1
|
Zhuang K, Shu X, Meng W, Zhang D. Blended-protein changes body weight gain and intestinal tissue morphology in rats by regulating arachidonic acid metabolism and secondary bile acid biosynthesis induced by gut microbiota. Eur J Nutr 2024; 63:1605-1621. [PMID: 38512357 DOI: 10.1007/s00394-024-03359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The impact of dietary nutrients on body growth performance and the composition of gut microbes and metabolites is well-established. In this study, we aimed to determine whether dietary protein can regulate the physiological indexes and changes the intestinal tissue morphology in rats, and if dietary protein was a crucial regulatory factor for the composition, function, and metabolic pathways of the gut microbiota. METHOD A total of thirty male Sprague Dawley (SD) rats (inbred strain, weighted 110 ± 10 g) were randomly assigned to receive diets containing animal-based protein (whey protein, WP), plant-based protein (soybean protein, SP), or a blended protein (soybean-whey proteins, S-WP) for a duration of 8 weeks. To investigate the effects of various protein supplement sources on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing association study and fecal metabolomics profiling on the SD rats. Additionally, we performed analyses of growth indexes, serum biochemical indexes, and intestinal morphology. RESULTS The rats in S-WP and WP group exhibited a significantly higher body weight and digestibility of dietary protein compared to the SP group (P < 0.05). The serum total protein content of rats in the WP and S-WP groups was significantly higher (P < 0.05) than that in SP group, and the SP group exhibited significantly lower (P < 0.05) serum blood glucose levels compared to the other two groups. The morphological data showed the rats in the S-WP group exhibited significantly longer villus height and shallower crypt depth (P < 0.05) than the SP group. The gut microbial diversity of the SP and S-WP groups exhibited a higher level than that of the WP group, and the microbiomes of the WP and S-WP groups are more similar compared to those of the SP group. The Arachidonic acid metabolism pathway is the most significant KEGG pathway when comparing the WP group and the SP group, as well as when comparing the SP group and the S-WP group. CONCLUSION The type of dietary proteins exerted a significant impact on the physiological indices of SD rats. Intake of S-WP diet can enhance energy provision, improve the body's digestion and absorption of nutrients, as well as promote intestinal tissue morphology. In addition, dietary protein plays a crucial role in modulating fecal metabolites by regulating the composition of the gut microbiota. Metabolomics analysis revealed that the changes in the levels of arachidonic acid metabolites and secondary bile acid metabolite induced by Clostridium_sensu_stricto_1 and [Eubacterium]_coprostanoligenes_group maybe the primarily causes of intestinal morphological differences.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Daqing, China
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weihong Meng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
- National Coarse Cereals Engineering Research Center, Daqing, China.
| |
Collapse
|
2
|
Chen X, Xu B. Insights into chemical components, health-promoting effects, and processing impact of golden chanterelle mushroom Cantharellus cibarius. Food Funct 2024; 15:7696-7732. [PMID: 38967456 DOI: 10.1039/d4fo00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cantharellus cibarius (CC) is a culinary mushroom with significant commercial potential due to its diverse components and bioactive functions. CC is rich in carbohydrates, proteins, minerals, vitamins, and aroma compounds while being low in fat and calories. Moreover, CC contains an abundance of bioactive substances including phenolic compounds, vitamin precursors, and indole derivatives. Numerous studies have claimed that CC has diverse functions such as antioxidant, antimicrobial, immunoregulation, anti-inflammatory, antitumor, neuroprotective, antidiabetic, and prebiotic effects in in vivo or in vitro settings. In addition, a variety of thermal, physical, chemical, and biological treatment methods have been investigated for the processing and preservation of CC. Consequently, this study aims to present a comprehensive review of the chemical composition, health benefits, and processing techniques of CC. Furthermore, the issue of heavy metal accumulation in CC has been indicated and discussed. The study highlights the potential of CC as a functional food in the future while providing valuable insights for future research and identifying areas requiring further investigation.
Collapse
Affiliation(s)
- Xinlei Chen
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
3
|
Brooks SJ, Dahl K, Dudley-Jones R, Schiöth HB. A neuroinflammatory compulsivity model of anorexia nervosa (NICAN). Neurosci Biobehav Rev 2024; 159:105580. [PMID: 38417395 DOI: 10.1016/j.neubiorev.2024.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Affiliation(s)
- S J Brooks
- Department of Surgical Sciences, Uppsala University, Sweden; School of Psychology, Liverpool John Moores University, UK; Neuroscience Research Laboratory (NeuRL), Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa.
