1
|
Pang MZ, Li HX, Dai XQ, Wang XB, Liu JY, Shen Y, Xu X, Zhong ZM, Wang H, Liu CF, Wang F. Melatonin Ameliorates Abnormal Sleep-Wake Behavior via Facilitating Lipid Metabolism in a Zebrafish Model of Parkinson's Disease. Neurosci Bull 2024; 40:1901-1914. [PMID: 39283564 PMCID: PMC11625096 DOI: 10.1007/s12264-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 12/08/2024] Open
Abstract
Sleep-wake disorder is one of the most common nonmotor symptoms of Parkinson's disease (PD). Melatonin has the potential to improve sleep-wake disorder, but its mechanism of action is still unclear. Our data showed that melatonin only improved the motor and sleep-wake behavior of a zebrafish PD model when melatonin receptor 1 was present. Thus, we explored the underlying mechanisms by applying a rotenone model. After the PD zebrafish model was induced by 10 nmol/L rotenone, the motor and sleep-wake behavior were assessed. In situ hybridization and real-time quantitative PCR were used to detect the expression of melatonin receptors and lipid-metabolism-related genes. In the PD model, we found abnormal lipid metabolism, which was reversed by melatonin. This may be one of the main pathways for improving PD sleep-wake disorder.
Collapse
Affiliation(s)
- Meng-Zhu Pang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han-Xing Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xue-Qin Dai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xing Xu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhao-Min Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, China
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, Xiongan Xuanwu Hospital, Xiongan, 071700, China.
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institutes of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Inami S, Koh K. Sleep induced by mechanosensory stimulation provides cognitive and health benefits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602891. [PMID: 39026689 PMCID: PMC11257551 DOI: 10.1101/2024.07.10.602891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Study Objectives Sleep is a complex phenomenon regulated by various factors, including sensory input. Anecdotal observations have suggested that gentle rocking helps babies fall asleep, and experimental studies have verified that rocking promotes sleep in both humans and mice. Recent studies have expanded this understanding, demonstrating that gentle vibration also induces sleep in Drosophila. Natural sleep serves multiple functions, including learning and memory, synaptic downscaling, and clearance of harmful substances associated with neurodegenerative diseases. Here, we investigated whether vibration-induced sleep provides similar cognitive and health benefits in Drosophila. Methods We administered gentle vibration to flies that slept very little due to a forced activation of wake-promoting neurons and investigated how the vibration influenced learning and memory in the courtship conditioning paradigm. Additionally, we examined the effects of VIS on synaptic downscaling by counting synapse numbers of select neurons. Finally, we determined whether vibration could induce sleep in Drosophila models of Alzheimer's disease (AD) and promote the clearance of Amyloid b (Ab) and Tubulin Associated Unit (TAU). Results Vibration-induced sleep enhanced performance in a courtship conditioning paradigm and reduced the number of synapses in select neurons. Moreover, vibration improved sleep in Drosophila models of AD, promoting the clearance of Ab and TAU. Conclusions Mechanosensory stimulation offers a promising non-invasive avenue for enhancing sleep, potentially providing associated cognitive and health benefits.
Collapse
Affiliation(s)
- Sho Inami
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| | - Kyunghee Koh
- Department of Neuroscience and the Farber Institute for Neurosciences, Thomas Jefferson University
| |
Collapse
|
3
|
Yurimoto T, Kumita W, Sato K, Kikuchi R, Oka G, Shibuki Y, Hashimoto R, Kamioka M, Hayasegawa Y, Yamazaki E, Kurotaki Y, Goda N, Kitakami J, Fujita T, Inoue T, Sasaki E. Development of a 3D tracking system for multiple marmosets under free-moving conditions. Commun Biol 2024; 7:216. [PMID: 38383741 PMCID: PMC10881507 DOI: 10.1038/s42003-024-05864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Assessment of social interactions and behavioral changes in nonhuman primates is useful for understanding brain function changes during life events and pathogenesis of neurological diseases. The common marmoset (Callithrix jacchus), which lives in a nuclear family like humans, is a useful model, but longitudinal automated behavioral observation of multiple animals has not been achieved. Here, we developed a Full Monitoring and Animal Identification (FulMAI) system for longitudinal detection of three-dimensional (3D) trajectories of each individual in multiple marmosets under free-moving conditions by combining video tracking, Light Detection and Ranging, and deep learning. Using this system, identification of each animal was more than 97% accurate. Location preferences and inter-individual distance could be calculated, and deep learning could detect grooming behavior. The FulMAI system allows us to analyze the natural behavior of individuals in a family over their lifetime and understand how behavior changes due to life events together with other data.
