1
|
Pupillo E, Bianchi E, Bonetto V, Pasetto L, Bendotti C, Paganoni S, Mandrioli J, Mazzini L. Long-term survival of participants in a phase II randomized trial of RNS60 in amyotrophic lateral sclerosis. Brain Behav Immun 2024; 122:456-462. [PMID: 39182589 DOI: 10.1016/j.bbi.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Positive effects of RNS60 on respiratory and bulbar function were observed in a phase 2 randomized, placebo-controlled trial in people with amyotrophic lateral sclerosis (ALS). OBJECTIVE to investigate the long-term survival of trial participants and its association with respiratory status and biomarkers of neurodegeneration and inflammation. STUDY DESIGN AND SETTINGS A randomized, double blind, phase 2 clinical trial was conducted. Trial participants were enrolled at 22 Italian Expert ALS Centres from May 2017 to January 2020. Vital status of all participants was ascertained thirty-three months after the trial's last patient last visit (LPLV). Participants were patients with Amyotrophic Lateral Sclerosis, classified as slow or fast progressors based on forced vital capacity (FVC) slope during trial treatment. Demographic, clinical, and biomarker levels and their association with survival were also evaluated. RESULTS Mean duration of follow-up was 2.8 years. Long-term median survival was six months longer in the RNS60 group (p = 0.0519). Baseline FVC, and rates of FVC decline during the first 4 weeks of trial participation, were balanced between the active and placebo treatment arms. After 6 months of randomized, placebo-controlled treatment, FVC decline was significantly slower in the RNS60 group compared to the placebo group. Rates of FVC progression during the treatment were strongly associated with long-term survival (median survival: 3.7 years in slow FVC progressors; 1.6 years in fast FVC progressors). The effect of RNS60 in prolonging long-term survival was higher in participants with low neurofilament light chain (NfL) (median survival: >4 years in low NfL - RNS60 group; 3.3 years in low NfL - placebo group; 1.9 years in high NfL - RNS60 group; 1.8 years in high NfL - placebo group) and Monocyte Chemoattractant Protein-1 (MCP-1) (median survival: 3.7 years in low MCP-1 - RNS60 group; 2.3 years in low MCP-1 - placebo group; 2.8 years in high MCP-1 - RNS60 group; 2.6 years in high MCP-1 - placebo group) levels at baseline. CONCLUSIONS AND RELEVANCE In this post-hoc analysis, long term survival was longer in participants randomized to RNS60 compared with those randomized to placebo and was correlated with slower FVC progression rates, suggesting that longer survival may be mediated by the drug's effect on respiratory function. In these post-hoc analyses, the beneficial effect of RNS60 on survival was most pronounced in participants with low NfL and MCP-1 levels at study entry, suggesting that this could be a subgroup to target in future studies investigating the effects of RNS60 on survival. TRIAL REGISTRATION Study preregistered on 13/Jan/2017 in EUDRA-CT (2016-002382-62). The study was also registered at ClinicalTrials.gov number NCT03456882.
Collapse
Affiliation(s)
- Elisabetta Pupillo
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Elisa Bianchi
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Valentina Bonetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Laura Pasetto
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Caterina Bendotti
- Research Center for ALS, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS at Mass General Hospital, Department of Neurology, Boston, USA; Spaulding Rehabilitation Hospital, Department of PM&R, Harvard Medical School, Boston, USA
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy
| | - Letizia Mazzini
- ALS Expert Center "Maggiore della Carità" Hospital and University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
2
|
Bose A, Pahan K. Build muscles and protect myelin. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:175-182. [PMID: 39741558 PMCID: PMC11683878 DOI: 10.1515/nipt-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic and debilitating autoimmune disease of the central nervous system (CNS) in which a CNS-driven immune response destroys myelin, leading to wide range of symptoms including numbness and tingling, vision problems, mobility impairment, etc. Oligodendrocytes are the myelinating cells in the CNS, which are generated from oligodendroglial progenitor cells (OPCs) via differentiation. However, for multiple reasons, OPCs fail to differentiate to oligodendrocytes in MS and as a result, stimulating the differentiation of OPCs to oligodendrocytes is considered beneficial for MS. The β-hydroxy β-methylbutyrate (HMB) is a widely-used muscle-building supplement in human and recently it has been shown that low-dose HMB is capable of stimulating the differentiation of cultured OPCs to oligodendrocytes for remyelination. Moreover, other causes of autoimmune demyelination are the decrease and/or suppression of Foxp3-expressing anti-autoimmune regulatory T cells (Tregs) and upregulation of autoimmune T-helper 1(Th1) and Th17 cells. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS in which the autoimmune demyelination is nicely visible. It has been reported that in EAE mice, oral HMB upregulates Tregs and decreases Th1 and Th17 responses, leading to remyelination in the CNS. Here, we analyze these newly-described features of HMB, highlighting the putative promyelinating nature of this supplement.
