1
|
Merghany RM, El-Sawi SA, Naser AFA, Ezzat SM, Moustafa SFA, Meselhy MR. A comprehensive review of natural compounds and their structure-activity relationship in Parkinson's disease: exploring potential mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03462-4. [PMID: 39392484 DOI: 10.1007/s00210-024-03462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopamine-producing cells in the Substantia nigra region of the brain. Complementary and alternative medicine approaches have been utilized as adjuncts to conventional therapies for managing the symptoms and progression of PD. Natural compounds have gained attention for their potential neuroprotective effects and ability to target various pathways involved in the pathogenesis of PD. This comprehensive review aims to provide an in-depth analysis of the molecular targets and mechanisms of natural compounds in various experimental models of PD. This review will also explore the structure-activity relationship (SAR) of these compounds and assess the clinical studies investigating the impact of these natural compounds on individuals with PD. The insights shared in this review have the potential to pave the way for the development of innovative therapeutic strategies and interventions for PD.
Collapse
Affiliation(s)
- Rana M Merghany
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt.
| | - Salma A El-Sawi
- Department of Pharmacognosy, National Research Centre, 33 El-Buhouth Street, Cairo, 12622, Egypt
| | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, 33 El Buhouth St, Cairo, 12622, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sherifa F A Moustafa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Lei M, Wu J, Tan Y, Shi Y, Yang W, Tu H, Tan W. β-asarone protects against age-related motor decline via activation of SKN-1/Nrf2 and subsequent induction of GST-4. Pharmacol Res 2024; 209:107450. [PMID: 39366648 DOI: 10.1016/j.phrs.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Decelerating motor decline is important for promoting healthy aging in the elderly population. Acorus tatarinowii Schott is a traditional Chinese medicine that contains β-asarone as a pharmacologically active constituent. We found that β-asarone can decelerate motor decline in various age groups of Caenorhabditis elegans, while concurrently prolonging their lifespan and modulating synaptic transmission. To understand the mechanisms of its efficacy in motor improvement, we investigated and discovered that mitochondrial fragmentation, a marker for aging, is delayed after β-asarone treatment. Moreover, their efficacy is blocked by dysfunctional mitochondria. Corresponding to their role in regulating mitochondrial homeostasis, we found that SKN-1/Nrf2 and GST-4 are critical in the β-asarone treatment, and they appear to be activated via the insulin/IGF-1 signaling pathway. Well-developed intestinal microvilli are required for this process. Our study demonstrates the efficacy and mechanism of β-asarone treatment in age-related motor decline, contributing to the discovery of drugs for achieving healthy aging.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Jiayu Wu
- College of Biology and Environmental Science, Jishou, Jishou University, Jishou, Hunan, China.
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Yang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China.
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
He X, Chen X, Yang Y, Liu Y, Xie Y. Acorus calamus var. angustatus Besser: Insight into current research on ethnopharmacological use, phytochemistry, pharmacology, toxicology, and pharmacokinetics. PHYTOCHEMISTRY 2023; 210:113626. [PMID: 36871902 DOI: 10.1016/j.phytochem.2023.113626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 05/09/2023]
Abstract
A. calamus var. angustatus Besser is an important traditional medicinal herb commonly used in China and other Asian countries. This study is the first systematic review of the literature to thoroughly analyze the ethnopharmacological application, phytochemistry, pharmacology, toxicology and pharmacokinetic properties of A. calamus var. angustatus Besser and provides a rationale for future research and prospects for application in clinical treatment. Information on relevant studies investigating A. calamus var. angustatus Besser was collected from SciFinder, the Web of Science, PubMed, CNKI, Elsevier, ResearchGate, ACS, Flora of China, and Baidu Scholar, etc. up to December 2022. In addition, information was also obtained from Pharmacopeias, books on Chinese herbal classics, local books, as well as PhD and MS dissertations. A. calamus var. angustatus Besser has played an important role in the herbal treatment of coma, convulsion, amnesia, and dementia for thousands of years. Studies investigating the chemical constituents of A. calamus var. angustatus Besser have isolated and identified 234 small-molecule compounds and a few polysaccharides. Among them, simple phenylpropanoids represented by asarone analogues and lignans are the two main active ingredients, which can be considered characteristic chemotaxonomic markers of this herb. In vitro and in vivo pharmacological studies indicated that crude extracts and active compounds from A. calamus var. angustatus Besser display a wide range of pharmacological activities, especially as treatment for Alzheimer's disease (AD), and anticonvulsant, antidepressant-like, anxiolytic-like, anti-fatigue, anti-Parkinson, neuroprotection, and brain protection properties, providing more evidence to explain the traditional medicinal uses and ethnopharmacology. The clinical therapeutic dose of A. calamus var. angustatus Besser does not present any toxic effects, but its main active ingredients α-asarone and β-asarone at excessive dose may lead to toxicity, and in particular, their respective epoxide metabolites may exert potential toxicity to the liver. This review provides a reference and further information for the future development and clinical application of A. calamus var. angustatus Besser.