Collapse
Affiliation(s)
- Terumi Yurimoto
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Wakako Kumita
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Kenya Sato
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Rika Kikuchi
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Gohei Oka
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Yusuke Shibuki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Rino Hashimoto
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Michiko Kamioka
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Yumi Hayasegawa
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Eiko Yamazaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Yoko Kurotaki
- Center of Basic Technology in Marmoset, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Norio Goda
- Public Digital Transformation Department, Hitachi, Ltd., Shinagawa, 140-8512, Japan
| | - Junichi Kitakami
- Vision AI Solution Design Department Hitachi Solutions Technology, Ltd, Tachikawa, 190-0014, Japan
| | - Tatsuya Fujita
- Engineering Department Eastern Japan division, Totec Amenity Limited, Shinjuku, 163-0417, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Medicine and Life Science, Kawasaki, 210-0821, Japan.
| |
Collapse
|
4
|
Premotor, nonmotor and motor symptoms of Parkinson's Disease: A new clinical state of the art. Ageing Res Rev 2023; 84:101834. [PMID: 36581178 DOI: 10.1016/j.arr.2022.101834] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder that affects dopaminergic neurons in the mesencephalic substantia nigra, causing a progressive clinical course characterized by pre-motor, non-motor and motor symptoms, which negatively impact the quality of life of patients and cause high health care costs. Therefore, the present study aims to discuss the clinical manifestations of PD and to make a correlation with the gut-brain (GB) axis, approaching epidemiology and therapeutic perspectives, to better understand its clinical progression and identify symptoms early. A literature review was performed regarding the association between clinical progression, the gut-brain axis, epidemiology, and therapeutic perspectives, in addition to detailing pre-motor, non-motor symptoms (neuropsychiatric, cognitive, autonomic, sleep disorders, sensory abnormalities) and cardinal motor symptoms. Therefore, this article addresses a topic of extreme relevance, since the previously mentioned clinical manifestations (pre-motor and non-motor) can often act as prodromal markers for the early diagnosis of PD and may precede it by up to 20 years.
Collapse
|
5
|
Dos Santos AB, Skaanning LK, Thaneshwaran S, Mikkelsen E, Romero-Leguizamón CR, Skamris T, Kristensen MP, Langkilde AE, Kohlmeier KA. Sleep-controlling neurons are sensitive and vulnerable to multiple forms of α-synuclein: implications for the early appearance of sleeping disorders in α-synucleinopathies. Cell Mol Life Sci 2022; 79:450. [PMID: 35882665 PMCID: PMC11072003 DOI: 10.1007/s00018-022-04467-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Parkinson's disease, Multiple System Atrophy, and Lewy Body Dementia are incurable diseases called α-synucleinopathies as they are mechanistically linked to the protein, α-synuclein (α-syn). α-syn exists in different structural forms which have been linked to clinical disease distinctions. However, sleeping disorders (SDs) are common in the prodromal phase of all three α-synucleinopathies, which suggests that sleep-controlling neurons are affected by multiple forms of α-syn. To determine whether a structure-independent neuronal impact of α-syn exists, we compared and contrasted the cellular effect of three different α-syn forms on neurotransmitter-defined cells of two sleep-controlling nuclei located in the brainstem: the laterodorsal tegmental nucleus and the pedunculopontine tegmental nucleus. We utilized size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy and transmission electron microscopy to precisely characterize timepoints in the α-syn aggregation process with three different dominating forms of this protein (monomeric, oligomeric and fibril) and we conducted an in-depth investigation of the underlying neuronal mechanism behind cellular effects of the different forms of the protein using electrophysiology, multiple-cell calcium imaging, single-cell calcium imaging and live-location tracking with fluorescently-tagged α-syn. Interestingly, α-syn altered membrane currents, enhanced firing, increased intracellular calcium and facilitated cell death in a structure-independent manner in sleep-controlling nuclei, and postsynaptic actions involved a G-protein-mediated mechanism. These data are novel as the sleep-controlling nuclei are the first brain regions reported to be affected by α-syn in this structure-independent manner. These regions may represent highly important targets for future neuroprotective therapy to modify or delay disease progression in α-synucleinopathies.