Collapse
Affiliation(s)
- Ahana Bose
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Mondal S, Sheinin M, Rangasamy SB, Pahan K. Amelioration of experimental autoimmune encephalomyelitis by gemfibrozil in mice via PPARβ/δ: implications for multiple sclerosis. Front Cell Neurosci 2024; 18:1375531. [PMID: 38835441 PMCID: PMC11148333 DOI: 10.3389/fncel.2024.1375531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
It is important to describe effective and non-toxic therapies for multiple sclerosis (MS), an autoimmune demyelinating disease. Experimental autoimmune encephalomyelitis (EAE) is an immune-mediated inflammatory disease that serves as a model for MS. Earlier we and others have shown that, gemfibrozil, a lipid-lowering drug, exhibits therapeutic efficacy in EAE. However, the underlying mechanism was poorly understood. Although gemfibrozil is a known ligand of peroxisome proliferator-activated receptor α (PPARα), here, we established that oral administration of gemfibrozil preserved the integrity of blood-brain barrier (BBB) and blood-spinal cord barrier (BSB), decreased the infiltration of mononuclear cells into the CNS and inhibited the disease process of EAE in both wild type and PPARα-/- mice. On the other hand, oral gemfibrozil was found ineffective in maintaining the integrity of BBB/BSB, suppressing inflammatory infiltration and reducing the disease process of EAE in mice lacking PPARβ (formerly PPARδ), indicating an important role of PPARβ/δ, but not PPARα, in gemfibrozil-mediated preservation of BBB/BSB and protection of EAE. Regulatory T cells (Tregs) play a critical role in the disease process of EAE/MS and we also demonstrated that oral gemfibrozil protected Tregs in WT and PPARα-/- EAE mice, but not PPARβ-/- EAE mice. Taken together, our findings suggest that gemfibrozil, a known ligand of PPARα, preserves the integrity of BBB/BSB, enriches Tregs, and inhibits the disease process of EAE via PPARβ, but not PPARα.