Collapse
Affiliation(s)
- Xirui He
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China.
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of the Western Theater Command, Chengdu, China
| | - Yan Yang
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yujie Liu
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Yulu Xie
- College of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
4
|
Das E, Sahu KK, Roy I. The functional role of Ire1 in regulating autophagy and proteasomal degradation under prolonged proteotoxic stress. FEBS J 2023. [PMID: 36757110 DOI: 10.1111/febs.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Inhibition of endoribonuclease/kinase Ire1 has shown beneficial effects in many proteotoxicity-induced pathology models. The mechanism by which this occurs has not been elucidated completely. Using a proteotoxic yeast model of Huntington's disease, we show that the deletion of Ire1 led to lower protein aggregation at longer time points. The rate of protein degradation was higher in ΔIre1 cells. We monitored the two major protein degradation mechanisms in the cell. The increase in expression of Rpn4, coding for the transcription factor controlling proteasome biogenesis, was higher in ΔIre1 cells. The chymotrypsin-like proteasomal activity was also significantly enhanced in these cells at later time points of aggregation. The gene and protein expression levels of the autophagy gene Atg8 were higher in ΔIre1 than in wild-type cells. Significant increase in autophagy flux was also seen in ΔIre1 cells at later time points of aggregation. The results suggest that the deletion of Ire1 activates UPR-independent arms of the proteostasis network, especially under conditions of aggravated stress. Thus, the inhibition of Ire1 may regulate UPR-independent cellular stress-response pathways under prolonged stress.
Collapse
Affiliation(s)
- Eshita Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Kiran Kumari Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| |
Collapse
|
5
|
Kim CJ, Kwak TY, Bae MH, Shin HK, Choi BT. Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine. J Pharmacopuncture 2022; 25:326-343. [PMID: 36628348 PMCID: PMC9806153 DOI: 10.3831/kpi.2022.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022] Open
Abstract
Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.
Collapse
Affiliation(s)
- Cheol Ju Kim
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Tae Young Kwak
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Min Hyeok Bae
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| | - Byung Tae Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea,Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan, Republic of Korea,Corresponding Author Hwa Kyoung Shin, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8476, E-mail:, Byung Tae Choi, Department of Korean Medicine, School of Korean Medicine, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Republic of Korea, Tel: +82-51-510-8475, E-mail:
| |
Collapse
|
6
|
Bai D, Li X, Wang S, Zhang T, Wei Y, Wang Q, Dong W, Song J, Gao P, Li Y, Wang S, Dai L. Advances in extraction methods, chemical constituents, pharmacological activities, molecular targets and toxicology of volatile oil from Acorus calamus var. angustatus Besser. Front Pharmacol 2022; 13:1004529. [PMID: 36545308 PMCID: PMC9761896 DOI: 10.3389/fphar.2022.1004529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.
