1
|
Aureli M, Mauri L, Carsana EV, Dobi D, Breviario S, Lunghi G, Sonnino S. Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:305-332. [DOI: 10.1007/978-3-031-12390-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Lunghi G, Fazzari M, Ciampa MG, Mauri L, Di Biase E, Chiricozzi E, Sonnino S. Regulation of signal transduction by gangliosides in lipid rafts: focus on GM3-IR and GM1-TrkA interactions. FEBS Lett 2022; 596:3124-3132. [PMID: 36331354 DOI: 10.1002/1873-3468.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The interactions between gangliosides and proteins belonging to the same or different lipid domains and their influence on physiological and pathological states have been analysed in detail. A well-known factor impacting on lipid-protein interactions and their biological outcomes is the dynamic composition of plasma membrane. This review focuses on GM1 and GM3 gangliosides because they are an integral part of protein-receptor complexes and dysregulation of their concentration shows a direct correlation with the onset of pathological conditions. We first discuss the interaction between GM3 and insulin receptor in relation to insulin responses, with an increase in GM3 correlating with the onset of metabolic dysfunction. Next, we describe the case of the GM1-TrkA interaction, relevant to nerve-cell differentiation and homeostasis as deficiency in plasma-membrane GM1 is known to promote neurodegeneration. These two examples highlight the fact that interactions between gangliosides and receptor proteins within the plasma membrane are crucial in controlling cell signalling and pathophysiological cellular states.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| |
Collapse
|
3
|
Proceedings of workshop: "Neuroglycoproteins in health and disease", INNOGLY cost action. Glycoconj J 2022; 39:579-586. [PMID: 36001187 PMCID: PMC9399589 DOI: 10.1007/s10719-022-10078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.
Collapse
|
4
|
Lunghi G, Fazzari M, Di Biase E, Mauri L, Chiricozzi E, Sonnino S. The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio 2021; 11:3193-3200. [PMID: 34003598 PMCID: PMC8634855 DOI: 10.1002/2211-5463.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/14/2021] [Indexed: 11/07/2022] Open
Abstract
Gangliosides are particularly abundant in the central nervous system, where they are mainly associated with the synaptic membranes. Their structure underlies a specific role in determining several cell physiological processes of the nervous system. The high number of different gangliosides available in nature suggests that their structure, related to both the hydrophobic and hydrophilic portion of the molecule, defines a code, although not completely understood, that through hydrophobic interactions and hydrogen bonds allows the transduction of signals starting at the plasma membranes. In this short review, we describe some structural aspects responsible for the role played by gangliosides in maintaining and determining neuronal functions.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| |
Collapse
|
5
|
Loberto N, Mancini G, Bassi R, Carsana EV, Tamanini A, Pedemonte N, Dechecchi MC, Sonnino S, Aureli M. Sphingolipids and plasma membrane hydrolases in human primary bronchial cells during differentiation and their altered patterns in cystic fibrosis. Glycoconj J 2020; 37:623-633. [PMID: 32666337 PMCID: PMC7501107 DOI: 10.1007/s10719-020-09935-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
Human primary bronchial epithelial cells differentiated in vitro represent a valuable tool to study lung diseases such as cystic fibrosis (CF), an inherited disorder caused by mutations in the gene coding for the Cystic Fibrosis Transmembrane Conductance Regulator. In CF, sphingolipids, a ubiquitous class of bioactive lipids mainly associated with the outer layer of the plasma membrane, seem to play a crucial role in the establishment of the severe lung complications. Nevertheless, no information on the involvement of sphingolipids and their metabolism in the differentiation of primary bronchial epithelial cells are available so far. Here we show that ceramide and globotriaosylceramide increased during cell differentiation, whereas glucosylceramide and gangliosides content decreased. In addition, we found that apical plasma membrane of differentiated bronchial cells is characterized by a higher content of sphingolipids in comparison to the other cell membranes and that activity of sphingolipids catabolic enzymes associated with this membrane results altered with respect to the total cell activities. In particular, the apical membrane of CF cells was characterized by high levels of ceramide and glucosylceramide, known to have proinflammatory activity. On this basis, our data further support the role of sphingolipids in the onset of CF lung pathology.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Giulia Mancini
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Rosaria Bassi
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Emma Veronica Carsana
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Anna Tamanini
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, 37126, Verona, Italy
| | | | - Maria Cristina Dechecchi
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement, University of Verona, 37134, Verona, Italy
| | - Sandro Sonnino
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Massimo Aureli
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy.
| |
Collapse
|
6
|
Lagadic-Gossmann D, Hardonnière K, Mograbi B, Sergent O, Huc L. Disturbances in H + dynamics during environmental carcinogenesis. Biochimie 2019; 163:171-183. [PMID: 31228544 DOI: 10.1016/j.biochi.2019.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/16/2019] [Indexed: 12/24/2022]
Abstract
Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.