Collapse
Affiliation(s)
- Altair B Dos Santos
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Line K Skaanning
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Siganya Thaneshwaran
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Eyd Mikkelsen
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cesar R Romero-Leguizamón
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thomas Skamris
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | - Annette E Langkilde
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
6
|
Saber M, Murphy SM, Cho Y, Lifshitz J, Rowe RK. Experimental diffuse brain injury and a model of Alzheimer's disease exhibit disease-specific changes in sleep and incongruous peripheral inflammation. J Neurosci Res 2021; 99:1136-1160. [PMID: 33319441 PMCID: PMC7897258 DOI: 10.1002/jnr.24771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Elderly populations (≥65 years old) have the highest risk of developing Alzheimer's disease (AD) and/or obtaining a traumatic brain injury (TBI). Using translational mouse models, we investigated sleep disturbances and inflammation associated with normal aging, TBI and aging, and AD. We hypothesized that aging results in marked changes in sleep compared with adult mice, and that TBI and aging would result in sleep and inflammation levels similar to AD mice. We used female 16-month-old wild-type (WT Aged) and 3xTg-AD mice, as well as a 2-month-old reference group (WT Adult), to evaluate sleep changes. WT Aged mice received diffuse TBI by midline fluid percussion, and blood was collected from both WT Aged (pre- and post-TBI) and 3xTg-AD mice to evaluate inflammation. Cognitive behavior was tested, and tissue was collected for histology. Bayesian generalized additive and mixed-effects models were used for analyses. Both normal aging and AD led to increases in sleep compared with adult mice. WT Aged mice with TBI slept substantially more, with fragmented shorter bouts, than they did pre-TBI and compared with AD mice. However, differences between WT Aged and 3xTg-AD mice in immune cell populations and plasma cytokine levels were incongruous, cognitive deficits were similar, and cumulative sleep was not predictive of inflammation or behavior for either group. Our results suggest that in similarly aged individuals, TBI immediately induces more profound sleep alterations than in AD, although both diseases likely include cognitive impairments. Unique pathological sleep pathways may exist in elderly individuals who incur TBI compared with similarly aged individuals who have AD, which may warrant disease-specific treatments in clinical settings.
Collapse
Affiliation(s)
- Maha Saber
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Yerin Cho
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ
| | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ
- Department of Child Health, University of Arizona College of Medicine – Phoenix, Phoenix, AZ
- Phoenix Veteran Affairs Health Care System, Phoenix, AZ
| |
Collapse
|
7
|
Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021; 145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Crispino P, Gino M, Barbagelata E, Ciarambino T, Politi C, Ambrosino I, Ragusa R, Marranzano M, Biondi A, Vacante M. Gender Differences and Quality of Life in Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E198. [PMID: 33383855 PMCID: PMC7795924 DOI: 10.3390/ijerph18010198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022]
Abstract
Parkinson's disease has been found to significantly affect health-related quality of life. The gender differences of the health-related quality of life of subjects with Parkinson's disease have been observed in a number of studies. These differences have been reported in terms of the age at onset, clinical manifestations, and response to therapy. In general, women with Parkinson's disease showed more positive disease outcomes with regard to emotion processing, non-motor symptoms, and cognitive functions, although women report more Parkinson's disease-related clinical manifestations. Female gender predicted poor physical functioning and socioemotional health-related quality of life, while male gender predicted the cognitive domain of health-related quality of life. Some studies reported gender differences in the association between health-related quality of life and non-motor symptoms. Depression and fatigue were the main causes of poorer health-related quality of life in women, even in the early stages of Parkinson's disease. The aim of this review was to collect the best available evidence on gender differences in the development of Parkinson's disease symptoms and health-related quality of life.