Collapse
Affiliation(s)
- Daoming Bai
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Li
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumin Wei
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingquan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Song
- Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China,*Correspondence: Long Dai, ; Shaoping Wang, ; Yanan Li,
| |
Collapse
|
7
|
Ming S, Tian J, Ma K, Pei C, Li L, Wang Z, Fang Z, Liu M, Dong H, Li W, Zeng J, Peng Y, Gao X. Oxalate-induced apoptosis through ERS-ROS-NF-κB signalling pathway in renal tubular epithelial cell. Mol Med 2022; 28:88. [PMID: 35922749 PMCID: PMC9347104 DOI: 10.1186/s10020-022-00494-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
Background Kidney stones are composed of approximately 70–80% calcium oxalate. However, the exact mechanism of formation of calcium oxalate kidney stones remains unclear. In this study, we investigated the roles of endoplasmic reticulum stress (ERS), reactive oxygen species (ROS), and the NF-κB signalling pathway in the pathogenesis of oxalate-induced renal tubular epithelial cell injury and its possible molecular mechanisms. Methods We established a model to evaluate the formation of kidney stones by intraperitoneal injection of glyoxylic acid solution into mice and assessed cell morphology, apoptosis, and the expression levels of ERS, ROS, and NF-κB signalling pathway-related proteins in mouse renal tissues. Next, we treated HK-2 cells with potassium oxalate to construct a renal tubular epithelial cell injury model. We detected the changes in autophagy, apoptosis, and mitochondrial membrane potential and investigated the ultrastructure of the cells by transmission electron microscopy. Western blotting revealed the expression levels of apoptosis and autophagy proteins; mitochondrial structural and functional proteins; and ERS, ROS, and NF-κB (p65) proteins. Lastly, we studied the downregulation of NF-κB activity in HK-2 cells by lentivirus interference and confirmed the interaction between the NF-κB signalling and ERS/ROS pathways. Results We observed swelling of renal tissues, increased apoptosis of renal tubular epithelial cells, and activation of the ERS, ROS, and NF-κB signalling pathways in the oxalate group. We found that oxalate induced autophagy, apoptosis, and mitochondrial damage in HK-2 cells and activated the ERS/ROS/NF-κB pathways. Interestingly, when the NF-κB signalling pathway was inhibited, the ERS/ROS pathway was also inhibited. Conclusion Oxalate induces HK-2 cell injury through the interaction between the NF-κB signalling and ERS/ROS pathways.
Collapse
Affiliation(s)
- Shaoxiong Ming
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Jia Tian
- Department of Human Sperm Bank of Ningxia, General Hospital of Ningxia Medical University, Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Ke Ma
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Chengbin Pei
- Department of Human Sperm Bank of Ningxia, General Hospital of Ningxia Medical University, Ningxia Medical University, No. 804 Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Ling Li
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Zeyu Wang
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Ziyu Fang
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Min Liu
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Hao Dong
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Weijian Li
- Department of Urology, Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), B24, Yinquan Road, XinchengDistrict, Qingyuan, 511518, Guangdong Province, China
| | - Jianwen Zeng
- Department of Urology, Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People's Hospital), B24, Yinquan Road, XinchengDistrict, Qingyuan, 511518, Guangdong Province, China
| | - Yonghan Peng
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital of Shanghai, No. 168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
8
|
Molecular Mechanisms and Therapeutic Potential of α- and β-Asarone in the Treatment of Neurological Disorders. Antioxidants (Basel) 2022; 11:antiox11020281. [PMID: 35204164 PMCID: PMC8868500 DOI: 10.3390/antiox11020281] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
Neurological disorders are important causes of morbidity and mortality around the world. The increasing prevalence of neurological disorders, associated with an aging population, has intensified the societal burden associated with these diseases, for which no effective treatment strategies currently exist. Therefore, the identification and development of novel therapeutic approaches, able to halt or reverse neuronal loss by targeting the underlying causal factors that lead to neurodegeneration and neuronal cell death, are urgently necessary. Plants and other natural products have been explored as sources of safe, naturally occurring secondary metabolites with potential neuroprotective properties. The secondary metabolites α- and β-asarone can be found in high levels in the rhizomes of the medicinal plant Acorus calamus (L.). α- and β-asarone exhibit multiple pharmacological properties including antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. This paper aims to provide an overview of the current research on the therapeutic potential of α- and β-asarone in the treatment of neurological disorders, particularly neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), as well as cerebral ischemic disease, and epilepsy. Current research indicates that α- and β-asarone exert neuroprotective effects by mitigating oxidative stress, abnormal protein accumulation, neuroinflammation, neurotrophic factor deficit, and promoting neuronal cell survival, as well as activating various neuroprotective signalling pathways. Although the beneficial effects exerted by α- and β-asarone have been demonstrated through in vitro and in vivo animal studies, additional research is required to translate laboratory results into safe and effective therapies for patients with AD, PD, and other neurological and neurodegenerative diseases.
