1
|
Babenko VA, Yakupova EI, Pevzner IB, Bocharnikov AD, Zorova LD, Fedulova KS, Grebenchikov OA, Kuzovlev AN, Grechko AV, Silachev DN, Rahimi-Moghaddam P, Plotnikov EY. Effects of Lithium Ions on tPA-Induced Hemorrhagic Transformation under Stroke. Biomedicines 2024; 12:1325. [PMID: 38927532 PMCID: PMC11201972 DOI: 10.3390/biomedicines12061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Thrombolytic therapy with the tissue plasminogen activator (tPA) is a therapeutic option for acute ischemic stroke. However, this approach is subject to several limitations, particularly the increased risk of hemorrhagic transformation (HT). Lithium salts show neuroprotective effects in stroke, but their effects on HT mechanisms are still unknown. In our study, we use the models of photothrombosis (PT)-induced brain ischemia and oxygen-glucose deprivation (OGD) to investigate the effect of Li+ on tPA-induced changes in brain and endothelial cell cultures. We found that tPA did not affect lesion volume or exacerbate neurological deficits but disrupted the blood-brain barrier. We demonstrate that poststroke treatment with Li+ improves neurological status and increases blood-brain barrier integrity after thrombolytic therapy. Under conditions of OGD, tPA treatment increased MMP-2/9 levels in endothelial cells, and preincubation with LiCl abolished this MMP activation. Moreover, we observed the effect of Li+ on glycolysis in tPA-treated endothelial cells, which we hypothesized to have an effect on MMP expression.
Collapse
Affiliation(s)
- Valentina A. Babenko
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Elmira I. Yakupova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
| | - Irina B. Pevzner
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Alexey D. Bocharnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- Advanced Engineering School “Intelligent Theranostics Systems”, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Kseniya S. Fedulova
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
| | - Oleg A. Grebenchikov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (O.A.G.); (A.N.K.); (A.V.G.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Parvaneh Rahimi-Moghaddam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran;
| | - Egor Y. Plotnikov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.B.); (E.I.Y.); (I.B.P.); (A.D.B.); (L.D.Z.); (K.S.F.); (D.N.S.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
2
|
Babenko VA, Fedulova KS, Silachev DN, Rahimi-Moghaddam P, Kalyuzhnaya YN, Demyanenko SV, Plotnikov EY. The Role of Matrix Metalloproteinases in Hemorrhagic Transformation in the Treatment of Stroke with Tissue Plasminogen Activator. J Pers Med 2023; 13:1175. [PMID: 37511788 PMCID: PMC10381732 DOI: 10.3390/jpm13071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide. The only approved treatment for ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA), though this approach often leads to a severe complication: hemorrhagic transformation (HT). The pathophysiology of HT in response to tPA is complex and not fully understood. However, numerous scientific findings suggest that the enzymatic activity and expression of matrix metalloproteinases (MMPs) in brain tissue play a crucial role. In this review article, we summarize the current knowledge of the functioning of various MMPs at different stages of ischemic stroke development and their association with HT. We also discuss the mechanisms that underlie the effect of tPA on MMPs as the main cause of the adverse effects of thrombolytic therapy. Finally, we describe recent research that aimed to develop new strategies to modulate MMP activity to improve the efficacy of thrombolytic therapy. The ultimate goal is to provide more targeted and personalized treatment options for patients with ischemic stroke to minimize complications and improve clinical outcomes.