Collapse
Affiliation(s)
- Pietro Crispino
- Internal Medicine Department, Lagonegro Hospital, 85042 Lagonegro (PZ), Italy;
| | - Miriam Gino
- Department of Internal Medicine, Rivoli Hospital, 10098 Rivoli (TO), Italy;
| | - Elena Barbagelata
- Department of Internal Medicine, ASL 4 Chiavarese, Sestri Levante Hospital, 16039 Sestri Levante (GE), Italy;
| | - Tiziana Ciarambino
- Department of Medical, Surgical, Neurological, Metabolic and Geriatrics Sciences, Marcianise Hospital, ASL Caserta, University of Campania “L. Vanvitelli”, 81025 Naples, Italy;
| | - Cecilia Politi
- Department of Internal Medicine, Veneziale Hospital, 86170 Isernia, Italy;
| | | | - Rosalia Ragusa
- Health Technology Assessment Committee, University Hospital G. Rodolico, 95123 Catania, Italy;
| | - Marina Marranzano
- Department of Medical, Surgical and Advanced Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
9
|
Althubaiti S, Kafkas Ş, Abdelhakim M, Hoehndorf R. Combining lexical and context features for automatic ontology extension. J Biomed Semantics 2020; 11:1. [PMID: 31931870 PMCID: PMC6958746 DOI: 10.1186/s13326-019-0218-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ontologies are widely used across biology and biomedicine for the annotation of databases. Ontology development is often a manual, time-consuming, and expensive process. Automatic or semi-automatic identification of classes that can be added to an ontology can make ontology development more efficient. RESULTS We developed a method that uses machine learning and word embeddings to identify words and phrases that are used to refer to an ontology class in biomedical Europe PMC full-text articles. Once labels and synonyms of a class are known, we use machine learning to identify the super-classes of a class. For this purpose, we identify lexical term variants, use word embeddings to capture context information, and rely on automated reasoning over ontologies to generate features, and we use an artificial neural network as classifier. We demonstrate the utility of our approach in identifying terms that refer to diseases in the Human Disease Ontology and to distinguish between different types of diseases. CONCLUSIONS Our method is capable of discovering labels that refer to a class in an ontology but are not present in an ontology, and it can identify whether a class should be a subclass of some high-level ontology classes. Our approach can therefore be used for the semi-automatic extension and quality control of ontologies. The algorithm, corpora and evaluation datasets are available at https://github.com/bio-ontology-research-group/ontology-extension.
Collapse
Affiliation(s)
- Sara Althubaiti
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Şenay Kafkas
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Marwa Abdelhakim
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia. .,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
10
|
Raupach AK, Ehgoetz Martens KA, Memarian N, Zhong G, Matar E, Halliday GM, Grunstein R, Lewis SJG. Assessing the role of nocturnal core body temperature dysregulation as a biomarker of neurodegeneration. J Sleep Res 2019; 29:e12939. [PMID: 31713306 DOI: 10.1111/jsr.12939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 12/23/2022]
Abstract
The vast majority of patients with idiopathic rapid eye movement sleep behaviour disorder will develop a neurodegenerative α-synuclein-related condition, such as Parkinson's disease or dementia with Lewy bodies. The pathology underlying dream enactment overlaps anatomically with the brainstem regions that regulate circadian core body temperature. Previously, nocturnal core body temperature regulation has been shown to be impaired in Parkinson's disease. However, no study to date has investigated nocturnal core body temperature changes in patients with idiopathic rapid eye movement sleep behaviour disorder, which may prove to be an early objective biomarker for α-synucleinopathies. Ten healthy controls, 15 patients with idiopathic rapid eye movement sleep behaviour disorder, 31 patients with Parkinson's disease and six patients with dementia with Lewy bodies underwent clinical assessment and nocturnal polysomnography with core body temperature monitoring. A validated cosinor method was utilised for core body temperature analysis. No differences in mesor, nadir or time of nadir were observed between groups. However, when compared with healthy controls, the amplitude of the nocturnal core body temperature (mesor minus nadir) was significantly reduced in patients with idiopathic rapid eye movement sleep behaviour disorder, Parkinson's disease with concurrent rapid eye movement sleep behaviour disorder and dementia with Lewy bodies (p < 0.001, p = 0.043 and p = 0.017, respectively). Importantly, this relationship was not seen in those patients with Parkinson's disease without rapid eye movement sleep behaviour disorder. In addition, there was a significant negative correlation between amplitude of the core body temperature and self-reported rapid eye movement sleep behaviour disorder symptoms. Changes in thermoregulatory circadian rhythm may be specifically associated with the pathology underlying rapid eye movement sleep behaviour disorder rather than simply that of α-synucleinopathy. These findings implicate thermoregulatory dysfunction as a potential early biomarker for development of rapid eye movement sleep behaviour disorder-associated neurodegeneration, and suggest that subpopulations with differing pathological underpinnings might exist in Parkinson's disease.
