1
|
Lou T, Wu H, Feng M, Liu L, Yang X, Pan M, Wei Z, Zhang Y, Shi L, Qu B, Yang H, Cong S, Chen K, Liu J, Li Y, Jia Z, Xiao H. Integration of metabolomics and transcriptomics reveals that Da Chuanxiong Formula improves vascular cognitive impairment via ACSL4/GPX4 mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117868. [PMID: 38325668 DOI: 10.1016/j.jep.2024.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da Chuanxiong Formula (DCX) is a traditional herbal compound composed of Gastrodia elata Bl. and Ligusticum chuanxiong Hort, which could significantly enhance blood circulation and neuroprotection, showing promise in treating Vascular Cognitive Impairment (VCI). AIM OF STUDY This study aims to elucidate the potential of DCX in treating VCI and its underlying mechanism. MATERIALS AND METHODS Firstly, the cognitive behavior level, blood flow changes, and brain pathology changes were evaluated through techniques such as the Morris water maze, step-down, laser speckle, coagulation analysis, and pathological staining to appraise the DCX efficacy. Then, the DCX targeting pathways were decoded by merging metabolomics with transcriptomics. Finally, the levels of reactive oxygen species (ROS), Fe2+, and lipid peroxidation related to the targeting signaling pathways of DCX were detected by kit, and the expression levels of mRNAs or proteins related to ferroptosis were determined by qPCR or Western blot assays respectively. RESULTS DCX improved cognitive abilities and cerebral perfusion significantly, and mitigated pathological damage in the hippocampal region of VCI model rats. Metabolomics revealed that DCX was able to call back 33 metabolites in plasma and 32 metabolites in brain samples, and the majority of the differential metabolites are phospholipid metabolites. Transcriptomic analysis revealed that DCX regulated a total of 3081 genes, with the ferroptosis pathway exhibiting the greatest impact. DCX inhibited ferroptosis of VCI rates by decreasing the levels of ferrous iron, ROS, and malondialdehyde (MDA) while increasing the level of superoxide dismutase (SOD) and glutathione (GSH) in VCI rats. Moreover, the mRNA and protein levels of ACSL4, LPCAT3, ALOX15, and GPX4, which are related to lipid metabolism in ferroptosis, were also regulated by DCX. CONCLUSION Our research findings indicated that DCX could inhibit ferroptosis through the ACSL4/GPX4 signaling pathway, thereby exerting its therapeutic benefits on VCI.
Collapse
Affiliation(s)
- Tianyu Lou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingxia Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zuying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Lixia Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Biqiong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haolan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shiyu Cong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kui Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Jia
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Ang HP, Makpol S, Nasaruddin ML, Ahmad NS, Tan JK, Wan Zaidi WA, Embong H. Lipopolysaccharide-Induced Delirium-like Behaviour in a Rat Model of Chronic Cerebral Hypoperfusion Is Associated with Increased Indoleamine 2,3-Dioxygenase Expression and Endotoxin Tolerance. Int J Mol Sci 2023; 24:12248. [PMID: 37569622 PMCID: PMC10418785 DOI: 10.3390/ijms241512248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) and the tryptophan-kynurenine pathway (TRP-KP) are upregulated in ageing and could be implicated in the pathogenesis of delirium. This study evaluated the role of IDO/KP in lipopolysaccharide (LPS)-induced delirium in an animal model of chronic cerebral hypoperfusion (CCH), a proposed model for delirium. CCH was induced by a permanent bilateral common carotid artery ligation (BCCAL) in Sprague Dawley rats to trigger chronic neuroinflammation-induced neurodegeneration. Eight weeks after permanent BCCAL, the rats were treated with a single systemic LPS. The rats were divided into three groups: (1) post-BCCAL rats treated with intraperitoneal (i.p.) saline, (2) post-BCCAL rats treated with i.p. LPS 100 μg/kg, and (3) sham-operated rats treated with i.p. LPS 100 μg/kg. Each group consisted of 10 male rats. To elucidate the LPS-induced delirium-like behaviour, natural and learned behaviour changes were assessed by a buried food test (BFT), open field test (OFT), and Y-maze test at 0, 24-, 48-, and 72 h after LPS treatment. Serum was collected after each session of behavioural assessment. The rats were euthanised after the last serum collection, and the hippocampi and cerebral cortex were collected. The TRP-KP neuroactive metabolites were measured in both serum and brain tissues using ELISA. Our data show that LPS treatment in CCH rats was associated with acute, transient, and fluctuated deficits in natural and learned behaviour, consistent with features of delirium. These behaviour deficits were mild compared to the sham-operated rats, which exhibited robust behaviour impairments. Additionally, heightened hippocampal IDO expression in the LPS-treated CCH rats was associated with reduced serum KP activity together with a decrease in the hippocampal quinolinic acid (QA) expression compared to the sham-operated rats, suggested for the presence of endotoxin tolerance through the immunomodulatory activity of IDO in the brain. These data provide new insight into the underlying mechanisms of delirium, and future studies should further explore the role of IDO modulation and its therapeutic potential in delirium.