Collapse
Affiliation(s)
- Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Suresh B Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
4
|
Baena-Caldas GP, Li J, Pedraza L, Ghosh S, Kalmes A, Barone FC, Moreno H, Hernández AI. Neuroprotective effect of the RNS60 in a mouse model of transient focal cerebral ischemia. PLoS One 2024; 19:e0295504. [PMID: 38166102 PMCID: PMC10760892 DOI: 10.1371/journal.pone.0295504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/22/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Stroke is a major cause of death, disability, and public health problems. Its intervention is limited to early treatment with thrombolytics and/or endovascular clot removal with mechanical thrombectomy without any available subacute or chronic neuroprotective treatments. RNS60 has reduced neuroinflammation and increased neuronal survival in several animal models of neurodegeneration and trauma. The aim here was to evaluate whether RNS60 protects the brain and cognitive function in a mouse stroke model. METHODS Male C57BL/6J mice were subjected to sham or ischemic stroke surgery using 60-minute transient middle cerebral artery occlusion (tMCAo). In each group, mice received blinded daily administrations of RNS60 or control fluids (PNS60 or normal saline [NS]), beginning 2 hours after surgery over 13 days. Multiple neurobehavioral tests were conducted (Neurological Severity Score [mNSS], Novel Object Recognition [NOR], Active Place Avoidance [APA], and the Conflict Variant of APA [APAc]). On day 14, cortical microvascular perfusion (MVP) was measured, then brains were removed and infarct volume, immunofluorescence of amyloid beta (Aβ), neuronal density, microglial activation, and white matter damage/myelination were measured. SPSS was used for analysis (e.g., ANOVA for parametric data; Kruskal Wallis for non-parametric data; with post-hoc analysis). RESULTS Thirteen days of treatment with RNS60 reduced brain infarction, amyloid pathology, neuronal death, microglial activation, white matter damage, and increased MVP. RNS60 reduced brain pathology and resulted in behavioral improvements in stroke compared to sham surgery mice (increased memory-learning in NOR and APA, improved cognitive flexibility in APAc). CONCLUSION RNS60-treated mice exhibit significant protection of brain tissue and improved neurobehavioral functioning after tMCAo-stroke. Additional work is required to determine mechanisms, time-window of dosing, and multiple dosing volumes durations to support clinical stroke research.
Collapse
Affiliation(s)
- Gloria Patricia Baena-Caldas
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- Health Sciences Division, Department of Morphology, School of Biomedical Sciences, Universidad del Valle, Cali, Colombia
| | - Jie Li
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Lina Pedraza
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Supurna Ghosh
- Revalesio Corporation, Tacoma, WA, United States of America
| | - Andreas Kalmes
- Revalesio Corporation, Tacoma, WA, United States of America
| | - Frank C. Barone
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| | - Herman Moreno
- Departments of Neurology and Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| | - A. Iván Hernández
- Department of Pathology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States of America
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, United States of America
| |
Collapse
|
5
|
Sheinin M, Mondal S, Roy A, Rangasamy SB, Poddar J, Pahan K. Suppression of Experimental Autoimmune Encephalomyelitis in Mice by β-Hydroxy β-Methylbutyrate, a Body-Building Supplement in Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:187-198. [PMID: 37314416 PMCID: PMC10330056 DOI: 10.4049/jimmunol.2200267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/20/2023] [Indexed: 06/15/2023]
Abstract
Although several immunomodulatory drugs are available for multiple sclerosis (MS), most present significant side effects with long-term use. Therefore, delineation of nontoxic drugs for MS is an important area of research. β-Hydroxy β-methylbutyrate (HMB) is accessible in local GNC stores as a muscle-building supplement in humans. This study underlines the importance of HMB in suppressing clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model of MS. Dose-dependent study shows that oral HMB at a dose of 1 mg/kg body weight/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, orally administered HMB attenuated perivascular cuffing, preserved the integrity of the blood-brain barrier and blood-spinal cord barrier, inhibited inflammation, maintained the expression of myelin genes, and blocked demyelination in the spinal cord of EAE mice. From the immunomodulatory side, HMB protected regulatory T cells and suppressed Th1 and Th17 biasness. Using peroxisome proliferator-activated receptor (PPAR)α-/- and PPARβ-/- mice, we observed that HMB required PPARβ, but not PPARα, to exhibit immunomodulation and suppress EAE. Interestingly, HMB reduced the production of NO via PPARβ to protect regulatory T cells. These results describe a novel anti-autoimmune property of HMB that may be beneficial in the treatment of MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Monica Sheinin
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Susanta Mondal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Suresh B. Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Jit Poddar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| |
Collapse
|
6
|
Tian J, Wan S, Tian J, Liu L, Xia J, Hu Y, Yang Z, Zhao H, Wang H, Guo Y, Guo J. Anti-HER2 scFv-nCytc-Modified Lipid-Encapsulated Oxygen Nanobubbles Prepared with Bulk Nanobubble Water for Inducing Apoptosis and Improving Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206091. [PMID: 36855335 DOI: 10.1002/smll.202206091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/30/2022] [Indexed: 06/08/2023]
Abstract
Bulk nanobubbles fascinate scientists because of their stability over long periods of time and their ability to carry gases, leading to numerous potential applications. Considering the hypoxic tumor microenvironment and the advantages of bulk nanobubbles, lipid-encapsulated oxygen nanobubbles are prepared from free bulk oxygen nanobubbles in this study. The obtained carrier is then modified with a protein fused with the single-chain antibody of human epidermal growth factor receptor 2 (anti-HER2 scFv) and tandem-repeat cytochrome c (anti-HER2 scFv-nCytc) to enhance tumor targeting and induce tumor apoptosis. Copper phthalocyanine is used as the photosensitizer to demonstrate how the oxygen in the nanobubbles affects the efficiency of photodynamic therapy (PDT). The combination of anti-HER2 scFv-nCytc and PDT synergistically improves the therapeutic effect and alleviates hypoxia in tumors in vivo while causing little inflammatory response. Based on the findings, bulk nanobubble water shows promise in the targeted delivery of oxygen and can be combined with antibody therapy to enhance the efficiency of PDT.
