protein processing, stress signal transmission, and the activation of detoxification pathways.
Collapse
Affiliation(s)
- Hao Xu
- College of Fisheries, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Xiao-Min Miao
- College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Wen-Bo Wang
- College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Guo Wang
- College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Yun Li
- College of Fisheries, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Satyam SM, Bairy LK. Neuronutraceuticals Combating Neuroinflammaging: Molecular Insights and Translational Challenges—A Systematic Review. Nutrients 2022; 14:nu14153029. [PMID: 35893883 PMCID: PMC9330442 DOI: 10.3390/nu14153029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathologies, such as neuroinflammaging, have arisen as a serious concern for preserving the quality of life due to the global increase in neurodegenerative illnesses. Nowadays, neuronutraceuticals have gained remarkable attention. It is necessary to investigate the bioavailability, off-target effects, and mechanism of action of neuronutraceuticals. To comprehend the comprehensive impact on brain health, well-designed randomized controlled trials testing combinations of neuronutraceuticals are also necessary. Although there is a translational gap between basic and clinical research, the present knowledge of the molecular perspectives of neuroinflammaging and neuronutraceuticals may be able to slow down brain aging and to enhance cognitive performance. The present review also highlights the key emergent issues, such as regulatory and scientific concerns of neuronutraceuticals, including bioavailability, formulation, blood–brain permeability, safety, and efficacy.
Collapse
|
14
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
The Therapeutic Potential of Carnosine as an Antidote against Drug-Induced Cardiotoxicity and Neurotoxicity: Focus on Nrf2 Pathway. Molecules 2022; 27:molecules27144452. [PMID: 35889325 PMCID: PMC9324774 DOI: 10.3390/molecules27144452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Different drug classes such as antineoplastic drugs (anthracyclines, cyclophosphamide, 5-fluorouracil, taxanes, tyrosine kinase inhibitors), antiretroviral drugs, antipsychotic, and immunosuppressant drugs are known to induce cardiotoxic and neurotoxic effects. Recent studies have demonstrated that the impairment of the nuclear factor erythroid 2–related factor 2 (Nrf2) pathway is a primary event in the pathophysiology of drug-induced cardiotoxicity and neurotoxicity. The Nrf2 pathway regulates the expression of different genes whose products are involved in antioxidant and inflammatory responses and the detoxification of toxic species. Cardiotoxic drugs, such as the anthracycline doxorubicin, or neurotoxic drugs, such as paclitaxel, suppress or impair the Nrf2 pathway, whereas the rescue of this pathway counteracts both the oxidative stress and inflammation that are related to drug-induced cardiotoxicity and neurotoxicity. Therefore Nrf2 represents a novel pharmacological target to develop new antidotes in the field of clinical toxicology. Interestingly, carnosine (β-alanyl-l-histidine), an endogenous dipeptide that is characterized by strong antioxidant, anti-inflammatory, and neuroprotective properties is able to rescue/activate the Nrf2 pathway, as demonstrated by different preclinical studies and preliminary clinical evidence. Starting from these new data, in the present review, we examined the evidence on the therapeutic potential of carnosine as an endogenous antidote that is able to rescue the Nrf2 pathway and then counteract drug-induced cardiotoxicity and neurotoxicity.
Collapse
|
16
|
Ungurianu A, Zanfirescu A, Margină D. Regulation of Gene Expression through Food—Curcumin as a Sirtuin Activity Modulator. PLANTS 2022; 11:plants11131741. [PMID: 35807694 PMCID: PMC9269530 DOI: 10.3390/plants11131741] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
The sirtuin family comprises NAD+-dependent protein lysine deacylases, mammalian sirtuins being either nuclear (SIRT1, SIRT2, SIRT6, and SIRT7), mitochondrial (SIRT3, SIRT4, and SIRT5) or cytosolic enzymes (SIRT2 and SIRT5). They are able to catalyze direct metabolic reactions, thus regulating several physiological functions, such as energy metabolism, stress response, inflammation, cell survival, DNA repair, tissue regeneration, neuronal signaling, and even circadian rhythms. Based on these data, recent research was focused on finding molecules that could regulate sirtuins’ expression and/or activity, natural compounds being among the most promising in the field. Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) can induce, through SIRT, modulation of cancer cell senescence, improve endothelial cells protection against atherosclerotic factors, enhance muscle regeneration in atrophy models, and act as a pro-longevity factor counteracting the neurotoxicity of amyloid-beta. Although a plethora of protective effects was reported (antioxidant, anti-inflammatory, anticancer, etc.), its therapeutical use is limited due to its bioavailability issues. However, all the reported effects may be explained via the bioactivation theory, which postulates that curcumin’s observed actions are modulated via its metabolites and/or degradation products. The present article is focused on bringing together the literature data correlating the ability of curcumin and its metabolites to modulate SIRT activity and its consequent beneficial effects.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania; (A.U.); (D.M.)
| | - Anca Zanfirescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania
- Correspondence:
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania; (A.U.); (D.M.)
| |
Collapse
|
17
|
BMP4 Exerts Anti-Neurogenic Effect via Inducing Id3 during Aging. Biomedicines 2022; 10:biomedicines10051147. [PMID: 35625884 PMCID: PMC9138880 DOI: 10.3390/biomedicines10051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling has been shown to be intimately associated with adult neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ). Adult neurogenesis declines in aging rodents and primates. However, the role of BMP signaling in the age-related neurogenesis decline remains elusive and the effect of BMP4 on adult SVZ neurogenesis remains controversial. Here, the expression of BMP4 and its canonical effector phosphorylated-Smad1/5/8 (p-Smad1/5/8) in the murine SVZ and SGZ were found to be increased markedly with age. We identified Id3 as a major target of BMP4 in neuronal stem cells (NSCs) of both neurogenic regions, which exhibited a similar increase during aging. Intracerebroventricular infusion of BMP4 activated Smad1/5/8 phosphorylation and upregulated Id3 expression, which further restrained NeuroD1, leading to attenuated neurogenesis in both neurogenic regions and defective differentiation in the SGZ. Conversely, noggin, a potent inhibitor of BMP4, demonstrated opposing effects. In support of this, BMP4 treatment or lentiviral overexpression of Id3 resulted in decreased NeuroD1 protein levels in NSCs of both neurogenic regions and significantly inhibited neurogenesis. Thus, our findings revealed that the increased BMP4 signaling with age inhibited adult neurogenesis in both SVZ and SGZ, which may be attributed at least in part, to the changes in the Id3-NeuroD1 axis.