Collapse
Affiliation(s)
- Hui Phing Ang
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| |
Collapse
|
3
|
Ganesana M, Venton BJ. Spontaneous, transient adenosine release is not enhanced in the CA1 region of hippocampus during severe ischemia models. J Neurochem 2021; 159:887-900. [PMID: 34453336 PMCID: PMC8627433 DOI: 10.1111/jnc.15496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022]
Abstract
Ischemic stroke causes damage in the brain, and a slow buildup of adenosine is neuroprotective during ischemic injury. Spontaneous, transient adenosine signaling, lasting only 3 s per event, has been discovered that increases in frequency in the caudate-putamen during early stages of mild ischemia-reperfusion injury. However, spontaneous adenosine changes have not been studied in the hippocampus during ischemia, an area highly susceptible to stroke. Here, we investigated changes of spontaneous, transient adenosine in the CA1 region of rat hippocampus during three different models of the varied intensity of ischemia. During the early stages of the milder bilateral common carotid artery occlusion (BCCAO) model, there were fewer spontaneous, transient adenosine, but no change in the concentration of individual events. In contrast, during the moderate 2 vertebral artery occlusion (2VAO) and severe 4 vessel occlusion (4VO) models, both the frequency of spontaneous, transient adenosine and the average event adenosine concentration decreased. Blood flow measurements validate that the ischemia models decreased blood flow, and corresponding pathological changes were observed by transmission electron microscopy (TEM). 4VO occlusion showed the most severe damage in histology and BCCAO showed the least. Overall, our data suggest that there is no enhanced spontaneous adenosine release in the hippocampus during moderate and severe ischemia, which could be due to depletion of the rapidly releasable adenosine pool. Thus, during ischemic stroke, there are fewer spontaneous adenosine events that could inhibit neurotransmission, which might lead to more damage and less neuroprotection in the hippocampus CA1 region. Read the Editorial Highlight for this article on page 800.
Collapse
Affiliation(s)
- Mallikarjunarao Ganesana
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Podlaha J, Schwanhaeuser K, Kadeřábková T. Bilateral Common Carotid Artery Ligation in Sheep. Could These Animals be Used as Human Models for Vascular and Cerebral Research? ACTA VET-BEOGRAD 2018. [DOI: 10.1515/acve-2017-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Experimental animals are still used in today’s medicine to understand better physiological or pathological processes, or to develop, for example better vascular prostheses. For that reason, these animals must show some similarities with humans, from the anatomical to the physiological point of view. When developing vascular prostheses, we have to evaluate if the graft will react in the expected way and if during experimental research there will be some factors that might influence the proper functioning of vascular prostheses in the human body. We observed the consequences of bilateral common carotid artery ligation (BCCAL) or Sham operation in seventeen healthy Merinolandschaf / Württemberg sheep, aged between 2 and 4 years, after testing new types of carbon-coated ARTECOR® and ADIPOGRAFT Ra 1vk 7/350 vascular prostheses. After the follow-up period the prostheses were extirpated, so the blood supply was provided from the vertebral arteries. Sheep in both groups were not sacrificed, but were observed for 18 months. After the observation period all sheep showed no physical or neurological changes and all are still alive. Animal responses to BCCAL are different, depending on the animal species, age, and condition. In sheep, bilateral blocking of the blood fl ow in the carotid bed seems to be conceivable since the brain was sufficiently supplied with blood from the vertebral arteries.
Collapse
Affiliation(s)
- Jiří Podlaha
- Department of Surgery, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Brno , Czech Republic
| | - Kräuff Schwanhaeuser
- Department of Preventive Medicine / Public Health, Faculty of Medicine, Masaryk University, Brno , Czech Republic
| | - Tereza Kadeřábková
- Department of Anaesthesiology Resuscitation and Intensive Care Medicine, University Hospital Brno Bohunice, Brno , Czech Republic
| |
Collapse
|
5
|
Hennebelle M, Zhang Z, Metherel AH, Kitson AP, Otoki Y, Richardson CE, Yang J, Lee KSS, Hammock BD, Zhang L, Bazinet RP, Taha AY. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission. Sci Rep 2017; 7:4342. [PMID: 28659576 PMCID: PMC5489485 DOI: 10.1038/s41598-017-02914-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO2-induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.