Collapse
Affiliation(s)
- Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shixiao Wan
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Jing Tian
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Liming Liu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Jintao Xia
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yunfeng Hu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Huanhuan Zhao
- Basic Medical Experiment Center, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Haixiang Wang
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, P. R. China
| | - Yichen Guo
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
7
|
Jana M, Dasarathy S, Ghosh S, Pahan K. Upregulation of DJ-1 in Dopaminergic Neurons by a Physically-Modified Saline: Implications for Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054652. [PMID: 36902085 PMCID: PMC10002578 DOI: 10.3390/ijms24054652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in human and loss-of-functions DJ-1 mutations are associated with a familial form of early onset PD. Functionally, DJ-1 (PARK7), a neuroprotective protein, is known to support mitochondria and protect cells from oxidative stress. Mechanisms and agents by which the level of DJ-1 could be increased in the CNS are poorly described. RNS60 is a bioactive aqueous solution created by exposing normal saline to Taylor-Couette-Poiseuille flow under high oxygen pressure. Recently we have described neuroprotective, immunomodulatory and promyelinogenic properties of RNS60. Here we delineate that RNS60 is also capable of increasing the level of DJ-1 in mouse MN9D neuronal cells and primary dopaminergic neurons, highlighting another new neuroprotective effect of RNS60. While investigating the mechanism we found the presence of cAMP response element (CRE) in DJ-1 gene promoter and stimulation of CREB activation in neuronal cells by RNS60. Accordingly, RNS60 treatment increased the recruitment of CREB to the DJ-1 gene promoter in neuronal cells. Interestingly, RNS60 treatment also induced the enrollment of CREB-binding protein (CBP), but not the other histone acetyl transferase p300, to the promoter of DJ-1 gene. Moreover, knockdown of CREB by siRNA led to the inhibition of RNS60-mediated DJ-1 upregulation, indicating an important role of CREB in DJ-1 upregulation by RNS60. Together, these results indicate that RNS60 upregulates DJ-1 in neuronal cells via CREB-CBP pathway. It may be of benefit for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
8
|
Beghi E, Pupillo E, Bianchi E, Bonetto V, Luotti S, Pasetto L, Bendotti C, Tortarolo M, Sironi F, Camporeale L, Sherman AV, Paganoni S, Scognamiglio A, De Marchi F, Bongioanni P, Del Carratore R, Caponnetto C, Diamanti L, Martinelli D, Calvo A, Filosto M, Padovani A, Piccinelli SC, Ricci C, Dalla Giacoma S, De Angelis N, Inghilleri M, Spataro R, La Bella V, Logroscino G, Lunetta C, Tarlarini C, Mandrioli J, Martinelli I, Simonini C, Zucchi E, Monsurrò MR, Ricciardi D, Trojsi F, Riva N, Filippi M, Simone IL, Sorarù G, Spera C, Florio L, Messina S, Russo M, Siciliano G, Conte A, Saddi MV, Carboni N, Mazzini L. Effect of RNS60 in amyotrophic lateral sclerosis: a phase II multicentre, randomized, double-blind, placebo-controlled trial. Eur J Neurol 2023; 30:69-86. [PMID: 36148821 PMCID: PMC10092300 DOI: 10.1111/ene.15573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options. RNS60 is an immunomodulatory and neuroprotective investigational product that has shown efficacy in animal models of ALS and other neurodegenerative diseases. Its administration has been safe and well tolerated in ALS subjects in previous early phase trials. METHODS This was a phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial. Participants diagnosed with definite, probable or probable laboratory-supported ALS were assigned to receive RNS60 or placebo administered for 24 weeks intravenously (375 ml) once a week and via nebulization (4 ml/day) on non-infusion days, followed by an additional 24 weeks off-treatment. The primary objective was to measure the effects of RNS60 treatment on selected biomarkers of inflammation and neurodegeneration in peripheral blood. Secondary objectives were to measure the effect of RNS60 on functional impairment (ALS Functional Rating Scale-Revised), a measure of self-sufficiency, respiratory function (forced vital capacity, FVC), quality of life (ALS Assessment Questionnaire-40, ALSAQ-40) and survival. Tolerability and safety were assessed. RESULTS Seventy-four