Collapse
Affiliation(s)
- Arabella K Raupach
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Kaylena A Ehgoetz Martens
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia.,Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Negar Memarian
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia.,CIRUS, Sleep and Circadian Group, Woolcock Institute of Medical Research, Glebe, New South Wales, Australia
| | - George Zhong
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia.,Department of Anaesthesia, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Elie Matar
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Glenda M Halliday
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Ronald Grunstein
- CIRUS, Sleep and Circadian Group, Woolcock Institute of Medical Research, Glebe, New South Wales, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
11
|
Sleep disturbances and gastrointestinal dysfunction are associated with thalamic atrophy in Parkinson's disease. BMC Neurosci 2019; 20:55. [PMID: 31640554 PMCID: PMC6805461 DOI: 10.1186/s12868-019-0537-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/12/2019] [Indexed: 01/18/2023] Open
Abstract
Background Non-motor symptoms are common aspects of Parkinson’s disease (PD) occurring even at the prodromal stage of the disease and greatly affecting the quality of life. Here, we investigated whether non-motor symptoms burden was associated with cortical thickness and subcortical nuclei volume in PD patients. Methods We studied 41 non-demented PD patients. Non-motor symptoms burden was assessed using the Non-Motor Symptoms Scale grading (NMSS). Cortical thickness and subcortical nuclei volume analyses were carried out using Free-Surfer. PD patients were divided into two groups according to the NMSS grading: mild to moderate (NMSS: 0–40) and severe (NMSS: ≥ 41) non-motor symptoms. Results Thalamic atrophy was associated with higher NMSQ and NMSS total scores. The non-motor symptoms that drove this correlation were sleep/fatigue and gastrointestinal tract dysfunction. We also found that PD patients with severe non-motor symptoms had significant thalamic atrophy compared to the group with mild to moderate non-motor symptoms. Conclusions Our findings show that greater non-motor symptom burden is associated with thalamic atrophy in PD. Thalamus plays an important role in processing sensory information including visceral afferent from the gastrointestinal tract and in regulating states of sleep and wakefulness.
Collapse
|
12
|
Melpignano A, Parrino L, Santamaria J, Gaig C, Trippi I, Serradell M, Mutti C, Riccò M, Iranzo A. Isolated rapid eye movement sleep behavior disorder and cyclic alternating pattern: is sleep microstructure a predictive parameter of neurodegeneration? Sleep 2019; 42:5536257. [DOI: 10.1093/sleep/zsz142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Objective
To evaluate the role of sleep cyclic alternating pattern (CAP) in patients with isolated REM sleep behavior disorder (IRBD) and ascertain whether CAP metrics might represent a marker of phenoconversion to a defined neurodegenerative condition.
Methods
Sixty-seven IRBD patients were included and classified into patients who phenoconverted to a neurodegenerative disease (RBD converters: converter REM sleep behavior disorder [cRBD]; n = 34) and remained disease-free (RBD non-converters: non-converter REM sleep behavior disorder [ncRBD]; n = 33) having a similar follow-up duration. Fourteen age- and gender-balanced healthy controls were included for comparisons.
Results
Compared to controls, CAP rate and CAP index were significantly decreased in IRBD mainly due to a decrease of A1 phase subtypes (A1 index) despite an increase in duration of both CAP A and B phases. The cRBD group had significantly lower values of CAP rate and CAP index when compared with the ncRBD group and controls. A1 index was significantly reduced in both ncRBD and cRBD groups compared to controls. When compared to the ncRBD group, A3 index was significantly decreased in the cRBD group. The Kaplan-Meier curve applied to cRBD estimated that a value of CAP rate below 32.9% was related to an average risk of conversion of 9.2 years after baseline polysomnography.
Conclusion
IRBD is not exclusively a rapid eye movement (REM) sleep parasomnia, as non-rapid eye movement (non-REM) sleep microstructure can also be affected by CAP changes. Further studies are necessary to confirm that a reduction of specific CAP metrics is a marker of neurodegeneration in IRBD.