Collapse
|
18
|
Pterostilbene Promotes Mean Lifespan in Both Male and Female Drosophila Melanogaster Modulating Different Proteins in the Two Sexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1744408. [PMID: 35222791 PMCID: PMC8865974 DOI: 10.1155/2022/1744408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.
Collapse
|
19
|
Shahbaz SK, Koushki K, Sathyapalan T, Majeed M, Sahebkar A. PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in the Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:309-323. [PMID: 34429054 PMCID: PMC9413791 DOI: 10.2174/1570159x19666210823103020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 11/22/2022] Open
Abstract
Progressive degeneration and dysfunction of the nervous system because of oxidative stress, aggregations of misfolded proteins, and neuroinflammation are the key pathological features of neurodegenerative diseases. Alzheimer's disease is a chronic neurodegenerative disorder driven by uncontrolled extracellular deposition of β-amyloid (Aβ) in the amyloid plaques and intracellular accumulation of hyperphosphorylated tau protein. Curcumin is a hydrophobic polyphenol with noticeable neuroprotective and anti-inflammatory effects that can cross the blood-brain barrier. Therefore, it is widely studied for the alleviation of inflammatory and neurological disorders. However, the clinical application of curcumin is limited due to its low aqueous solubility and bioavailability. Recently, nano-based curcumin delivery systems are developed to overcome these limitations effectively. This review article discusses the effects and potential mechanisms of curcumin-loaded PLGA nanoparticles in Alzheimer's disease.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | | | - Amirhossein Sahebkar
- BARUiotechnol Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Alì S, Davinelli S, Accardi G, Aiello A, Caruso C, Duro G, Ligotti ME, Pojero F, Scapagnini G, Candore G. Healthy ageing and Mediterranean diet: A focus on hormetic phytochemicals. Mech Ageing Dev 2021; 200:111592. [PMID: 34710375 DOI: 10.1016/j.mad.2021.111592] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Mediterranean diet (MedDiet) is rich in fruits and vegetables associated with longevity and a reduced risk of several age-related diseases. It is demonstrated that phytochemicals in these plant products enhance the positive effects of MedDiet by acting on the inflammatory state and reducing oxidative stress. Evidence support that these natural compounds act as hormetins, triggering one or more adaptive stress-response pathways at low doses. Activated stress-response pathways increase the expression of cytoprotective proteins and multiple genes that act as lifespan regulators, essential for the ageing process. In these ways, the hormetic response by phytochemicals such as resveratrol, ferulic acid, and several others in MedDiet might enhance cells' ability to cope with more severe challenges, resist diseases, and promote longevity. This review discusses the role of MedDiet phytochemicals in healthy ageing and the prevention of age-related diseases.
Collapse
Affiliation(s)
- Sawan Alì
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy.
| | - Giovanni Duro
- Institute for Research and Biomedical Innovation, National Research Council, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy; Institute for Research and Biomedical Innovation, National Research Council, Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Italy
| |
Collapse
|
21
|
La Torre ME, Villano I, Monda M, Messina A, Cibelli G, Valenzano A, Pisanelli D, Panaro MA, Tartaglia N, Ambrosi A, Carotenuto M, Monda V, Messina G, Porro C. Role of Vitamin E and the Orexin System in Neuroprotection. Brain Sci 2021; 11:brainsci11081098. [PMID: 34439717 PMCID: PMC8394512 DOI: 10.3390/brainsci11081098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Microglia are the first line of defense at the level of the central nervous system (CNS). Phenotypic change in microglia can be regulated by various factors, including the orexin system. Neuroinflammation is an inflammatory process mediated by cytokines, by the lack of interaction between neurotransmitters and their specific receptors, caused by systemic tissue damage or, more often, associated with direct damage to the CNS. Chronic activation of microglia could lead to long-term neurodegenerative diseases. This review aims to explore how tocopherol (vitamin E) and the orexin system may play a role in the prevention and treatment of microglia inflammation and, consequently, in neurodegenerative diseases thanks to its antioxidant properties. The results of animal and in vitro studies provide evidence to support the use of tocopherol for a reduction in microglia inflammation as well as a greater activation of the orexinergic system. Although there is much in vivo and in vitro evidence of vitamin E antioxidant and protective abilities, there are still conflicting results for its use as a treatment for neurodegenerative diseases that speculate that vitamin E, under certain conditions or genetic predispositions, can be pro-oxidant and harmful.
Collapse
Affiliation(s)
- Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Ines Villano
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Daniela Pisanelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Nicola Tartaglia
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 71122 Foggia, Italy; (N.T.); (A.A.)
| | - Antonio Ambrosi
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 71122 Foggia, Italy; (N.T.); (A.A.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (I.V.); (M.M.); (A.M.); (V.M.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
- Correspondence: ; Tel.: +39-8815-88095
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.E.L.T.); (G.C.); (A.V.); (D.P.); (C.P.)