Collapse
|
9
|
Gayathri S, Chandrashekar H R, Fayaz S M. Phytotherapeutics Against Alzheimer's Disease: Mechanism, Molecular Targets and Challenges for Drug Development. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:409-426. [PMID: 34544351 DOI: 10.2174/1871527320666210920120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is inflating worldwide and is combatted by only a few approved drugs. At best, these drugs treat symptomatic conditions by targeting cholinesterase and N-methyl-D-aspartate receptors. Most of the clinical trials in progress are focused to develop disease-modifying agents that aim single targets. The 'one drug-one target' approach is failing in the case of Alzheimer's disease due to its labyrinth etiopathogenesis. Traditional medicinal systems like ayurveda uses a holistic approach encompassing legion of medicinal plants exhibiting multimodal activity. Recent advances in high-throughput technologies have catapulted the research in the arena of ayurveda, specifically in identifying plants with potent anti-Alzheimer's disease properties and their phytochemical characterization. Nonetheless, clinical trials of very few herbal medicines are in progress. This review is a compendium of Indian plants and ayurvedic medicines against Alzheimer's disease and their paraphernalia. A record of 230 plants that are found in India with anti-Alzheimer's disease potential and about 500 phytochemicals from medicinal plants has been solicited with the hope of exploring the unexplored. Further, the molecular targets of phytochemicals isolated from commonly used medicinal plants such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifolia and Withania somnifera have been reviewed with respect to their multidimensional property such as antioxidant, anti-inflammation, anti-aggregation, synaptic plasticity modulation, cognition and memory enhancing activity. In addition, the strengths, and challenges in ayurvedic medicine that limit its use as mainstream therapy is discussed and a framework for the development of herbal medicine has been proposed.
Collapse
Affiliation(s)
- Gayathri S
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| | - Fayaz S M
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka - 576104. India
| |
Collapse
|
10
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
11
|
Li S, Sun X, Bi L, Tong Y, Liu X. Research Progress on Natural Product Ingredients' Therapeutic Effects on Parkinson's Disease by Regulating Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5538200. [PMID: 33981351 PMCID: PMC8088354 DOI: 10.1155/2021/5538200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and older adults. Abnormal proteins such as α-synuclein are essential factors in PD's pathogenesis. Autophagy is the main participant in the clearance of abnormal proteins. The overactive or low function of autophagy leads to autophagy stress. Not only is it difficult to clear abnormal proteins but also it can cause damage to neurons. In this article, the effects of natural products ingredients, such as salidroside, paeoniflorin, curcumin, resveratrol, corynoxine, and baicalein, on regulating autophagy and protecting neurons were discussed in detail to provide a reference for the research and development of drugs for the treatment of PD.
Collapse
Affiliation(s)
- Sicong Li
- School of Pharmacy, Peking University Health Science Centre, Beijing, China
| | - Xu Sun
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Lei Bi
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yujia Tong
- Institute of Medical Information, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xin Liu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| |
Collapse
|
12
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
13
|
Binvignat O, Olloquequi J. Excitotoxicity as a Target Against Neurodegenerative Processes. Curr Pharm Des 2020; 26:1251-1262. [PMID: 31931694 DOI: 10.2174/1381612826666200113162641] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer's disease, Parkinson disease, Huntington's disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.
Collapse
Affiliation(s)
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Talca, Chile
| |
Collapse
|
14
|
Congrong Shujing Granule-Induced GRP78 Expression Reduced Endoplasmic Reticulum Stress and Neuronal Apoptosis in the Midbrain in a Parkinson's Disease Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4796236. [PMID: 33062012 PMCID: PMC7547351 DOI: 10.1155/2020/4796236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
The main pathological changes inherent in Parkinson's disease (PD) are degeneration and loss of dopamine neurons in the midbrain and formation of Lewy bodies. Many studies have shown that the pathogenesis of PD is closely related to endoplasmic reticulum (ER) oxidative stress. This study combined various traditional Chinese medicines to prepare Congrong Shujing granules (CSGs). The optimal dose combination of the ingredients was identified by experimental intervention in SH-SY5Y cells in vitro. A PD rat model was established by intraperitoneal injection of rotenone sunflower oil emulsion. The suspension tests were performed on the 14th day after modeling and also on the 14th day after CSG intervention (5.88 g/kg, 11.76 g/kg, and 23.52 g/kg). We evaluated the changes in motor function and the expression of neuronal cell functional marker proteins, ER stress (ERS) marker proteins, and apoptosis-related pathway proteins of neuronal cells. Changes in cellular ultrastructure were observed by electron microscopy. Our results showed that CSG treatment lengthened the duration of PD rats' gripping to the wire. 78 kDa glucose-regulated protein (GRP78) expression in the substantia nigra was significantly upregulated in the middle- and high-dose CSG groups after 14 days of treatment compared with the model group. The expression of the key dopaminergic neuron functional enzyme tyrosine hydroxylase (TH) and cerebral dopamine neurotrophic factor (CDNF) was elevated. The expression of c-Jun N-terminal kinase (JNK) and phosphorylated c-Jun decreased, and cell apoptosis was significantly reduced. Compared with the model group, the treatment groups had fewer ER fragmentation and degranulation (ribosome shedding) and abundant ER and mitochondria suggesting that CSG reduced ER stress and neuronal apoptosis in the midbrain of a PD rat model by inducing the expression of molecular chaperone GRP78.