Collapse
Affiliation(s)
- Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| | - Kévin Hardonnière
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Baharia Mograbi
- Institute of Research on Cancer and Ageing of Nice (IRCAN), INSERM U1081, CNRS UMR7284, 2. Université de Nice-Sophia Antipolis, Faculté de Médecine, Centre Antoine Lacassagne, Nice, F-06107, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- INRA, ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
7
|
Malekkou A, Samarani M, Drousiotou A, Votsi C, Sonnino S, Pantzaris M, Chiricozzi E, Zamba-Papanicolaou E, Aureli M, Loberto N, Christodoulou K. Biochemical Characterization of the GBA2 c.1780G>C Missense Mutation in Lymphoblastoid Cells from Patients with Spastic Ataxia. Int J Mol Sci 2018; 19:ijms19103099. [PMID: 30308956 PMCID: PMC6213336 DOI: 10.3390/ijms19103099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022] Open
Abstract
The GBA2 gene encodes the non-lysosomal glucosylceramidase (NLGase), an enzyme that catalyzes the conversion of glucosylceramide (GlcCer) to ceramide and glucose. Mutations in GBA2 have been associated with the development of neurological disorders such as autosomal recessive cerebellar ataxia, hereditary spastic paraplegia, and Marinesco-Sjogren-Like Syndrome. Our group has previously identified the GBA2 c.1780G>C [p.Asp594His] missense mutation, in a Cypriot consanguineous family with spastic ataxia. In this study, we carried out a biochemical characterization of lymphoblastoid cell lines (LCLs) derived from three patients of this family. We found that the mutation strongly reduce NLGase activity both intracellularly and at the plasma membrane level. Additionally, we observed a two-fold increase of GlcCer content in LCLs derived from patients compared to controls, with the C16 lipid being the most abundant GlcCer species. Moreover, we showed that there is an apparent compensatory effect between NLGase and the lysosomal glucosylceramidase (GCase), since we found that the activity of GCase was three-fold higher in LCLs derived from patients compared to controls. We conclude that the c.1780G>C mutation results in NLGase loss of function with abolishment of the enzymatic activity and accumulation of GlcCer accompanied by a compensatory increase in GCase.
Collapse
Affiliation(s)
- Anna Malekkou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Anthi Drousiotou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
| | - Christina Votsi
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Eleni Zamba-Papanicolaou
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Kyproula Christodoulou
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| |
Collapse
|
8
|
Aureli M, Samarani M, Loberto N, Chiricozzi E, Mauri L, Grassi S, Schiumarini D, Prinetti A, Sonnino S. Neuronal membrane dynamics as fine regulator of sphingolipid composition. Glycoconj J 2018; 35:397-402. [PMID: 30145639 DOI: 10.1007/s10719-018-9841-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 02/01/2023]
Abstract
Sphingolipid metabolism is an intricate network of several interdependent and co-regulated pathways. In addition to the mainstream biosynthetic and catabolic pathways, several processes, even if less important in contributing to the final tissue sphingolipid composition from the quantitative point of view, might become relevant when sphingolipid metabolism is for any reason dysregulated and concur to the onset of neuronal pathologies. The main subcellular sites involved in the mainstream metabolic pathway are represented by the Golgi apparatus (for the biosynthesis) and by the lysosomes (for catabolism). On the other hand, the minor collateral pathways are associated with the plasma membrane and membranes of other organelles, and likely play important roles in the local regulation of membrane dynamics and contribute to maintain a perfect membrane organization functional to the physiology of the cell. In this review, we will consider few aspects of the sphingolipid metabolic pathway depending by the dynamic of the membranes that seems to become relevant in neurodegenerative diseases.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy.
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy.