Collapse
Affiliation(s)
- Andrea Melpignano
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Liborio Parrino
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Joan Santamaria
- Neurology Service, Multidisciplinary Sleep Unit, Universitat de Barcelona, IDIBAPS, CIBERNED, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Carles Gaig
- Neurology Service, Multidisciplinary Sleep Unit, Universitat de Barcelona, IDIBAPS, CIBERNED, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Irene Trippi
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Monica Serradell
- Neurology Service, Multidisciplinary Sleep Unit, Universitat de Barcelona, IDIBAPS, CIBERNED, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Riccò
- AUSL-IRCCS di Reggio Emilia-Department of Public Health; Service for Occupational Health and Safety on the Workplaces, Parma, Italy
| | - Alex Iranzo
- Neurology Service, Multidisciplinary Sleep Unit, Universitat de Barcelona, IDIBAPS, CIBERNED, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Song J. Pineal gland dysfunction in Alzheimer's disease: relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol Neurodegener 2019; 14:28. [PMID: 31296240 PMCID: PMC6624939 DOI: 10.1186/s13024-019-0330-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a globally common neurodegenerative disease, which is accompanied by alterations to various lifestyle patterns, such as sleep disturbance. The pineal gland is the primary endocrine organ that secretes hormones, such as melatonin, and controls the circadian rhythms. The decrease in pineal gland volume and pineal calcification leads to the reduction of melatonin production. Melatonin has been reported to have multiple roles in the central nervous system (CNS), including improving neurogenesis and synaptic plasticity, suppressing neuroinflammation, enhancing memory function, and protecting against oxidative stress. Recently, reduced pineal gland volume and pineal calcification, accompanied by cognitive decline and sleep disturbances have been observed in AD patients. Here, I review current significant evidence of the contribution of pineal dysfunction in AD to the progress of AD neuropathology. I suggest new insights to understanding the relationship between AD pathogenesis and pineal gland function.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
14
|
Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress. Mol Neurobiol 2018; 56:2339-2351. [PMID: 29982985 DOI: 10.1007/s12035-018-1203-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.
Collapse
|
15
|
Jurado-Coronel JC, Cabezas R, Ávila Rodríguez MF, Echeverria V, García-Segura LM, Barreto GE. Sex differences in Parkinson's disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front Neuroendocrinol 2018; 50:18-30. [PMID: 28974386 DOI: 10.1016/j.yfrne.2017.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/12/2017] [Accepted: 09/29/2017] [Indexed: 01/14/2023]
Abstract
Parkinson's disease (PD) is the second most frequent age-related neurodegenerative disorder. Sex is an important factor in the development of PD, as reflected by the fact that it is more common in men than in women by an approximate ratio of 2:1. Our hypothesis is that differences in PD among men and women are highly determined by sex-dependent differences in the nigrostriatal dopaminergic system, which arise from environmental, hormonal and genetic influences. Sex hormones, specifically estrogens, influence PD pathogenesis and might play an important role in PD differences between men and women. The objective of this review was to discuss the PD physiopathology and point out sex differences in nigrostriatal degeneration, symptoms, genetics, responsiveness to treatments and biochemical and molecular mechanisms among patients suffering from this disease. Finally, we discuss the role estrogens may have on PD sex differences.
Collapse
Affiliation(s)
- Juan Camilo Jurado-Coronel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Lientur 1457, Concepción, 4080871, Chile; Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL 33744, USA
| | - Luis Miguel García-Segura
- Instituto Cajal, CSIC, Madrid, Spain; CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Brzecka A, Leszek J, Ashraf GM, Ejma M, Ávila-Rodriguez MF, Yarla NS, Tarasov VV, Chubarev VN, Samsonova AN, Barreto GE, Aliev G. Sleep Disorders Associated With Alzheimer's Disease: A Perspective. Front Neurosci 2018; 12:330. [PMID: 29904334 PMCID: PMC5990625 DOI: 10.3389/fnins.2018.00330] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Sleep disturbances, as well as sleep-wake rhythm disturbances, are typical symptoms of Alzheimer's disease (AD) that may precede the other clinical signs of this neurodegenerative disease. Here, we describe clinical features of sleep disorders in AD and the relation between sleep disorders and both cognitive impairment and poor prognosis of the disease. There are difficulties of the diagnosis of sleep disorders based on sleep questionnaires, polysomnography or actigraphy in the AD patients. Typical disturbances of the neurophysiological sleep architecture in the course of the AD include deep sleep and paradoxical sleep deprivation. Among sleep disorders occurring in patients with AD, the most frequent disorders are sleep breathing disorders and restless legs syndrome. Sleep disorders may influence circadian fluctuations of the concentrations of amyloid-β in the interstitial brain fluid and in the cerebrovascular fluid related to the glymphatic brain system and production of the amyloid-β. There is accumulating evidence suggesting that disordered sleep contributes to cognitive decline and the development of AD pathology. In this mini-review, we highlight and discuss the association between sleep disorders and AD.