Collapse
|
15
|
Comprehensive chemical profiling of Jia-Wei-Qi-Fu-Yin and its network pharmacology-based analysis on Alzheimer's disease. J Pharm Biomed Anal 2020; 189:113467. [DOI: 10.1016/j.jpba.2020.113467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/25/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
|
16
|
Ji M, Niu S, Guo J, Mi H, Jiang P. Silencing RNF13 Alleviates Parkinson’s Disease – Like Problems in Mouse Models by Regulating the Endoplasmic Reticulum Stress–Mediated IRE1α-TRAF2-ASK1-JNK Pathway. J Mol Neurosci 2020; 70:1977-1986. [DOI: 10.1007/s12031-020-01599-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
|
17
|
Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of Vacha ( Acorus calamus Linn.) in Neurological and Metabolic Disorders: Evidence from Ethnopharmacology, Phytochemistry, Pharmacology and Clinical Study. J Clin Med 2020; 9:E1176. [PMID: 32325895 PMCID: PMC7230970 DOI: 10.3390/jcm9041176] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Vacha (Acorus calamus Linn. (Acoraceae)) is a traditional Indian medicinal herb, which is practiced to treat a wide range of health ailments, including neurological, gastrointestinal, respiratory, metabolic, kidney, and liver disorders. The purpose of this paper is to provide a comprehensive up-to-date report on its ethnomedicinal use, phytochemistry, and pharmacotherapeutic potential, while identifying potential areas for further research. To date, 145 constituents have been isolated from this herb and identified, including phenylpropanoids, sesquiterpenoids, and monoterpenes. Compelling evidence is suggestive of the biopotential of its various extracts and active constituents in several metabolic and neurological disorders, such as anticonvulsant, antidepressant, antihypertensive, anti-inflammatory, immunomodulatory, neuroprotective, cardioprotective, and anti-obesity effects. The present extensive literature survey is expected to provide insights into the involvement of several signaling pathways and oxidative mechanisms that can mitigate oxidative stress, and other indirect mechanisms modulated by active biomolecules of A. calamus to improve neurological and metabolic disorders.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - DevNath Singh Gautam
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India; (V.S.); (D.S.G.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic;
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
- Institute for research and Innovation in Heath (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| |
Collapse
|
18
|
Rozpędek-Kamińska W, Siwecka N, Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA, Majsterek I. The PERK-Dependent Molecular Mechanisms as a Novel Therapeutic Target for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E2108. [PMID: 32204380 PMCID: PMC7139310 DOI: 10.3390/ijms21062108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Higher prevalence of neurodegenerative diseases is strictly connected with progressive aging of the world population. Interestingly, a broad range of age-related, neurodegenerative diseases is characterized by a common pathological mechanism-accumulation of misfolded and unfolded proteins within the cells. Under certain circumstances, such protein aggregates may evoke endoplasmic reticulum (ER) stress conditions and subsequent activation of the unfolded protein response (UPR) signaling pathways via the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent manner. Under mild to moderate ER stress, UPR has a pro-adaptive role. However, severe or long-termed ER stress conditions directly evoke shift of the UPR toward its pro-apoptotic branch, which is considered to be a possible cause of neurodegeneration. To this day, there is no effective cure for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), or prion disease. Currently available treatment approaches for these diseases are only symptomatic and cannot affect the disease progression. Treatment strategies, currently under detailed research, include inhibition of the PERK-dependent UPR signaling branches. The newest data have reported that the use of small-molecule inhibitors of the PERK-mediated signaling branches may contribute to the development of a novel, ground-breaking therapeutic approach for neurodegeneration. In this review, we critically describe all the aspects associated with such targeted therapy against neurodegenerative proteopathies.