| |
Collapse
|
22
|
Lycopene suppresses palmitic acid-induced brain oxidative stress, hyperactivity of some neuro-signalling enzymes, and inflammation in female Wistar rat. Sci Rep 2021; 11:15038. [PMID: 34294819 PMCID: PMC8298469 DOI: 10.1038/s41598-021-94518-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023] Open
Abstract
Neuroinflammation can be triggered by certain high caloric nutrients such as palmitic acid (PA). The effect of lycopene against PA-induced neuroinflammation in female rats has not been as explored. In the present study, thirty rats (weighing 150–200) g were randomly allotted into six groups (n = 5) comprising normal control, PA control, PA + lycopene (0.24 mg/kg), PA + lycopene (0.48 mg/kg), lycopene (0.24 mg/kg), and lycopene (0.48 mg/kg), respectively. After seven weeks of PA challenge (5 mM) including two weeks of lycopene treatment, the brain was excised for analyses. Palmitic acid overload caused significant (p < 0.05) increases in adenosine deaminase, monoamine oxidase-A, nucleotides tri-phosphatase, 5′-nucleotidase, acetylcholine esterase, and myeloperoxidase activities, and malondialdehyde (MDA) levels which were reduced significantly in the lycopene-treated groups. Conversely, catalase and glutathione peroxidase activities, and reduced glutathione levels concentration decreased by 43%, 34%, and 12%, respectively in the PA control groups compared with the Control. Also, PA triggered a decrease in the brain phospholipids (11.43%) and cholesterol (11.11%), but increased triacylglycerol level (50%). Furthermore, upregulated expressions of Interleukin-1β, Interleukin-6, and NF-ĸB-p65 in the PA control were attenuated, while decreased Interleukine-10 expression was upregulated due to lycopene treatment. Severe brain vacuolation observed in the histology of the PA control rats was normalized by lycopene. This study concludes that lycopene ameliorated PA-induced neuroinflammation, probably via attenuation of oxidative stress, and downregulation of TLR4/ NF-κB -p65 axis.
Collapse
|
23
|
Dilberger B, Weppler S, Eckert GP. Phenolic acid metabolites of polyphenols act as inductors for hormesis in C. elegans. Mech Ageing Dev 2021; 198:111518. [PMID: 34139214 DOI: 10.1016/j.mad.2021.111518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Aging represents a major risk factors for metabolic diseases, such as diabetes, obesity, or neurodegeneration. Polyphenols and their metabolites, especially simple phenolic acids, gained growing attention as a preventive strategy against age-related, non-communicable diseases, due to their hormetic potential. Using Caenorhabditis elegans (C. elegans) we investigate the effect of protocatechuic, gallic, and vanillic acid on mitochondrial function, health parameters, and the induction of potential hormetic pathways. METHODS Lifespan, heat-stress resistance and chemotaxis of C. elegans strain P X 627, a specific model for aging, were assessed in 2-day and 10-day old nematodes. Mitochondrial membrane potential (ΔΨm) and ATP generation were measured. mRNA expression levels of longevity and energy metabolism-related genes were determined using qRT-PCR. RESULTS All phenolic acids were able to significantly increase the nematodes lifespan, heat-stress resistance and chemotaxis at micromolar concentrations. While ΔΨm was only affected by age, vanillic acid (VA) significantly decreased ATP concentrations in aged nematodes. Longevity pathways, were activated by all phenolic acids, while VA also induced glycolytic activity and response to cold. CONCLUSION While life- and health span parameters are positively affected by the investigated phenolic acids, the concentrations applied were unable to affect mitochondrial performance. Therefore we suggest a hormetic mode of action, especially by activation of the sirtuin-pathway.
Collapse
Affiliation(s)
- Benjamin Dilberger
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Selina Weppler
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Gunter P Eckert
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
24
|
Weng H, Ma Y, Chen L, Cai G, Chen Z, Zhang S, Ye Q. A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family. Curr Neuropharmacol 2021; 18:613-623. [PMID: 31976838 PMCID: PMC7457425 DOI: 10.2174/1570159x18666200123165002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/01/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial damage is involved in many pathophysiological processes, such as tumor development, metabolism, and neurodegenerative diseases. The mitochondrial unfolded protein response (mtUPR) is the first stress-protective response initiated by mitochondrial damage, and it repairs or clears misfolded proteins to alleviate this damage. Studies have confirmed that the sirtuin family is essential for the mitochondrial stress response; in particular, SIRT1, SIRT3, and SIRT7 participate in the mtUPR in different axes. This article summarizes the associations of sirtuins with the mtUPR as well as specific molecular targets related to the mtUPR in different disease models, which will provide new inspiration for studies on mitochondrial stress, mitochondrial function protection, and mitochondria-related diseases, such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Huidan Weng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China,The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences Kumamoto University, Kumamoto, Japan
| | - Lina Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Zhiting Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| |
Collapse
|
25
|
Investigation of therapeutic effect of curcumin α and β glucoside anomers against Alzheimer's disease by the nose to brain drug delivery. Brain Res 2021; 1766:147517. [PMID: 33991495 DOI: 10.1016/j.brainres.2021.147517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is one of the greatest geriatric medicinal challenges of our century and is the main disease leading to dementia. Despite extensive scientific research advances, available disease-modifying treatment strategies remained limited; thus, increasing demand for new drugs. In recent years, medicinal plants attracted attention due to their potential role in dementia. In the present study, α and β anomers of curcumin glucosides (CGs) were synthesized and evaluated for Alzheimer's treatment. CGs were synthesized by fusion reaction as a novel and easy method with more advantages (high yield, short reaction time, and low chemicals), and the products were characterized using HNMR. Wistar male rats were used to administer different treatments. They divided into control, sham, Alzheimer, and test groups (Alzheimer + α anomer and Alzheimer + β anomer). Animals received normal saline, Scopolamine (1 mg/kg), high dose anomers, scopolamine, and two doses (12.5 and 25 mg/kg) of anomers, respectively, for 10 days. Then the Morris Water Maze (MWM) test was performed on all animals. Finally, the animals' brains were extracted and homogenized for glutathione, acetylcholine esterase activity, protein carbonyl, and lipid peroxide level detection. The escape latency and the distance towards the hidden platform in Morris water maze in the Alzheimer group were significantly higher than both the control and test groups. Besides, there were no significant differences between sham and control groups in all tests. Both anomers led to a significant increase in glutathione, and acetylcholine levels while they caused a decrease in lipid peroxidation and protein carbonyl levels in brain tissue. It seems that intranasal administration of both anomers positively influenced maze learning in scopolamine receiving subjects. Although both anomers resulted in similar biochemistry tests, a higher dose of β anomer indicated better results than α anomer not only in behavioral tests but also in biochemical tests.