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Domitilla Schiumarini
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy
| |
Collapse
|
9
|
Grassi S, Chiricozzi E, Mauri L, Sonnino S, Prinetti A. Sphingolipids and neuronal degeneration in lysosomal storage disorders. J Neurochem 2018; 148:600-611. [PMID: 29959861 DOI: 10.1111/jnc.14540] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/27/2022]
Abstract
Ceramide, sphingomyelin, and glycosphingolipids (both neutral and acidic) are characterized by the presence in the lipid moiety of an aliphatic base known as sphingosine. Altogether, they are called sphingolipids and are particularly abundant in neuronal plasma membranes, where, via interactions with the other membrane lipids and membrane proteins, they play a specific role in modulating the cell signaling processes. The metabolic pathways determining the plasma membrane sphingolipid composition are thus the key point for functional changes of the cell properties. Unnatural changes of the neuronal properties are observed in sphingolipidoses, lysosomal storage diseases occurring when a lysosomal sphingolipid hydrolase is not working, leading to the accumulation of the substrate and to its distribution to all the cell membranes interacting with lysosomes. Moreover, secondary accumulation of sphingolipids is a common trait of other lysosomal storage diseases. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Current and Novel Aspects on the Non-lysosomal β-Glucosylceramidase GBA2. Neurochem Res 2015; 41:210-20. [DOI: 10.1007/s11064-015-1763-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
|
11
|
Loberto N, Tebon M, Lampronti I, Marchetti N, Aureli M, Bassi R, Giri MG, Bezzerri V, Lovato V, Cantù C, Munari S, Cheng SH, Cavazzini A, Gambari R, Sonnino S, Cabrini G, Dechecchi MC. GBA2-encoded β-glucosidase activity is involved in the inflammatory response to Pseudomonas aeruginosa. PLoS One 2014; 9:e104763. [PMID: 25141135 PMCID: PMC4139313 DOI: 10.1371/journal.pone.0104763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Current anti-inflammatory strategies for the treatment of pulmonary disease in cystic fibrosis (CF) are limited; thus, there is continued interest in identifying additional molecular targets for therapeutic intervention. Given the emerging role of sphingolipids (SLs) in various respiratory disorders, including CF, drugs that selectively target the enzymes associated with SL metabolism are under development. Miglustat, a well-characterized iminosugar-based inhibitor of β-glucosidase 2 (GBA2), has shown promise in CF treatment because it reduces the inflammatory response to infection by P. aeruginosa and restores F508del-CFTR chloride channel activity. This study aimed to probe the molecular basis for the anti-inflammatory activity of miglustat by examining specifically the role of GBA2 following the infection of CF bronchial epithelial cells by P. aeruginosa. We also report the anti-inflammatory activity of another potent inhibitor of GBA2 activity, namely N-(5-adamantane-1-yl-methoxy)pentyl)-deoxynojirimycin (Genz-529648). In CF bronchial cells, inhibition of GBA2 by miglustat or Genz-529648 significantly reduced the induction of IL-8 mRNA levels and protein release following infection by P. aeruginosa. Hence, the present data demonstrate that the anti-inflammatory effects of miglustat and Genz-529648 are likely exerted through inhibition of GBA2.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maela Tebon
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Nicola Marchetti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maria Grazia Giri
- Medical Physics Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Valentino Bezzerri
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Valentina Lovato
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Cinzia Cantù
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Seng H. Cheng
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| |
Collapse
|
12
|
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 2013; 50:130-48. [DOI: 10.1007/s12035-013-8614-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
13
|
Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content. Glycoconj J 2012; 29:585-97. [PMID: 22592846 DOI: 10.1007/s10719-012-9385-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/16/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.
Collapse
|
14
|
Aureli M, Gritti A, Bassi R, Loberto N, Ricca A, Chigorno V, Prinetti A, Sonnino S. Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 2012; 37:1344-54. [PMID: 22350518 DOI: 10.1007/s11064-012-0719-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/17/2012] [Accepted: 01/28/2012] [Indexed: 12/12/2022]
Abstract
The activities of plasma membrane associated sialidase Neu3, total β-glucosidase, CBE-sensitive β-glucosidase, non-lysosomal β-glucosyl ceramidase GBA2, β-galactosidase, β-hexosaminidase and sphingomyelinase were determined at three different stages of differentiation of murine neural stem cell cultures, corresponding to precursors, commited progenitors, and differentiated cells. Cell immunostaining for specific markers of the differentiation process, performed after 7 days in culture in presence of differentiating agents, clearly showed the presence of oligodendrocytes, astrocytes and neurons. Glial cells were the most abundant. Sialidase Neu3 after a decrease from progenitors to precursors, showed an increase parallel to the differentiation process. All the other glycosidases increased their activity along differentiation. The activity of CBE-sensitive β-glucosidase and GBA2 were very similar at the precursor stage, but CBE-sensitive β-glucosidase increased 7 times while GBA2 only two in the differentiated cells. In addition, we analysed also sphingomyelinase as enzyme specifically associated to sphingolipids. The activity of this enzyme increased from precursors to differentiated cells.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Italy
| | | | | | | | | | | | | | | |
Collapse
|