Collapse
Affiliation(s)
- Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Adam Wawrzynkiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Radosław Wojtczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - J. Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| |
Collapse
|
19
|
Dai X, Yi M, Wang D, Chen Y, Xu X. Changqin NO. 1 inhibits neuronal apoptosis via suppressing GAS5 expression in a traumatic brain injury mice model. Biol Chem 2020; 400:753-763. [PMID: 30653462 DOI: 10.1515/hsz-2018-0340] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/03/2019] [Indexed: 11/15/2022]
Abstract
The present study was designed to investigate the mechanism of the traditional Chinese medicine Changqin NO. 1 on the amelioration of traumatic brain injury (TBI). Adult male C57BL/6J mice and newborn mice were used to generate a mouse TBI model and harvest primary neurons, respectively. The localizations of specific neural markers neuropilin-1 (Nrp-1), growth-associated protein-43 (GAP-43) and microtubule-associated protein Tau (Tau) were examined in brain tissues by immunohistochemistry. Terminal deoxynucleotidyl transferase dUTP nick end labeling apoptotic cell detection in tissue sections and the CCK-8 cell viability assay were performed to examine neuronal apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were also carried out in this study. The association between long non-coding RNA (lncRNA) growth-arrest specific 5 (GAS5), miR-335 and RAS p21 GTPase activating protein 1 (Rasa1) was disclosed using the dual-luciferase reporter assay. Changqin NO. 1 inhibited TBI-induced neuronal apoptosis in vivo and in vitro. GAS5 functioned as a competing endogenous RNA (ceRNA) by sponging miR-335 to upregulate Rasa1 expression in mouse neuronal cells. Further investigations demonstrated that GAS5 promoted neuronal apoptosis following TBI via the miR-335/Rasa1 axis. In vivo experiments indicated that Changqin NO. 1 exerted neuroprotection during TBI via the GAS5/miR-335/Rasa1 axis. Changqin NO. 1 promoted neuroprotective effects by inhibiting neuronal apoptosis via the GAS5/miR-335/Rasa1 axis in TBI.
Collapse
Affiliation(s)
- Xingping Dai
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Yanyi Chen
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| | - Xia Xu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410078, Hunan, China
| |
Collapse
|
20
|
Zhu J, Dou S, Wang C, Jiang Y, Wang C, Cheng B. Apelin-36 mitigates MPTP/MPP +-induced neurotoxicity: Involvement of α-synuclein and endoplasmic reticulum stress. Brain Res 2019; 1721:146334. [PMID: 31306618 DOI: 10.1016/j.brainres.2019.146334] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons within the substantia nigra compacta (SNpc) which leads to the behavioral dysfunction. In the present study, we investigated the effect of Apelin-36 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP)/1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. The treatment with Apelin-36 significantly alleviated the MPTP-induced the behavioral dysfunction and dopaminergic neurodegeneration in the SNpc of mice, and also remarkably decreased the MPP+-induced cell death of SH-SY5Y cells. Furthermore, Apelin-36 reversed the MPTP/MPP+-induced loss of TH expression and the induction of α-synuclein expression. Additionally, Apelin-36 significantly attenuated the endoplasmic reticulum stress (ERS) indicated by the inhibition of GRP78, CHOP and cleaved caspase-12 expression in MPTP/MPP+ treated mice and cells. Taken together, the results indicated that Apelin-36 attenuates MPTP/MPP+-induced neurotoxicity, and suggested that Apelin-36 could be a potential therapeutic strategy for the treatment of PD.
Collapse
Affiliation(s)
- Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China; Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Chuangong Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
21
|
Zhu J, Dou S, Jiang Y, Chen J, Wang C, Cheng B. Apelin-13 protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through inhibiting endoplasmic reticulum stress and promoting autophagy. Brain Res 2019; 1715:203-212. [PMID: 30914252 DOI: 10.1016/j.brainres.2019.03.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
The dopaminergic neurodegeneration in the substantia nigrapars compacta (SNpc) and striatum of the midbrain is the important pathological feature of Parkinson's disease (PD). It has been shown that autophagy and endoplasmic reticulum stress (ERS) are involved in the occurrence and development of PD. The neuropeptide Apelin-13 is neuroprotective in the neurological diseases such as PD, Alzheimer's disease and cerebral ischemic stroke. In the present work, we investigated the neuroprotective effects of Apelin-13 on ERS and autophagy in the dopaminergic neurodegeneration of SNpc of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP)-treated mice. The intranigral injection of Apelin-13 alleviated the behavioral dysfunction and dopaminergic neurodegeneration induced by MPTP. After the exposure to MPTP, the expression of tyrosine hydroxylase (TH) was significantly decreased as well as the increased α-synuclein expression, which was significantly reversed by the intranigral injection of Apelin-13. Also, Apelin-13 significantly reversed the decreasing autophagy induced by MPTP which was indicated by the up-regulation of LC3B-II and Beclin1 and down-regulation of p62. And MPTP-induced ERS such as IRE1α, XBP1s, CHOP and GRP78 was significantly inhibited by Apelin-13. Taken together, Apelin-13 protects dopaminergic neurons in MPTP-induced PD model mice in vivo through inhibiting ERS and promoting autophagy, which contributes to the therapy for PD in the future.