Collapse
Affiliation(s)
- Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ksenia S Fedulova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Parvaneh Rahimi-Moghaddam
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Yulia N Kalyuzhnaya
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Svetlana V Demyanenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Le J, Xiao X, Zhang D, Feng Y, Wu Z, Mao Y, Mou C, Xie Y, Chen X, Liu H, Cui W. Neuroprotective Effects of an Edible Pigment Brilliant Blue FCF against Behavioral Abnormity in MCAO Rats. Pharmaceuticals (Basel) 2022; 15:ph15081018. [PMID: 36015166 PMCID: PMC9414705 DOI: 10.3390/ph15081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke leads to hypoxia-induced neuronal death and behavioral abnormity, and is a major cause of death in the modern society. However, the treatments of this disease are limited. Brilliant Blue FCF (BBF) is an edible pigment used in the food industry that with multiple aromatic rings and sulfonic acid groups in its structure. BBF and its derivatives were proved to cross the blood-brain barrier and have advantages on the therapy of neuropsychiatric diseases. In this study, BBF, but not its derivatives, significantly ameliorated chemical hypoxia-induced cell death in HT22 hippocampal neuronal cell line. Moreover, protective effects of BBF were attributed to the inhibition of the extracellular regulated protein kinase (ERK) and glycogen synthase kinase-3β (GSK3β) pathways as evidenced by Western blotting analysis and specific inhibitors. Furthermore, BBF significantly reduced neurological and behavioral abnormity, and decreased brain infarct volume and cerebral edema induced by middle cerebral artery occlusion/reperfusion (MCAO) in rats. MCAO-induced increase of p-ERK in ischemic penumbra was reduced by BBF in rats. These results suggested that BBF prevented chemical hypoxia-induced otoxicity and MCAO-induced behavioral abnormity via the inhibition of the ERK and GSK3β pathways, indicating the potential use of BBF for treating ischemic stroke
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wei Cui
- Correspondence: ; Tel./Fax: +86-574-8760-9589
| |
Collapse
|
4
|
Gelhard S, Kestner RI, Armbrust M, Steinmetz H, Foerch C, Bohmann FO. Exploring Contraindications for Thrombolysis: Risk of Hemorrhagic Transformation and Neurological Deterioration after Thrombolysis in Mice with Recent Ischemic Stroke and Hyperglycemia. J Clin Med 2022; 11:jcm11123343. [PMID: 35743425 PMCID: PMC9225099 DOI: 10.3390/jcm11123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Intravenous thrombolysis with recombinant tissue plasminogen activator (rt-PA) in patients with acute ischemic stroke is limited because of several contraindications. In routine clinical practice, patients with a recent stroke are typically not treated with rt-PA in case of a recurrent ischemic event. The same applies to its use in the context of pulmonary artery embolism and myocardial infarction with a recent stroke. In this translational study, we evaluated whether rt-PA treatment after experimental ischemic stroke with or without additional hyperglycemia increases the risk for hemorrhagic transformation (HT) and worsens functional outcome regarding the old infarct area. (2) In total, 72 male C57BL/6N mice were used. Ischemic stroke (index stroke) was induced by transient middle cerebral artery occlusion (tMCAO). Mice received either rt-PA or saline 24 h or 14 days after index stroke to determine whether a recent ischemic stroke predisposes to HT. In addition to otherwise healthy mice, hyperglycemic mice were analyzed to evaluate diabetes as a second risk factor for HT. Mice designated to develop hyperglycemia were pre-treated with streptozotocin. (3) The neurological outcome in rt-PA and saline-treated normoglycemic mice did not differ significantly, either at 24 h or at 14 days. In contrast, hyperglycemic mice treated with rt-PA had a significantly worse neurological outcome (at 24 h, p = 0.02; at 14 days, p = 0.03). At 24 h after rt-PA or saline treatment, HT scores differed significantly (p = 0.02) with the highest scores within hyperglycemic mice treated with rt-PA, where notably only small petechial hemorrhages could be detected. (4) Thrombolysis after recent ischemic stroke does not increase the risk for HT or worsen the functional outcome in otherwise healthy mice. However, hyperglycemia as a second risk factor leads to neurological deterioration after rt-PA treatment, which cannot be explained by an increase of HT alone. Direct neurotoxic effects of rt-PA may play a role.
Collapse
Affiliation(s)
- Sarah Gelhard
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
- Correspondence: ; Tel.: +49-69-6301-4406
| | - Roxane-Isabelle Kestner
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
| | - Moritz Armbrust
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt am Main, Germany;
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
| | - Christian Foerch
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
| | - Ferdinand O. Bohmann
- Department of Neurology, Goethe University, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; (R.-I.K.); (H.S.); (C.F.); (F.O.B.)