participants were assigned to RNS60 and 73 to placebo. Assessed biomarkers did not differ between arms. The mean rate of decline in FVC and the eating and drinking domain of ALSAQ-40 was slower in the RNS60 arm (FVC, difference 0.41 per week, standard error 0.16, p = 0.0101; ALSAQ-40, difference -0.19 per week, standard error 0.10, p = 0.0319). Adverse events were similar in the two arms. In a post hoc analysis, neurofilament light chain increased over time in bulbar onset placebo participants whilst remaining stable in those treated with RNS60. CONCLUSIONS The positive effects of RNS60 on selected measures of respiratory and bulbar function warrant further investigation.
Collapse
Affiliation(s)
- Ettore Beghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | | - Elisa Bianchi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Valentina Bonetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Luotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Laura Pasetto
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Caterina Bendotti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Massimo Tortarolo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Francesca Sironi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Laura Camporeale
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alexander V Sherman
- Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sabrina Paganoni
- Sean M. Healey and AMG Center for ALS at Mass General Hospital, Department of Neurology, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital, Department of PM&R, Harvard Medical School, Boston, Massachusetts, USA
| | - Ada Scognamiglio
- ALS Expert Center 'Maggiore della Carità' Hospital and University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Expert Center 'Maggiore della Carità' Hospital and University of Piemonte Orientale, Novara, Italy
| | - Paolo Bongioanni
- Spinal Cord Injuries Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | | | | | | | - Andrea Calvo
- Centro Regionale Esperto per la Sclerosi Laterale Amiotrofica, Dipartimento di Neuroscienze 'Rita Levi Montalcini', Università degli Studi di Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, Gussago Brescia, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Gussago Brescia, Italy
| | | | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Stefania Dalla Giacoma
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Nicoletta De Angelis
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Maurizio Inghilleri
- Università di Roma 'Sapienza' UOSD Malattie Neurodegenerative, Centro Malattie Rare Neuromuscolari Policlinico Universitario Umberto I, Roma, Italy
| | - Rossella Spataro
- ALS Clinical Research Center, AOUP 'P Giaccone' - University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center, AOUP 'P Giaccone' - University of Palermo, Palermo, Italy
| | - Giancarlo Logroscino
- Center for neurodegenerative diseases and the Aging Brain, Department of Clinical Research in Neurology of the University of Bari at 'Pia Fondazione Card G. Panico 'Hospital Tricase, Tricase, Italy.,Department of Basic Medicine Neuroscience and Sense Organs, University Aldo Moro Bari, Bari, Italy
| | | | | | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy.,Neuroscience PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Rosaria Monsurrò
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Dario Ricciardi
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nilo Riva
- Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Gianni Sorarù
- Motor Neuton Disease Center, Department of Neurosciences, Azienda Ospedale Università di Padova, Padova, Italy
| | | | - Lucia Florio
- Neurology Department, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriele Siciliano
- Department of clinical and experimental medicine, University of Pisa, Pisa, Italy
| | - Amelia Conte
- Centro Clinico NEMO-Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | | - Nicola Carboni
- Neurology Department, San Francesco Hospital, Nuoro, Italy
| | - Letizia Mazzini
- ALS Expert Center 'Maggiore della Carità' Hospital and University of Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
9
|
Pinto BF, Ribeiro LNB, da Silva GBRF, Freitas CS, Kraemer L, Oliveira FMS, Clímaco MC, Mourão FAG, Santos GSPD, Béla SR, Gurgel ILDS, Leite FDL, de Oliveira AG, Vilela MRSDP, Oliveira-Lima OC, Soriani FM, Fujiwara RT, Birbrair A, Russo RC, Carvalho-Tavares J. Inhalation of dimethyl fumarate-encapsulated solid lipid nanoparticles attenuate clinical signs of experimental autoimmune encephalomyelitis and pulmonary inflammatory dysfunction in mice. Clin Sci (Lond) 2022; 136:81-101. [PMID: 34904644 DOI: 10.1042/cs20210792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