Collapse
Affiliation(s)
- Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
22
|
β-Asarone Regulates ER Stress and Autophagy Via Inhibition of the PERK/CHOP/Bcl-2/Beclin-1 Pathway in 6-OHDA-Induced Parkinsonian Rats. Neurochem Res 2019; 44:1159-1166. [DOI: 10.1007/s11064-019-02757-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/20/2022]
|
23
|
Translocator Protein Ligand Protects against Neurodegeneration in the MPTP Mouse Model of Parkinsonism. J Neurosci 2019; 39:3752-3769. [PMID: 30796158 DOI: 10.1523/jneurosci.2070-18.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease, after Alzheimer's disease. Parkinson's disease is a movement disorder with characteristic motor features that arise due to the loss of dopaminergic neurons from the substantia nigra. Although symptomatic treatment by the dopamine precursor levodopa and dopamine agonists can improve motor symptoms, no disease-modifying therapy exists yet. Here, we show that Emapunil (AC-5216, XBD-173), a synthetic ligand of the translocator protein 18, ameliorates degeneration of dopaminergic neurons, preserves striatal dopamine metabolism, and prevents motor dysfunction in female mice treated with the MPTP, as a model of parkinsonism. We found that Emapunil modulates the inositol requiring kinase 1α (IRE α)/X-box binding protein 1 (XBP1) unfolded protein response pathway and induces a shift from pro-inflammatory toward anti-inflammatory microglia activation. Previously, Emapunil was shown to cross the blood-brain barrier and to be safe and well tolerated in a Phase II clinical trial. Therefore, our data suggest that Emapunil may be a promising approach in the treatment of Parkinson's disease.SIGNIFICANCE STATEMENT Our study reveals a beneficial effect of Emapunil on dopaminergic neuron survival, dopamine metabolism, and motor phenotype in the MPTP mouse model of parkinsonism. In addition, our work uncovers molecular networks which mediate neuroprotective effects of Emapunil, including microglial activation state and unfolded protein response pathways. These findings not only contribute to our understanding of biological mechanisms of translocator protein 18 (TSPO) function but also indicate that translocator protein 18 may be a promising therapeutic target. We thus propose to further validate Emapunil in other Parkinson's disease mouse models and subsequently in clinical trials to treat Parkinson's disease.
Collapse
|
24
|
Linking unfolded protein response to inflammation and depression: potential pathologic and therapeutic implications. Mol Psychiatry 2019; 24:987-994. [PMID: 30214045 PMCID: PMC6416085 DOI: 10.1038/s41380-018-0241-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/26/2018] [Accepted: 08/16/2018] [Indexed: 11/21/2022]
Abstract
Depression is a devastating mental disorder that affects millions of people worldwide. Inflammation has been shown to be a key factor involved in the underlying pathophysiology of depression and has been shown in a substantial proportion of cases of depression. Changes attributed with morphological deformities and immunomodulation in susceptible regions of the depressed brain raised the possibility of altered cellular homeostasis transduced by the intracellular stress response. How emotional stressors can lead to an inflamed brain that directly affects physiology and activity is yet to be fully understood. The unfolded protein response (UPR) has been shown to be active in both models of depression as well as in postmortem brain of depressed individuals. The UPR is the cellular response to stress which results in misfolded proteins. Interestingly, UPR activation is directly linked to both inflammatory cytokine production and Toll-like receptor (TLR) expression. The TLRs are part of the innate immune response which typically reacts to "classic invasions" such as bacteria or viruses as well as trauma. TLRs have also been shown to be upregulated in depression, thus solidifying the connection between inflammation and depression. In this review, we aim to tie the UPR-TLR response and depression, and describe the implications of such an association. We also propose future directions for their role in treatment for depression.