Collapse
|
26
|
Campora M, Francesconi V, Schenone S, Tasso B, Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:33. [PMID: 33466332 PMCID: PMC7824805 DOI: 10.3390/ph14010033] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by memory loss, cognitive impairment, and functional decline leading to dementia and death. AD imposes neuronal death by the intricate interplay of different neurochemical factors, which continue to inspire the medicinal chemist as molecular targets for the development of new agents for the treatment of AD with diverse mechanisms of action, but also depict a more complex AD scenario. Within the wide variety of reported molecules, this review summarizes and offers a global overview of recent advancements on naphthoquinone (NQ) and anthraquinone (AQ) derivatives whose more relevant chemical features and structure-activity relationship studies will be discussed with a view to providing the perspective for the design of viable drugs for the treatment of AD. In particular, cholinesterases (ChEs), β-amyloid (Aβ) and tau proteins have been identified as key targets of these classes of compounds, where the NQ or AQ scaffold may contribute to the biological effect against AD as main unit or significant substructure. The multitarget directed ligand (MTDL) strategy will be described, as a chance for these molecules to exhibit significant potential on the road to therapeutics for AD.
Collapse
Affiliation(s)
| | | | | | | | - Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy; (M.C.); (V.F.); (S.S.); (B.T.)
| |
Collapse
|
27
|
Donoso F, Schverer M, Rea K, Pusceddu MM, Roy BL, Dinan TG, Cryan JF, Schellekens H. Neurobiological effects of phospholipids in vitro: Relevance to stress-related disorders. Neurobiol Stress 2020; 13:100252. [PMID: 33344707 PMCID: PMC7739190 DOI: 10.1016/j.ynstr.2020.100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/08/2022] Open
Abstract
Nutrition is a crucial component for maintenance of brain function and mental health. Accumulating evidence suggests that certain molecular compounds derived from diet can exert neuroprotective effects against chronic stress, and moreover improve important neuronal processes vulnerable to the stress response, such as plasticity and neurogenesis. Phospholipids are naturally occurring amphipathic molecules with promising potential to promote brain health. However, it is unclear whether phospholipids are able to modulate neuronal function directly under a stress-related context. In this study, we investigate the neuroprotective effects of phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylglycerol (PG), phosphatidic acid (PA), sphingomyelin (SM) and cardiolipin (CL) against corticosterone (CORT)-induced cytotoxicity in primary cultured rat cortical neurons. In addition, we examine their capacity to modulate proliferation and differentiation of hippocampal neural progenitor cells (NPCs). We show that PS, PG and PE can reverse CORT-induced cytotoxicity and neuronal depletion in cortical cells. On the other hand, phospholipid exposure was unable to prevent the decrease of Bdnf expression produced by CORT. Interestingly, PS was able to increase hippocampal NPCs neurosphere size, and PE elicited a significant increase in astrocytic differentiation in hippocampal NPCs. Together, these results indicate that specific phospholipids protect cortical cells against CORT-induced cytotoxicity and improve proliferation and astrocytic differentiation in hippocampal NPCs, suggesting potential implications on neurodevelopmental and neuroprotective pathways relevant for stress-related disorders.
Collapse
Affiliation(s)
- Francisco Donoso
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Marina Schverer
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants (Basel) 2020; 9:antiox9121303. [PMID: 33353117 PMCID: PMC7767317 DOI: 10.3390/antiox9121303] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| |
Collapse
|
29
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
30
|
Kataba A, Botha TL, Nakayama SMM, Yohannes YB, Ikenaka Y, Wepener V, Ishizuka M. Acute exposure to environmentally relevant lead levels induces oxidative stress and neurobehavioral alterations in larval zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105607. [PMID: 32861022 DOI: 10.1016/j.aquatox.2020.105607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The ubiquitous contamination of environmental lead (Pb) remains a worldwide threat. Improper Pb mine waste disposal from an abandoned lead-zinc mine has recently unearthed widespread Pb poisoning in children in Kabwe Zambia. Although the adverse effects of Pb on human health have begun to receive attention, the ecotoxicological effects on aquatic vertebrates still need further investigation. In addition, there is paucity in the knowledge on the behavioural and molecular subcellular responses in larval zebrafish exposed to Pb within the range of environmental relevant concentration (average 3 μg/L with maximum of 94 μg/L) on aquatic organisms such as zebrafish. The adverse effects of environmentally relevant levels of Pb on larval zebrafish was evaluated by measuring swimming behaviour under alternating dark and light conditions. Larval zebrafish acutely exposed to environmentally relevant Pb exhibited neuro-behavioural alteration including enhanced hyperactivity under light conditions evidenced by increased distanced covered and speed compared to the control. The alteration of entire behavioral profiles was further associated with the disturbed expression patterns of mRNA level of key genes associated with antioxidant (HO-1, Ucp-2 and CoxI), proapoptotic gene (TP53), and antiapoptotic gene (Bcl-2). To our knowledge, this is the first report on the effects of environmentally relevant Pb levels from Kabwe, Zambia and their adverse neurobehavioural effects and subcellular molecular oxidative responses in larval zebrafish acutely exposed within a 30 min period. The current results would be beneficial in our understanding of the effects of low Pb levels acutely discharged into an aquatic environment and the life of aquatic organisms.