| | - K Dahl
- Department of Surgical Sciences, Uppsala University, Sweden
| | - R Dudley-Jones
- School of Psychology, Liverpool John Moores University, UK
| | - H B Schiöth
- Department of Surgical Sciences, Uppsala University, Sweden
| |
Collapse
|
4
|
Horikawa I, Nagai H, Taniguchi M, Chen G, Shinohara M, Suzuki T, Ishii S, Katayama Y, Kitaoka S, Furuyashiki T. Chronic stress alters lipid mediator profiles associated with immune-related gene expressions and cell compositions in mouse bone marrow and spleen. J Pharmacol Sci 2024; 154:279-293. [PMID: 38485346 DOI: 10.1016/j.jphs.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Despite the importance of lipid mediators in stress and depression and their link to inflammation, the influence of stress on these mediators and their role in inflammation is not fully understood. This study used RNA-seq, LC-MS/MS, and flow cytometry analyses in a mouse model subjected to chronic social defeat stress to explore the effects of acute and chronic stress on lipid mediators, gene expression, and cell population in the bone marrow and spleen. In the bone marrow, chronic stress induced a sustained transition from lymphoid to myeloid cells, accompanied by corresponding changes in gene expression. This change was associated with decreased levels of 15-deoxy-d12,14-prostaglandin J2, a lipid mediator that inhibits inflammation. In the spleen, chronic stress also induced a lymphoid-to-myeloid transition, albeit transiently, alongside gene expression changes indicative of extramedullary hematopoiesis. These changes were linked to lower levels of 12-HEPE and resolvins, both critical for inhibiting and resolving inflammation. Our findings highlight the significant role of anti-inflammatory and pro-resolving lipid mediators in the immune responses induced by chronic stress in the bone marrow and spleen. This study paves the way for understanding how these lipid mediators contribute to the immune mechanisms of stress and depression.
Collapse
Affiliation(s)
- Io Horikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Masayuki Taniguchi
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Guowei Chen
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tomohide Suzuki
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shinichi Ishii
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yoshio Katayama
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
5
|
Horio Y, Isegawa Y, Shichiri M. Daidzein phosphorylates and activates 5-lipoxygenase via the MEK/ERK pathway: a mechanism for inducing the production of 5-lipoxygenase metabolite that inhibit influenza virus intracellular replication. J Nutr Biochem 2023; 114:109276. [PMID: 36682398 DOI: 10.1016/j.jnutbio.2023.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
We previously reported that the soy isoflavone daidzein (Dz) suppresses the intracellular replication of influenza virus and that arachidonic acid-derived oxidation product via lipid oxidase 5-lipoxygenase (5-LOX) is involved in its antiviral effect. The activation of 5-LOX by Dz triggers anti-influenza activity; however, the mechanism of activation of 5-LOX remains unclear. Therefore, in this study, we aimed to clarify the activation mechanism using human monocyte-derived THP-1 cells differentiated using phorbol 12-myristate 13-acetate. THP-1 cells expressed 5-LOX endogenously and Dz did not induce 5-LOX expression. However, 8 h after treatment with Dz, the amount of 5-hydroxyeicosatetraenoic acid (5-HETE), an arachidonic acid oxidation product via 5-LOX, increased significantly suggesting that the enzyme is activated regardless of changes in 5-LOX protein levels. Intracellular Ca2+ content, ATP concentration, 5-LOX protein phosphorylation, and 5-LOX intracellular localization are known 5-LOX activation factors. The intracellular Ca2+ and ATP concentrations were not affected by Dz treatment. The enzymatic activity of 5-LOX is regulated by the phosphorylation of three serine residues and four tyrosine residues. Pretreatment with inhibitors of each kinase revealed that Dz-induced 5-HETE production was suppressed by the MEK/ERK inhibitor. 5-LOX in which the Ser663 residue was phosphorylated was found to be increased in the nuclear fraction of Dz-treated THP-1 cells. Furthermore, immunocytochemistry showed that 5-LOX translocates to the nuclear envelope following Dz treatment. These results indicate that Dz activates 5-LOX by phosphorylating Ser663 via the MEK/ERK pathway. Thus, these results demonstrate that Dz exerts anti-influenza virus activity via the MEK/ERK signal transduction pathway.
Collapse
Affiliation(s)
- Yuka Horio
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan; Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan.