Collapse
|
25
|
Gao Y, Zhu H, Yang F, Wang Q, Feng Y, Zhang C. Glucocorticoid-activated IRE1α/XBP-1s signaling: an autophagy-associated protective pathway against endotheliocyte damage. Am J Physiol Cell Physiol 2018; 315:C300-C309. [PMID: 29768047 DOI: 10.1152/ajpcell.00009.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucocorticoid-induced endothelial injury has been reported in several diseases. Although there are several theories, the exact mechanism underlying the role of glucocorticoids in this process remains unclear. Autophagy has been reported to occur as a response to different stimuli and can affect cell survival and function. In this study, we found that glucocorticoids induced apoptosis and endoplasmic reticulum (ER) stress in endotheliocytes. Furthermore, we discovered that glucocorticoids induced autophagy in these cells and the inositol requiring protein 1 (IRE1α)/X-box binding protein 1s (XBP-1s) axis, one of the downstream signaling pathways of ER stress, was associated with the glucocorticoid-induced autophagy. The autophagy partly protected endotheliocytes from glucocorticoid-induced apoptosis and inhibition of proliferation. In conclusion, glucocorticoid-induced endoplasmic reticulum stress activated the IRE1α/XBP-1s signaling and induced autophagy, which, in turn, played a protective role in endotheliocyte survival and proliferation, avoiding further cellular damage caused by glucocorticoids.
Collapse
Affiliation(s)
- Yanchun Gao
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Hongyi Zhu
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yong Feng
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai , China
| |
Collapse
|
26
|
Chellian R, Pandy V, Mohamed Z. Pharmacology and toxicology of α- and β-Asarone: A review of preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:41-58. [PMID: 28732807 DOI: 10.1016/j.phymed.2017.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/20/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Asarone is one of the most researched phytochemicals and is mainly present in the Acorus species and Guatteria gaumeri Greenman. In preclinical studies, both α- and β-asarone have been reported to have numerous pharmacological activities and at the same time, many studies have also revealed the toxicity of α- and β-asarone. PURPOSE The purpose of this comprehensive review is to compile and analyze the information related to the pharmacokinetic, pharmacological, and toxicological studies reported on α- and β-asarone using preclinical in vitro and in vivo models. Besides, the molecular targets and mechanism(s) involved in the biological activities of α- and β-asarone were discussed. METHODS Databases including PubMed, ScienceDirect and Google scholar were searched and the literature from the year 1960 to January 2017 was retrieved using keywords such as α-asarone, β-asarone, pharmacokinetics, toxicology, pharmacological activities (e.g. depression, anxiety). RESULTS Based on the data obtained from the literature search, the pharmacokinetic studies of α- and β-asarone revealed that their oral bioavailability in rodents is poor with a short plasma half-life. Moreover, the metabolism of α- and β-asarone occurs mainly through cytochrome-P450 pathways. Besides, both α- and/or β-asarone possess a wide range of pharmacological activities such as antidepressant, antianxiety, anti-Alzheimer's, anti-Parkinson's, antiepileptic, anticancer, antihyperlipidemic, antithrombotic, anticholestatic and radioprotective activities through its interaction with multiple molecular targets. Importantly, the toxicological studies revealed that both α- and β-asarone can cause hepatomas and might possess mutagenicity, genotoxicity, and teratogenicity. CONCLUSIONS Taken together, further preclinical studies are required to confirm the pharmacological properties of α-asarone against depression, anxiety, Parkinson's disease, psychosis, drug dependence, pain, inflammation, cholestasis and thrombosis. Besides, the anticancer effect of β-asarone should be further studied in different types of cancers using in vivo models. Moreover, further dose-dependent in vivo studies are required to confirm the toxicity of α- and β-asarone. Overall, this extensive review provides a detailed information on the preclinical pharmacological and toxicological activities of α-and β-asarone and this could be very useful for researchers who wish to conduct further preclinical studies using α- and β-asarone.
Collapse
Affiliation(s)
- Ranjithkumar Chellian
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Remondelli P, Renna M. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance. Front Mol Neurosci 2017; 10:187. [PMID: 28670265 PMCID: PMC5472670 DOI: 10.3389/fnmol.2017.00187] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di SalernoSalerno, Italy
| | - Maurizio Renna
- Cambridge Institute for Medical Research, Department of Medical Genetics, Wellcome Trust, Addenbrooke's Hospital, University of CambridgeCambridge, United Kingdom
| |
Collapse
|