RATIONALE The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system. OBJECTIVE Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE). MATERIALS AND METHODS EAE was induced using MOG35-55 peptide in female C57BL/6J mice and the mice were treated via inhalation with DMF-encapsulated SLN (CTRL/SLN/DMF and EAE/SLN/DMF), empty SLN (CTRL/SLN and EAE/SLN), or saline solution (CTRL/saline and EAE/saline), every 72 h during 21 days. RESULTS After 21 days post-induction, EAE mice treated with DMF-loaded SLN, when compared with EAE/saline and EAE/SLN, showed decreased clinical score and weight loss, reduction in brain and spinal cord injury and inflammation, also related to the increased influx of Foxp3+ cells into the spinal cord and lung tissues. Moreover, our data revealed that EAE mice showed signs of respiratory disease, marked by increased vascular permeability, leukocyte influx, production of TNF-α and IL-17, perivascular and peribronchial inflammation, with pulmonary mechanical dysfunction associated with loss of respiratory volumes and elasticity, which DMF-encapsulated reverted in SLN nebulization. CONCLUSION Our study suggests that inhalation of DMF-encapsulated SLN is an effective therapeutic protocol that reduces not only the CNS inflammatory process and disability progression, characteristic of EAE disease, but also protects mice from lung inflammation and pulmonary dysfunction.
Collapse
Affiliation(s)
- Bárbara Fernandes Pinto
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lorena Natasha Brito Ribeiro
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Gisela Bevilacqua Rolfsen Ferreira da Silva
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
- State of São Paulo University (UNESP), Drugs and Medicines Department, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Kraemer
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marianna Carvalho Clímaco
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávio Afonso Gonçalves Mourão
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Center for Technology and Research in Magneto-Resonance (CTPMAG), Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Samantha Ribeiro Béla
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Isabella Luísa da Silva Gurgel
- Laboratory of Functional Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fábio de Lima Leite
- Nanoneurobiophysics Research Group, Department of Physics, Chemistry and Mathematics, Federal University of São Carlos (UFSCAR), Sorocaba, São Paulo, Brazil
| | - Anselmo Gomes de Oliveira
- State of São Paulo University (UNESP), Drugs and Medicines Department, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Maura Regina Silva da Páscoa Vilela
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Onésia Cristina Oliveira-Lima
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Frederico Marianetti Soriani
- Laboratory of Functional Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Juliana Carvalho-Tavares
- Neuroscience Group, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
11
|
Paganoni S, Alshikho MJ, Luppino S, Chan J, Pothier L, Schoenfeld D, Andres PL, Babu S, Zürcher NR, Loggia ML, Barry RL, Luotti S, Nardo G, Trolese MC, Pantalone S, Bendotti C, Bonetto V, De Marchi F, Rosen B, Hooker J, Cudkowicz M, Atassi N. A pilot trial of RNS60 in amyotrophic lateral sclerosis. Muscle Nerve 2018; 59:303-308. [PMID: 30458059 DOI: 10.1002/mus.26385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION RNS60 is a novel immune-modulatory agent that has shown neuroprotective effects in amytrophic lateral sclerosis (ALS) preclinical models. RNS60 is administered by weekly intravenous infusion and daily nebulization. The objective of this pilot open-label trial was to test the feasibility, safety, and tolerability of long-term RNS60 administration in ALS patients. METHODS The planned treatment duration was 23 weeks and the primary outcomes were safety and tolerability. Secondary outcomes included PBR28 positron emission tomography (PET) imaging and plasma biomarkers of inflammation. RESULTS Sixteen participants with ALS received RNS60 and 13 (81%) completed 23 weeks of RNS60 treatment. There were no serious adverse events and no participants withdrew from the trial due to drug-related adverse events. There were no significant changes in the biomarkers. DISCUSSION Long-term RNS60 administration was safe and well-tolerated. A large, multicenter, phase II trial of RNS60 is currently enrolling participants to test the effects of RNS60 on ALS biomarkers and disease progression. Muscle Nerve 59:303-308, 2019.