Collapse
Affiliation(s)
- Anna Brzecka
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Nagendra S. Yarla
- Department of Biochemistry and Bioinformatics, School of Life Sciences, Institute of Science, Gandhi Institute of Technology and Management University, Visakhapatnam, India
| | - Vadim V. Tarasov
- Institute for Pharmaceutical Science and Translational Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir N. Chubarev
- Institute for Pharmaceutical Science and Translational Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna N. Samsonova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Russia
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Chernogolovka, Russia
- GALLY International Biomedical Research and Consulting LLC, San Antonio, TX, United States
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, United States
| |
Collapse
|
17
|
Julienne H, Buhl E, Leslie DS, Hodge JJL. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson's disease phenotypes. Neurobiol Dis 2017; 104:15-23. [PMID: 28435104 PMCID: PMC5469398 DOI: 10.1016/j.nbd.2017.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is more commonly associated with its motor symptoms and the related degeneration of dopamine (DA) neurons. However, it is becoming increasingly clear that PD patients also display a wide range of non-motor symptoms, including memory deficits and disruptions of their sleep-wake cycles. These have a large impact on their quality of life, and often precede the onset of motor symptoms, but their etiology is poorly understood. The fruit fly Drosophila has already been successfully used to model PD, and has been used extensively to study relevant non-motor behaviours in other contexts, but little attention has yet been paid to modelling non-motor symptoms of PD in this genetically tractable organism. We examined memory performance and circadian rhythms in flies with loss-of-function mutations in two PD genes: PINK1 and parkin. We found learning and memory abnormalities in both mutant genotypes, as well as a weakening of circadian rhythms that is underpinned by electrophysiological changes in clock neurons. Our study paves the way for further work that may help us understand the mechanisms underlying these neglected aspects of PD, thus identifying new targets for treatments to address these non-motor problems specifically and perhaps even to halt disease progression in its prodromal phase.
Collapse
Affiliation(s)
- Hannah Julienne
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - David S Leslie
- Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster LA1 4YF, United Kingdom
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
18
|
Ekimova IV, Simonova VV, Guzeev MA, Lapshina KV, Chernyshev MV, Pastukhov YF. Changes in sleep characteristics of rat preclinical model of Parkinson’s disease based on attenuation of the ubiquitin—proteasome system activity in the brain. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567816060057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Szatmari S, Illigens BMW, Siepmann T, Pinter A, Takats A, Bereczki D. Neuropsychiatric symptoms in untreated Parkinson's disease. Neuropsychiatr Dis Treat 2017; 13:815-826. [PMID: 28352181 PMCID: PMC5360401 DOI: 10.2147/ndt.s130997] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuropsychiatric and cognitive symptoms are common in Parkinson's disease (PD) and may precede and exceed motor symptoms as major factors impacting disease course and quality of life. Neuropsychiatric symptoms (NPS) in PD are various and are attributed to pathologic changes within multiple brain regions, to psychological stress, and to adverse effects of dopamine replacement therapy. Sleep disorders and mood symptoms such as apathy, depression, and anxiety may antedate the development of motor symptoms by years, while other NPS such as impulse control disorders, psychosis, and cognitive impairment are more common in later stages of the disease. Few studies report on NPS in the early, untreated phase of PD. We reviewed the current literature on NPS in PD with a focus on the early, drug-naive stages of PD. Among these early disease stages, premotor and early motor phases were separately addressed in our review, highlighting the underlying pathophysiological mechanisms as well as epidemiological characteristics, clinical features, risk factors, and available techniques of clinical assessment.