Collapse
Affiliation(s)
- Andrew Kataba
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Biomedical Sciences, School of Veterinary Medicine, The University of Zambia, P. O. Box 32379, Lusaka, Zambia
| | - Tarryn L Botha
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yared B Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Chemistry, College of Natural and Computational Science, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Victor Wepener
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
31
|
Banerjee S, Poddar MK. Carnosine research in relation to aging brain and neurodegeneration: A blessing for geriatrics and their neuronal disorders. Arch Gerontol Geriatr 2020; 91:104239. [PMID: 32866926 DOI: 10.1016/j.archger.2020.104239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Carnosine, an endogenous dipeptide (β-Ala-l-His), is enriched in prefrontal cortex and olfactory bulb of the brain, blood and also in muscle. It has mainly antioxidant and antiglycating properties which makes this molecule unique. Its content reduces during aging and aging-induced neurodegenerative diseases. Aging is a progressive biological process that leads to develop the risk factors of diseases and death. During aging the morphological, biochemical, cellular and molecular changes occur in brain and blood including other tissues. The objective of this review is to combine the updated information from the existing literature about the aging-induced neurodegeneration and carnosine research to meet the lacuna of mechanism of carnosine. The grey matter and white matter loses its normal ratio in aging, and hence the brain volume and weight. Different aging related neurodegenerative disorders arise due to loss of neurons, and synapses as a result of proteinopathies in some cases. Carnosine, being an endogenous biomolecule and having antioxidant, antiglycating properties has shown its potency to counteract erroneous protein biosynthesis, stress, activated microglial and astrocyte activity, and different neurodegenerative disorders. It (carnosine) can also inhibit the metal ion-induced degeneration by acting as a metal chelator. In this review the trends in carnosine research in relation to aging brain and neurodegeneration have been discussed with a view to its (carnosine) eligibility (including its mechanism of action) to be used as a promising neurotherapeutic for the betterment of elderly populations of our society at the national and international levels in near future.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India
| | - Mrinal K Poddar
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India.
| |
Collapse
|
32
|
Caruso G, Fresta CG, Grasso M, Santangelo R, Lazzarino G, Lunte SM, Caraci F. Inflammation as the Common Biological Link Between Depression and Cardiovascular Diseases: Can Carnosine Exert a Protective Role? Curr Med Chem 2020; 27:1782-1800. [PMID: 31296155 DOI: 10.2174/0929867326666190712091515] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 01/03/2023]
Abstract
Several epidemiological studies have clearly shown the high co-morbidity between depression and Cardiovascular Diseases (CVD). Different studies have been conducted to identify the common pathophysiological events of these diseases such as the overactivation of the hypothalamic- pituitary-adrenal axis and, most importantly, the dysregulation of immune system which causes a chronic pro-inflammatory status. The biological link between depression, inflammation, and CVD can be related to high levels of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, released by macrophages which play a central role in the pathophysiology of both depression and CVD. Pro-inflammatory cytokines interfere with many of the pathophysiological mechanisms relevant to depression by upregulating the rate-limiting enzymes in the metabolic pathway of tryptophan and altering serotonin metabolism. These cytokines also increase the risk to develop CVD, because activation of macrophages under this pro-inflammatory status is closely associated with endothelial dysfunction and oxidative stress, a preamble to atherosclerosis and atherothrombosis. Carnosine (β-alanyl-L-histidine) is an endogenous dipeptide which exerts a strong antiinflammatory activity on macrophages by suppressing reactive species and pro-inflammatory cytokines production and altering pro-inflammatory/anti-inflammatory macrophage polarization. This dipeptide exhibits antioxidant properties scavenging reactive species and preventing oxidative stress-induced pathologies such as CVD. In the present review we will discuss the role of oxidative stress and chronic inflammation as common pathophysiological events both in depression and CVD and the preclinical and clinical evidence on the protective effect of carnosine in both diseases as well as the therapeutic potential of this dipeptide in depressed patients with a high co-morbidity of cardiovascular diseases.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy
| | - Claudia G Fresta
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95125, Italy
| | - Margherita Grasso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Rosa Santangelo
- Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania 95125, Italy
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Chemistry, University of Kansas, Lawrence 66045, Kansas, United States
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| |
Collapse
|
33
|
Scuto M, Trovato Salinaro A, Modafferi S, Polimeni A, Pfeffer T, Weigand T, Calabrese V, Schmitt CP, Peters V. Carnosine Activates Cellular Stress Response in Podocytes and Reduces Glycative and Lipoperoxidative Stress. Biomedicines 2020; 8:biomedicines8060177. [PMID: 32604897 PMCID: PMC7344982 DOI: 10.3390/biomedicines8060177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023] Open
Abstract
Carnosine improves diabetic complications, including diabetic nephropathy, in in vivo models. To further understand the underlying mechanism of nephroprotection, we studied the effect of carnosine under glucose-induced stress on cellular stress response proteins in murine immortalized podocytes, essential for glomerular function. High-glucose stress initiated stress response by increasing intracellular heat shock protein 70 (Hsp70), sirtuin-1 (Sirt-1), thioredoxin (Trx), glutamate-cysteine ligase (gamma-glutamyl cysteine synthetase; γ-GCS) and heme oxygenase-1 (HO-1) in podocytes by 30–50% compared to untreated cells. Carnosine (1 mM) also induced a corresponding upregulation of these intracellular stress markers, which was even more prominent compared to glucose for Hsp70 (21%), γ-GCS and HO-1 (13% and 20%, respectively; all p < 0.001). Co-incubation of carnosine (1 mM) and glucose (25 mM) induced further upregulation of Hsp70 (84%), Sirt-1 (52%), Trx (35%), γ-GCS (90%) and HO-1 (73%) concentrations compared to untreated cells (all p < 0.001). The glucose-induced increase in 4-hydroxy-trans-2-nonenal (HNE) and protein carbonylation was reduced dose-dependently by carnosine by more than 50% (p < 0.001). Although podocytes tolerated high carnosine concentrations (10 mM), high carnosine levels only slightly increased Trx and γ-GCS (10% and 19%, respectively, compared to controls; p < 0.001), but not Hsp70, Sirt-1 and HO-1 proteins (p not significant), and did not modify the glucose-induced oxidative stress response. In podocytes, carnosine induced cellular stress tolerance and resilience pathways and was highly effective in reducing high-glucose-induced glycative and lipoperoxidative stress. Carnosine in moderate concentrations exerted a direct podocyte molecular protective action.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (M.S.); (A.T.S.); (S.M.); (A.P.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (M.S.); (A.T.S.); (S.M.); (A.P.)