Collapse
Affiliation(s)
- Sabrina Paganoni
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA.,Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Mohamad J Alshikho
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Luppino
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - James Chan
- Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts, USA
| | - Lindsay Pothier
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - David Schoenfeld
- Massachusetts General Hospital Biostatistics Center, Boston, Massachusetts, USA
| | - Patricia L Andres
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Suma Babu
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert L Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Silvia Luotti
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Giovanni Nardo
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | - Serena Pantalone
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Caterina Bendotti
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Valentina Bonetto
- IRCCS Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Fabiola De Marchi
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merit Cudkowicz
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| | - Nazem Atassi
- Neurological Clinical Research Institute, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, Massachusetts, 02114, USA
| |
Collapse
|
12
|
Vallarola A, Sironi F, Tortarolo M, Gatto N, De Gioia R, Pasetto L, De Paola M, Mariani A, Ghosh S, Watson R, Kalmes A, Bonetto V, Bendotti C. RNS60 exerts therapeutic effects in the SOD1 ALS mouse model through protective glia and peripheral nerve rescue. J Neuroinflammation 2018; 15:65. [PMID: 29495962 PMCID: PMC5833072 DOI: 10.1186/s12974-018-1101-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects the motor neuromuscular system leading to complete paralysis and premature death. The multifactorial nature of ALS that involves both cell-autonomous and non-cell-autonomous processes contributes to the lack of effective therapies, usually targeted to a single pathogenic mechanism. RNS60, an experimental drug containing oxygenated nanobubbles generated by modified Taylor-Couette-Poiseuille flow with elevated oxygen pressure, has shown anti-inflammatory and neuroprotective properties in different experimental paradigms. Since RNS60 interferes with multiple cellular mechanisms known to be involved in ALS pathology, we evaluated its effect in in vitro and in vivo models of ALS. METHODS Co-cultures of primary microglia/spinal neurons exposed to LPS and astrocytes/spinal neurons from SOD1G93A mice were used to examine the effect of RNS60 or normal saline (NS) on the selective motor neuron degeneration. Transgenic SOD1G93A mice were treated with RNS60 or NS (300 μl/mouse intraperitoneally every other day) starting at the disease onset and examined for disease progression as well as pathological and biochemical alterations. RESULTS RNS60 protected motor neurons in in vitro paradigms and slowed the disease progression of C57BL/6-SOD1G93A mice through a significant protection of spinal motor neurons and neuromuscular junctions. This was mediated by the (i) activation of an antioxidant response and generation of an anti-inflammatory environment in the spinal cord; (ii) activation of the PI3K-Akt pro-survival pathway in the spinal cord and sciatic nerves; (iii) reduced demyelination of the sciatic nerves; and (iv) elevation of peripheral CD4+/Foxp3+ T regulatory cell numbers. RNS60 did not show the same effects in 129Sv-SOD1G93A mice, which are unable to activate a protective immune response. CONCLUSION RNS60 demonstrated significant therapeutic efficacy in C57BL/6-SOD1G93A mice by virtue of its effects on multiple disease mechanisms in motor neurons, glial cells, and peripheral immune cells. These findings, together with the excellent clinical safety profile, make RNS60 a promising candidate for ALS therapy and support further studies to unravel its molecular mechanism of action. In addition, the differences in efficacy of RNS60 in SOD1G93A mice of different strains may be relevant for identifying potential markers to predict efficacy in clinical trials.