Collapse
Affiliation(s)
- Szabolcs Szatmari
- Department of Neurology, Sibiu County Emergency Hospital, Sibiu; 2nd Department of Neurology, Targu Mures Emergency Clinical County Hospital, Targu Mures, Romania; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Ben Min-Woo Illigens
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Timo Siepmann
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University; Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Alexandra Pinter
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University; Department of Family Medicine
| | - Annamaria Takats
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Daniel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: an Astrocentric View. Mol Neurobiol 2016; 54:7096-7115. [DOI: 10.1007/s12035-016-0193-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
21
|
Santos G, Giraldez-Alvarez LD, Ávila-Rodriguez M, Capani F, Galembeck E, Neto AG, Barreto GE, Andrade B. SUR1 Receptor Interaction with Hesperidin and Linarin Predicts Possible Mechanisms of Action of Valeriana officinalis in Parkinson. Front Aging Neurosci 2016; 8:97. [PMID: 27199743 PMCID: PMC4852538 DOI: 10.3389/fnagi.2016.00097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. A theoretical approach of our previous experiments reporting the cytoprotective effects of the Valeriana officinalis compounds extract for PD is suggested. In addiction to considering the PD as a result of mitochondrial metabolic imbalance and oxidative stress, such as in our previous in vitro model of rotenone, in the present manuscript we added a genomic approach to evaluate the possible underlying mechanisms of the effect of the plant extract. Microarray of substantia nigra (SN) genome obtained from Allen Brain Institute was analyzed using gene set enrichment analysis to build a network of hub genes implicated in PD. Proteins transcribed from hub genes and their ligands selected by search ensemble approach algorithm were subjected to molecular docking studies, as well as 20 ns Molecular Dynamics (MD) using a Molecular Mechanic Poison/Boltzman Surface Area (MMPBSA) protocol. Our results bring a new approach to Valeriana officinalis extract, and suggest that hesperidin, and probably linarin are able to relieve effects of oxidative stress during ATP depletion due to its ability to binding SUR1. In addition, the key role of valerenic acid and apigenin is possibly related to prevent cortical hyperexcitation by inducing neuronal cells from SN to release GABA on brain stem. Thus, under hyperexcitability, oxidative stress, asphyxia and/or ATP depletion, Valeriana officinalis may trigger different mechanisms to provide neuronal cell protection.
Collapse
Affiliation(s)
- Gesivaldo Santos
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia Jequié, Brazil
| | - Lisandro Diego Giraldez-Alvarez
- Programa Nacional de Pós-Doutorado (PNPD-CAPES), Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia Jequié, Brazil
| | - Marco Ávila-Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, DC, Colombia
| | - Francisco Capani
- Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), UBA-CONICET Buenos Aires, Argentina
| | - Eduardo Galembeck
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP Campinas, São Paulo, Brazil
| | - Aristóteles Gôes Neto
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana Feira de Santana, Brazil
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad JaverianaBogotá, DC, Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSantiago, Chile; Universidad Científica del SurLima, Peru
| | - Bruno Andrade
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia Jequié, Brazil
| |
Collapse
|
22
|
A Polysomnographic Study of Parkinson's Disease Sleep Architecture. PARKINSONS DISEASE 2015; 2015:570375. [PMID: 26504612 PMCID: PMC4609478 DOI: 10.1155/2015/570375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
Abstract
Sleep disturbance is a common nonmotor phenomenon in Parkinson's disease (PD) affecting patient's quality of life. In this study, we examined the association between clinical characteristics with sleep disorders and sleep architecture patterns in a PD cohort. Patients underwent a standardized polysomnography study (PSG) in their “on medication” state. We observed that male gender and disease duration were independently associated with obstructive sleep apnea (OSA). Only lower levodopa equivalent dose (LED) was associated with periodic limb movement disorders (PLMD). REM sleep behavior disorder (RBD) was more common among older patients, with higher MDS-UPDRS III scores, and LED. None of the investigated variables were associated with the awakenings/arousals (A/A). Sleep efficiency was predicted by amantadine usage and age, while sleep stage 1 was predicted by dopamine agonists and Hoehn & Yahr severity. The use of MAO-B inhibitors and MDS-UPDRS part III were predictors of sleep stages 2 and 3. Age was the only predictor of REM sleep stage and gender for total sleep time. We conclude that sleep disorders and architecture are poorly predictable by clinical PD characteristics and other disease related factors must also be contributing to these sleep disturbances.
Collapse
|