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt am Main, Germany;
| |
Collapse
|
5
|
Milani D, Clark VW, Feindel KW, Blacker DJ, Bynevelt M, Edwards AB, Anderton RS, Knuckey NW, Meloni BP. Comparative Assessment of the Proteolytic Stability and Impact of Poly-Arginine Peptides R18 and R18D on Infarct Growth and Penumbral Tissue Preservation Following Middle Cerebral Artery Occlusion in the Sprague Dawley Rat. Neurochem Res 2021; 46:1166-1176. [PMID: 33523394 DOI: 10.1007/s11064-021-03251-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022]
Abstract
Poly-arginine peptides R18 and R18D have previously been demonstrated to be neuroprotective in ischaemic stroke models. Here we examined the proteolytic stability and efficacy of R18 and R18D in reducing infarct core growth and preserving the ischaemic penumbra following middle cerebral artery occlusion (MCAO) in the Sprague Dawley rat. R18 (300 or 1000 nmol/kg), R18D (300 nmol/kg) or saline were administered intravenously 10 min after MCAO induced using a filament. Serial perfusion and diffusion-weighted MRI imaging was performed to measure changes in the infarct core and penumbra from time points between 45- and 225-min post-occlusion. Repeated measures analyses of infarct growth and penumbral tissue size were evaluated using generalised linear mixed models (GLMMs). R18D (300 nmol/kg) was most effective in slowing infarct core growth (46.8 mm3 reduction; p < 0.001) and preserving penumbral tissue (21.6% increase; p < 0.001), followed by R18 at the 300 nmol/kg dose (core: 29.5 mm3 reduction; p < 0.001, penumbra: 12.5% increase; p < 0.001). R18 at the 1000 nmol/kg dose had a significant impact in slowing core growth (19.5 mm3 reduction; p = 0.026), but only a modest impact on penumbral preservation (6.9% increase; p = 0.062). The in vitro anti-excitotoxic neuroprotective efficacy of R18D was also demonstrated to be unaffected when preincubated for 1-3 h or overnight, in a cell lysate prepared from dying neurons or with the proteolytic enzyme, plasmin, whereas the neuroprotective efficacy of R18 was significantly reduced after a 2-h incubation. These findings highlight the capacity of poly-arginine peptides to reduce infarct growth and preserve the ischaemic penumbra, and confirm the superior efficacy and proteolytic stability of R18D, which indicates that this peptide is likely to retain its neuroprotective properties when co-administered with alteplase during thrombolysis for acute ischaemic stroke.
Collapse
Affiliation(s)
- Diego Milani
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Vince W Clark
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Kirk W Feindel
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - David J Blacker
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
| | - Adam B Edwards
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame Australia, Fremantle, WA, 6160, Australia
| | - Neville W Knuckey
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
6
|
Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1695. [PMID: 33470550 DOI: 10.1002/wnan.1695] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nearly one in six people worldwide suffer from disorders of the central nervous system (CNS). There is an urgent need for effective strategies to improve the success rates in CNS drug discovery and development. The lack of effective technologies for delivering drugs and genes to the brain due to the blood-brain barrier (BBB), a structural barrier that effectively blocks most neurotherapeutic agents from reaching the brain, has posed a formidable hurdle for CNS drug development. Brain-homing and brain-penetrating molecular transport vectors, such as brain permeable peptides or BBB shuttle peptides, have shown promise in overcoming the BBB and ferrying the drug molecules to the brain. The BBB shuttle peptides are discovered by phage display technology or derived from natural neurotropic proteins or certain viruses and harness the receptor-mediated transcytosis molecular machinery for crossing the BBB. Brain permeable peptide-drug conjugates (PDCs), composed of BBB shuttle peptides, linkers, and drug molecules, have emerged as a promising CNS drug delivery system by taking advantage of the endogenous transcytosis mechanism and tricking the brain into allowing these bioactive molecules to pass the BBB. Here, we examine the latest development of brain-penetrating peptide shuttles and brain-permeable PDCs as molecular vectors to deliver small molecule drug payloads across the BBB to reach brain parenchyma. Emerging knowledge of the contribution of the peptides and their specific receptors expressed on the brain endothelial cells, choice of drug payloads, the design of PDCs, brain entry mechanisms, and delivery efficiency to the brain are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Quentin R Smith
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
7
|
Seckler JM, Lewis SJ. Advances in D-Amino Acids in Neurological Research. Int J Mol Sci 2020; 21:ijms21197325. [PMID: 33023061 PMCID: PMC7582301 DOI: 10.3390/ijms21197325] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
D-amino acids have been known to exist in the human brain for nearly 40 years, and they continue to be a field of active study to today. This review article aims to give a concise overview of the recent advances in D-amino acid research as they relate to the brain and neurological disorders. This work has largely been focused on modulation of the N-methyl-D-aspartate (NMDA) receptor and its relationship to Alzheimer’s disease and Schizophrenia, but there has been a wealth of novel research which has elucidated a novel role for several D-amino acids in altering brain chemistry in a neuroprotective manner. D-amino acids which have no currently known activity in the brain but which have active derivatives will also be reviewed.
Collapse
Affiliation(s)
- James M. Seckler
- Department Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| | - Stephen J. Lewis
- Department Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA;
| |
Collapse
|