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (M.S.); (A.T.S.); (S.M.); (A.P.)
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69117 Heidelberg, Germany; (T.P.); (T.W.); (V.P.)
| | - Alessandra Polimeni
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (M.S.); (A.T.S.); (S.M.); (A.P.)
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69117 Heidelberg, Germany; (T.P.); (T.W.); (V.P.)
| | - Tilman Pfeffer
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69117 Heidelberg, Germany; (T.P.); (T.W.); (V.P.)
| | - Tim Weigand
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69117 Heidelberg, Germany; (T.P.); (T.W.); (V.P.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (M.S.); (A.T.S.); (S.M.); (A.P.)
- Correspondence: (V.C.); (C.P.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69117 Heidelberg, Germany; (T.P.); (T.W.); (V.P.)
- Correspondence: (V.C.); (C.P.S.)
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69117 Heidelberg, Germany; (T.P.); (T.W.); (V.P.)
| |
Collapse
|
34
|
Wahid M, Ali A, Saqib F, Aleem A, Bibi S, Afzal K, Ali A, Baig A, Khan SA, Bin Asad MHH. Pharmacological exploration of traditional plants for the treatment of neurodegenerative disorders. Phytother Res 2020; 34:3089-3112. [DOI: 10.1002/ptr.6742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Muqeet Wahid
- Faculty of Pharmacy, Department of Pharmacology Bahauddin Zakariya University Multan Pakistan
- Institute of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Anam Ali
- Faculty of Pharmacy, Department of Pharmacology Bahauddin Zakariya University Multan Pakistan
| | - Fatima Saqib
- Faculty of Pharmacy, Department of Pharmacology Bahauddin Zakariya University Multan Pakistan
| | - Ambreen Aleem
- Faculty of Pharmacy, Department of Pharmacology Bahauddin Zakariya University Multan Pakistan
| | - Sumbal Bibi
- Department of Pharmacy COMSATS University Islamabad Abbottabad Pakistan
| | - Khurram Afzal
- Institute of Food Science and Nutrition Bahauddin Zakariya University Multan Pakistan
| | - Atif Ali
- Department of Pharmacy COMSATS University Islamabad Abbottabad Pakistan
| | - Ayesha Baig
- Department of Biotechnology COMSATS University Islamabad Abbottabad Pakistan
| | - Shujaat Ali Khan
- Department of Pharmacy COMSATS University Islamabad Abbottabad Pakistan
| | - Muhammad Hassham Hassan Bin Asad
- Department of Pharmacy COMSATS University Islamabad Abbottabad Pakistan
- Department of Genetics, Institute of Fundamental Medicine and Biology Kazan Federal University Kazan Russia
| |
Collapse
|
35
|
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:428. [PMID: 32528241 PMCID: PMC7264408 DOI: 10.3389/fnins.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
Collapse
Affiliation(s)
- B Kuraszkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - H Goszczyńska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - T Podsiadły-Marczykowska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - M Piotrkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - P Andersen
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - M Gromicho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Grosskreutz
- Department of Neurology, University Hospital Jena, Jena, Germany.,Jena Centre for Healthy Aging, University Hospital Jena, Jena, Germany
| | | | - S Petri
- Clinic for Neurology, Hannover Medical School, Hanover, Germany
| | - B Stubbendorf
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - K Szacka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - H Uysal
- Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - M de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
36
|
Concetta Scuto M, Mancuso C, Tomasello B, Laura Ontario M, Cavallaro A, Frasca F, Maiolino L, Trovato Salinaro A, Calabrese EJ, Calabrese V. Curcumin, Hormesis and the Nervous System. Nutrients 2019; 11:E2417. [PMID: 31658697 PMCID: PMC6835324 DOI: 10.3390/nu11102417] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Curcumin is a polyphenol compound extracted from the rhizome of Curcuma longa Linn (family Zingiberaceae) commonly used as a spice to color and flavor food. Several preclinical studies have suggested beneficial roles for curcumin as an adjuvant therapy in free radical-based diseases, mainly neurodegenerative disorders. Indeed, curcumin belongs to the family of hormetins and the enhancement of the cell stress response, mainly the heme oxygenase-1 system, is actually considered the common denominator for this dual response. However, evidence-based medicine has clearly demonstrated the lack of any therapeutic effect of curcumin to contrast the onset or progression of neurodegeneration and related diseases. Finally, the curcumin safety profile imposes a careful analysis of the risk/benefit balance prior to proposing chronic supplementation with curcumin.
Collapse
Affiliation(s)
- Maria Concetta Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
- Institute of Pharmacology, Catholic University of Sacred Heart, 00168 Roma, Italy.
| | - Barbara Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Andrea Cavallaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Francesco Frasca
- Department of Clinical and experimental Medicine, Division of Endocrinology, University of Catania, 95125 Catania, Italy.