Collapse
Affiliation(s)
- Antonio Vallarola
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Francesca Sironi
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Massimo Tortarolo
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Noemi Gatto
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Roberta De Gioia
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy
| | - Laura Pasetto
- Translational Biomarkers Lab, Department of Molecular Biochemistry and Pharmacology, IRCCS - Mario Negri, Milan, Italy
| | - Massimiliano De Paola
- Analytical Biochemistry Lab, Department of Environmental Health Sciences, IRCCS- Mario Negri Institute, Milan, Italy
| | - Alessandro Mariani
- Analytical Biochemistry Lab, Department of Environmental Health Sciences, IRCCS- Mario Negri Institute, Milan, Italy
| | | | | | | | - Valentina Bonetto
- Translational Biomarkers Lab, Department of Molecular Biochemistry and Pharmacology, IRCCS - Mario Negri, Milan, Italy
| | - Caterina Bendotti
- Molecular Neurobiology Lab, Department of Neuroscience, IRCCS - Mario Negri Institute, Via La Masa, 19, 20156, Milan, Italy.
| |
Collapse
|
13
|
Jana M, Ghosh S, Pahan K. Upregulation of Myelin Gene Expression by a Physically-Modified Saline via Phosphatidylinositol 3-Kinase-Mediated Activation of CREB: Implications for Multiple Sclerosis. Neurochem Res 2017; 43:407-419. [PMID: 29143164 PMCID: PMC5799355 DOI: 10.1007/s11064-017-2435-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 11/09/2017] [Indexed: 12/29/2022]
Abstract
An increase in central nervous system (CNS) remyelination and a decrease in CNS inflammation are important steps to halt the progression of multiple sclerosis (MS). RNS60 is a bioactive aqueous solution generated by subjecting normal saline to Taylor–Couette–Poiseuille flow under elevated oxygen pressure. Recently we have demonstrated that RNS60 exhibits anti-inflammatory properties. Here, we describe promyelinating property of RNS60. RNS60, but not normal saline (NS), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), stimulated the expression of myelin-specific genes and proteins (myelin basic protein, MBP; myelin oligodendrocyte glycoprotein, MOG and proteolipid protein, PLP) in primary mouse oligodendroglia and mixed glial cells. While investigating the mechanisms, we found that RNS60 treatment induced the activation of cAMP response element binding protein (CREB) in oligodendrocytes, ultimately leading to the recruitment of CREB to the promoters of myelin-specific genes. Furthermore, activation of type 1A p110β/α, but not type 1B p110γ, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated activation of CREB and upregulation of myelin genes by LY294002 (a specific inhibitor of PI-3 kinase) suggest that RNS60 upregulates the activation of CREB and the expression of myelin-specific molecules in oligodendrocytes via activation of PI3 kinase. These results highlight a novel promyelinating property of RNS60, which may be of benefit for MS and other demyelinating disorders.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA
| | - Supurna Ghosh
- Revalesio Corporation, 1200 East D Street, Tacoma, WA, 98421, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St, Suite 310, Chicago, IL, 60612, USA.
| |
Collapse
|