Collapse
Affiliation(s)
- Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Christine E Richardson
- Department of Nutrition, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Du SQ, Wang XR, Xiao LY, Tu JF, Zhu W, He T, Liu CZ. Molecular Mechanisms of Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion? Mol Neurobiol 2016; 54:3670-3682. [PMID: 27206432 DOI: 10.1007/s12035-016-9915-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Vascular dementia (VD) is defined as a progressive neurodegenerative disease of cognitive decline, attributable to cerebrovascular factors. Numerous studies have demonstrated that chronic cerebral hypoperfusion (CCH) is associated with the initiation and progression of VD and Alzheimer's disease (AD). Suitable animal models were established to replicate such pathological condition in experimental research, which contributes largely to comprehending causal relationships between CCH and cognitive impairment. The most widely used experimental model of VD and CCH is permanent bilateral common carotid artery occlusion in rats. In CCH models, changes of learning and memory, cerebral blood flow (CBF), energy metabolism, and neuropathology initiated by ischemia were revealed. However, in order to achieve potential therapeutic targets, particular mechanisms in cognitive and neuropathological changes from CCH to dementia should be investigated. Recent studies have shown that hypoperfusion resulted in a chain of disruption of homeostatic interactions, including oxidative stress, neuroinflammation, neurotransmitter system dysfunction, mitochondrial dysfunction, disturbance of lipid metabolism, and alterations of growth factors. Evidence from experimental studies that elucidate the damaging effects of such imbalances suggests their critical roles in the pathogenesis of VD. The present review provides a summary of the achievements in mechanisms made with the CCH models, permits an understanding of the causative role played by CCH in VD, and highlights preventative and therapeutic prospects.
Collapse
Affiliation(s)
- Si-Qi Du
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Ling-Yong Xiao
- Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jian-Feng Tu
- Beijing University of Chinese Medicine, 11 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Wen Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Tian He
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China
| | - Cun-Zhi Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, 100010, China.
| |
Collapse
|
7
|
Tian XS, Guo XJ, Ruan Z, Lei Y, Chen YT, Zhang HY. Long-term vision and non-vision dominant behavioral deficits in the 2-VO rats are accompanied by time and regional glial activation in the white matter. PLoS One 2014; 9:e101120. [PMID: 24968196 PMCID: PMC4072762 DOI: 10.1371/journal.pone.0101120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
The permanent occlusion of common carotid arteries (2-VO) in rats has been shown to induce progressive and long-lasting deficits in cognitive performance, however, whether these aberrant behaviors are attributed to visual dysfunction or cognitive impairment and what are the underlying mechanisms, remain controversial. In the present study, vision dominant (Morris water maze) and non-vision dominant (voice-cued fear conditioning) behavioral tests were assigned to comprehensively evaluate the influence of 2-VO lesion on cognitive behaviors. In the Morris water maze test, escape latencies of 2-VO rats were markedly increased in both hidden and unfixed visible platform tasks, which were accompanied by severe retinal damage. In the voice-cued fear conditioning test, significant reduction in the percentage of freezing behavior was observed at 60 days after 2-VO lesion. Chronic lesion by 2-VO failed to cause noticeable changes in the grey matter, as indicated by intact hippocampal and prefrontal cortical structures, sustained synaptic protein levels and glial cell numbers. In contrast, aberrant arrangement of myelinated axons was observed in the optic tract, but not in the corpus callosum and inner capsule of 2-VO rats. Concurrently, marked astrocyte proliferation and microglia activation in the optic tract occurred at 3 days after 2-VO lesion, and continued for up to 60 days. Differently, robust glial activation was observed in the corpus callosum at 3 days after 2-VO surgery, and then gradually returned to the baseline level at 14 and 60 days. Our study reported for the first time about the effect of 2-VO on the long-term cognitive impairment in the non-vision dominant fear conditioning test, which may be more applicable than the Morris water maze test for assessing 2-VO associated cognitive function. The time and region specific glial activation in the white matter may relate to retinal impairment, even behavioral deficits, in the setting of chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xue Song Tian
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xian Jun Guo
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Ruan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun Lei
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Ting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hai Yan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
8
|
Zhang YY, Li HX, Chen YY, Fang H, Yu YN, Liu J, Jing ZW, Wang Z, Wang YY. Convergent and divergent pathways decoding hierarchical additive mechanisms in treating cerebral ischemia-reperfusion injury. CNS Neurosci Ther 2013; 20:253-63. [PMID: 24351012 DOI: 10.1111/cns.12205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Cerebral ischemia is considered to be a highly complex disease resulting from the complicated interplay of multiple pathways. Disappointedly, most of the previous studies were limited to a single gene or a single pathway. The extent to which all involved pathways are translated into fusing mechanisms of a combination therapy is of fundamental importance. AIMS We report an integrative strategy to reveal the additive mechanism that a combination (BJ) of compound baicalin (BA) and jasminoidin (JA) fights against cerebral ischemia based on variation of pathways and functional communities. RESULTS We identified six pathways of BJ group that shared diverse additive index from 0.09 to 1, which assembled broad cross talks from seven pathways of BA and 16 pathways of JA both at horizontal and vertical levels. Besides a total of 60 overlapping functions as a robust integration background among the three groups based on significantly differential subnetworks, additive mechanism with strong confidence by networks altered functions. CONCLUSIONS These results provide strong evidence that the additive mechanism is more complex than previously appreciated, and an integrative analysis of pathways may suggest an important paradigm for revealing pharmacological mechanisms underlying drug combinations.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|