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, 95125 Catania, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| |
Collapse
|
37
|
Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK. Benefits of curcumin in brain disorders. Biofactors 2019; 45:666-689. [PMID: 31185140 DOI: 10.1002/biof.1533] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
Abstract
Curcumin is widely consumed in Asia either as turmeric directly or as one of the culinary ingredients in food recipes. The benefits of curcumin in different organ systems have been reported extensively in several neurological diseases and cancer. Curcumin has got its global recognition because of its strong antioxidant, anti-inflammatory, anti-cancer, and antimicrobial activities. Additionally, it is used in diabetes and arthritis as well as in hepatic, renal, and cardiovascular diseases. Recently, there is growing attention on usage of curcumin to prevent or delay the onset of neurodegenerative diseases. This review summarizes available data from several recent studies on curcumin in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Huntington's disease, Prions disease, stroke, Down's syndrome, autism, Amyotrophic lateral sclerosis, anxiety, depression, and aging. Recent advancements toward increasing the therapeutic efficacy of curcuma/curcumin formulation and the novel delivery strategies employed to overcome its minimal bioavailability and toxicity studies have also been discussed. This review also summarizes the ongoing clinical trials on curcumin for different neurodegenerative diseases and patent details of curcuma/curcumin in India.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Tousif A Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Esther Manthiannem
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Jagadeeswari Padamati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
- Dr. B. R. Ambedkar Centre for Biomedical Research University of Delhi, Delhi, India
| | - Saravana B Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
38
|
Lee MT, Lin WC, Lin LJ, Wang SY, Chang SC, Lee TT. Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1167-1179. [PMID: 31480133 PMCID: PMC7322654 DOI: 10.5713/ajas.19.0393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Objective This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- M T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - W C Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - L J Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 402, Taiwan
| | - S Y Wang
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - S C Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Kaohsiung 912, Taiwan
| | - T T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
39
|
Choline-Based Ionic Liquids as Media for the Growth of Saccharomyces cerevisiae. Processes (Basel) 2019. [DOI: 10.3390/pr7070471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ionic liquids (ILs) have garnered great attention as alternative solvents in many biological reactions and applications. However, its unknown toxicity is in line with the challenges to use it for biological applications. In this study, three choline based Ionic Liquids—choline saccharinate (CS), choline dihydrogen phosphate (CDHP), and choline tryptophanate (CT) were assessed for their suitability on the growth of Saccharomyces cerevisiae. The ILs were incorporated into the growth media of S. cerevisiae (defined as synthetic media) to access its potential as a substitute to conventional media. The compatibility of the synthetic media was evaluated based on the toxicity (EC50), growth curve, and glucose profile. The results showed that the incorporation of CDHP and CS did promote the growth of S. cerevisiae with a rapid glucose consumption rate. The growth of S. cerevisiae with the media composition of yeast extract, peptone, and CS showed improvement of 13%. We believe that these observations have implications in the biocompatibility studies of ILs to microorganisms.
Collapse
|
40
|
Therapeutic effects of curcumin on age-induced alterations in daily rhythms of clock genes and Sirt1 expression in the SCN of male Wistar rats. Biogerontology 2019; 20:405-419. [DOI: 10.1007/s10522-018-09794-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
|
41
|
Bermúdez ML, Skelton MR, Genter MB. Intranasal carnosine attenuates transcriptomic alterations and improves mitochondrial function in the Thy1-aSyn mouse model of Parkinson's disease. Mol Genet Metab 2018; 125:305-313. [PMID: 30146452 DOI: 10.1016/j.ymgme.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction plays a central role in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). This study was designed to determine whether the dipeptide carnosine, which has been shown to protect against oxidative stress and mitochondrial dysfunction, would provide a beneficial effect on mitochondrial function in the Thy1-aSyn mouse model of PD. Thy1-aSyn mice, which overexpress wild-type human alpha-synuclein (aSyn), exhibit progressive non-motor and motor deficits as early as 2 months of age. Two-month old Thy1-aSyn mice and wild-type littermates were randomly assigned to treatment groups with intranasal (IN) and drinking water carnosine, with controls receiving 10 μl of sterile waster intranasally or carnosine-free drinking water, respectively. After two months of treatment, mice were euthanized, and the midbrain was dissected for the evaluation of the gene expression and mitochondrial function. Transcriptional deficiencies associated with the aSyn overexpression in Thy1-aSyn mice were related to ribosomal and mitochondrial function. These deficiencies were attenuated by IN carnosine administration, which increased the expression of mitochondrial genes and enhanced mitochondrial function. These results suggest a potential neuroprotective role for IN-carnosine in PD patients.
Collapse
Affiliation(s)
- Mei-Ling Bermúdez
- Department of Environmental Health, University of Cincinnati, ML 670056, Cincinnati, OH 45267-0056, United States of America.
| | - Matthew R Skelton
- Department of Pediatrics, UC COM, Division of Neurology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 7044, Cincinnati, OH 45229-3039, United States of America
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, ML 670056, Cincinnati, OH 45267-0056, United States of America.
| |
Collapse
|
42
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
43
|
Lee MT, Lin WC, Lee TT. Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:309-319. [PMID: 30381743 PMCID: PMC6409470 DOI: 10.5713/ajas.18.0538] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Phytochemicals which exist in various plants and fungi are non-nutritive compounds that exert numerous beneficial bioactive actions for animals. In recent years following the restriction of antibiotics, phytochemicals have been regarded as a primal selection when dealing with the challenges during the producing process in the poultry industry. The selected fast-growing broiler breed was more fragile when confronting the stressors in their growing environments. The disruption of oxidative balance that impairs the production performance in birds may somehow be linked to the immune system since oxidative stress and inflammatory damage are multi-stage processes. This review firstly discusses the individual influence of oxidative stress and inflammation on the poultry industry. Next, studies related to the application of phytochemicals or botanical compounds with the significance of their antioxidant and immunomodulatory abilities are reviewed. Furthermore, we bring up nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor kappa B (NF-κB) for they are respectively the key transcription factors involved in oxidative stress and inflammation for elucidating the underlying signal transduction pathways. Finally, by the discussion about several reports using phytochemicals to regulate these transcription factors leading to the improvement of oxidative status, heme oxygenase-1 gene is found crucial for Nrf2-mediated NF-κB inhibition.
Collapse
Affiliation(s)
- M T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - W C Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - T T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
44
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
45
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA. Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY) 2018; 10:2428-2458. [PMID: 30243020 PMCID: PMC6188487 DOI: 10.18632/aging.101561] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/13/2018] [Indexed: 04/28/2023]
Abstract
N-acetyl-L-cysteine (NAC) is a derivative of the sulphur-containing amino acid L-cysteine with potential anti-aging properties. We studied 3 Drosophila species with contrast longevity differences (D. virilis is longest-lived, D. kikkawai is shortest-lived and D. melanogaster has moderate lifespan) to test the effects of NAC at 8 different concentrations (from 10 nM to 100 mM) on the lifespan, stress-resistance and locomotor activity. Except the adverse effects of highest (10 mM and 100 mM) concentrations NAC demonstrated sexually opposite and male-biased effects on Drosophila lifespan, stress-resistance and locomotor activity and not satisfied the criteria of a geroprotector in terms of the reproducibility of lifespan extending effects in different model organisms. The concentration- and sex-dependent changes in the relative expression levels of the antioxidant genes (Cat/CG6871 and Sod1/CG11793) and genes involved in hydrogen sulfide biosynthesis (Cbs/CG1753, Eip55E/CG5345 and Nfs1/CG12264) suggest the involvement of hormetic mechanisms in the geroprotective effects of NAC.
Collapse
Affiliation(s)
- Mikhail V. Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Nadezhda V. Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Liubov A. Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Eugenia V. Schegoleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, JHU, Rockville, MD 21218, USA
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
46
|
Lee M, Lin W, Wang S, Lin L, Yu B, Lee T. Evaluation of potential antioxidant and anti-inflammatory effects of Antrodia cinnamomea powder and the underlying molecular mechanisms via Nrf2- and NF-κB-dominated pathways in broiler chickens. Poult Sci 2018; 97:2419-2434. [DOI: 10.3382/ps/pey076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
|
47
|
Lee S, Choi BR, Kim J, LaFerla FM, Park JHY, Han JS, Lee KW, Kim J. Sulforaphane Upregulates the Heat Shock Protein Co-Chaperone CHIP and Clears Amyloid-β and Tau in a Mouse Model of Alzheimer's Disease. Mol Nutr Food Res 2018; 62:e1800240. [PMID: 29714053 DOI: 10.1002/mnfr.201800240] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/17/2018] [Indexed: 11/08/2022]
Abstract
SCOPE Sulforaphane is an herbal isothiocyanate enriched in cruciferous vegetables. Here, the authors investigate whether sulforaphane modulates the production of amyloid-β (Aβ) and tau, the two main pathological factors in Alzheimer's disease (AD). METHODS AND RESULTS A triple transgenic mouse model of AD (3 × Tg-AD) is used to study the effect of sulforaphane. Oral gavage of sulforaphane reduces protein levels of monomeric and polymeric forms of Aβ as well as tau and phosphorylated tau in 3 × Tg-AD mice. However, sulforaphane treatment do not affect mRNA expression of amyloid precursor protein or tau. As previous studies show that Aβ and tau metabolism are influenced by a heat shock protein (HSP) co-chaperone, C-terminus of HSP70-interacting protein (CHIP), the authors examine whether sulforaphane can modulate CHIP. The authors find that sulforaphane treatment increase levels of CHIP and HSP70. Furthermore, observations of CHIP-deficient primary neurons derived from 3 × Tg-AD mice suggest that sulforaphane treatment increase CHIP level and clear the accumulation of Aβ and tau. Finally, sulforaphane ameliorated memory deficits in 3 × Tg-AD mice as reveal by novel object/location recognition tests and contextual fear conditioning tests. CONCLUSION These results demonstrate that sulforaphane treatment upregulates CHIP and has the potential to decrease the accumulation of Aβ and tau in patients with AD.
Collapse
Affiliation(s)
- Siyoung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Bo-Ryoung Choi
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jisung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA 92697, USA
| | - Jung Han Yoon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
Cui H, Deng M, Zhang Y, Yin F, Liu J. Geniposide Increases Unfolded Protein Response-Mediating HRD1 Expression to Accelerate APP Degradation in Primary Cortical Neurons. Neurochem Res 2018; 43:669-680. [DOI: 10.1007/s11064-018-2469-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 02/20/2023]
|
49
|
Moskalev A, Shaposhnikov M, Zemskaya N, Belyi A, Dobrovolskaya E, Patova A, Guvatova Z, Lukyanova E, Snezhkina A, Kudryavtseva A. Transcriptome analysis reveals mechanisms of geroprotective effects of fucoxanthin in Drosophila. BMC Genomics 2018; 19:77. [PMID: 29504896 PMCID: PMC5836829 DOI: 10.1186/s12864-018-4471-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background We have previously showed that the carotenoid fucoxanthin can increase the lifespan in Drosophila melanogaster and Caenorhabditis elegans. However, the molecular mechanisms of the geroprotective effect of fucoxanthin have not been studied so far. Results Here, we studied the effects of fucoxanthin on the Drosophila aging process at the molecular and the whole organism levels. At the organismal level, fucoxanthin increased the median lifespan and had a positive effect on fecundity, fertility, intestinal barrier function, and nighttime sleep. Transcriptome analysis revealed 57 differentially expressed genes involved in 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Among the most represented molecular pathways induced by fucoxanthin, a significant portion is related to longevity, including MAPK, mTOR, Wnt, Notch, and Hippo signaling pathways, autophagy, translation, glycolysis, oxidative phosphorylation, apoptosis, immune response, neurogenesis, sleep, and response to DNA damage. Conclusions Life-extending effects of fucoxanthin are associated with differential expression of longevity-associated genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4471-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Belyi
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Eugenia Dobrovolskaya
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Anna Patova
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
50
|
de Oliveira MR, Andrade CMB, Fürstenau CR. Naringenin Exerts Anti-inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Associated with the Nrf2/HO-1 Axis. Neurochem Res 2018; 43:894-903. [DOI: 10.1007/s11064-018-2495-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/16/2022]
|