| |
Collapse
|
6
|
Design, synthesis, and biological evaluation of dual-target COX-2/5-LOX inhibitors for the treatment of inflammation. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Akiyama S, Nagai H, Oike S, Horikawa I, Shinohara M, Lu Y, Futamura T, Shinohara R, Kitaoka S, Furuyashiki T. Chronic social defeat stress increases the amounts of 12-lipoxygenase lipid metabolites in the nucleus accumbens of stress-resilient mice. Sci Rep 2022; 12:11385. [PMID: 35790870 PMCID: PMC9256733 DOI: 10.1038/s41598-022-15461-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Severe and prolonged social stress induces mood and cognitive dysfunctions and precipitates major depression. Neuroinflammation has been associated with chronic stress and depression. Rodent studies showed crucial roles of a few inflammation-related lipid mediators for chronic stress-induced depressive-like behaviors. Despite an increasing number of lipid mediators identified, systematic analyses of synthetic pathways of lipid mediators in chronic stress models have not been performed. Using LC–MS/MS, here we examined the effects of chronic social defeat stress on multiple synthetic pathways of lipid mediators in brain regions associated with stress susceptibility in mice. Chronic social defeat stress increased the amounts of 12-lipoxygenase (LOX) metabolites, 12-HETE and 12-HEPE, specifically in the nucleus accumbens 1 week, but not immediately, after the last stress exposure. The increase was larger in stress-resilient mice than stress-susceptible mice. The S isomer of 12-HETE was selectively increased in amount, indicating the role of 12S-LOX activity. Among the enzymes known to have 12S-LOX activity, only Alox12 mRNA was reliably detected in the brain and enriched in brain endothelial cells. These findings suggest that chronic social stress induces a late increase in the amounts of 12S-LOX metabolites derived from the brain vasculature in the nucleus accumbens in a manner associated with stress resilience.
Collapse
Affiliation(s)
- Satoshi Akiyama
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Shota Oike
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Io Horikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Masakazu Shinohara
- Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.,Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan.,The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yabin Lu
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Takashi Futamura
- Department of CNS Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Ryota Shinohara
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Shiho Kitaoka
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.,Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan. .,Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
8
|
Liang H, Feng Q, Guo H, Lv J, Zhang L, Li Q, Chi J, Liu Q, Wang Z, Dai L. Twelve novel sesquiterpenes with anti-inflammatory and cholesterol-lowering activities from burdock leaves. Bioorg Chem 2022; 127:105940. [PMID: 35749853 DOI: 10.1016/j.bioorg.2022.105940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Nine new cadinane-type sesquiterpenoids (1-9) and three new eucalyptane -type sesquiterpenes (10-12) were isolated from the ethyl acetate extract of Burdock leaves, which were commonly used for preventing or treating atherosclerosis in China. Their structures were confirmed by extensive spectroscopic analysis, single-crystal X-ray diffraction analysis and ECD calculations. Compound 1 possessed the rare large conjugated skeleton. All the isolates were evaluated for anti-inflammatory and cholesterol-lowering activities by the LPS- and oxidized-low-density-lipoprotein-stimulated RAW 264.7 cells, respectively. As the results, all isolates could decrease the productions of NO, and down-regulate the accumulation of cholesterol. Among them, 4 showed the most potent cholesterol-lowering effect. For the high content of 4 in the herb, mechanistic study of 4 was performed and the results showed that 4 markedly reduced the release of pro-inflammatory mediators which was probably associated with inhibition of the PI3K/Akt and 5-LOX signaling pathways. The findings of this study demonstrated the anti-inflammatory/cholesterol-lowering effects of the new sesquiterpenes from burdock leaves, which provides chemical basis and scientific evidence for the herb used as anti-atherosclerosis agents for the further study. The sesquiterpene lactones of burdock leaves are expected to become new small molecule inhibitors for the treatment of AS.
Collapse
Affiliation(s)
- Hanjing Liang
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China
| | - Qingmei Feng
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China
| | - Hui Guo
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China
| | - Jiangnan Lv
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China
| | - Lingxia Zhang
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China
| | - Qingxia Li
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China
| | - Jun Chi
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China
| | - Qiuyan Liu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China
| | - Zhimin Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Liping Dai
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, PR China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, Henan 450046, PR China.
| |
Collapse
|
9
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhang Y, Huang L, Mazurel D, Zheng H, Yang J, Deng D. Clinical efficacy of curcumin versus chlorhexidine as an adjunct to scaling and root planing for the treatment of periodontitis: A systematic review and meta-analysis. Phytother Res 2021; 35:5980-5991. [PMID: 34216058 DOI: 10.1002/ptr.7208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023]
Abstract
This study aims to evaluate the clinical efficacy of curcumin versus chlorhexidine as adjuncts to scaling and root planing (SRP) for periodontitis treatment. We searched PubMed, EMbase, Cochrane Library, and ClinicalTrials.gov from inception to February 18, 2021 and identified studies with relevant randomized controlled trials (RCTs) using curcumin or chlorhexidine as an adjunct to SRP. Nine RCTs involving 420 patients/sites were included. A meta-analysis with a random-effects model revealed that curcumin and chlorhexidine, as an adjunct to SRP, reduced probing pocket depth (PPD) at similar levels during a 3-, 4-, 6-, and 12-week follow-up. No significant differences were observed in reducing clinical attachment loss (CAL) between curcumin and chlorhexidine as an adjunct to SRP at 4 weeks and 6 weeks. Furthermore, gingival index (GI) and plaque index (PI) were similar using curcumin versus chlorhexidine as an adjunct to SRP at the 4-week-, 6-week-, and 12-week follow-up. Based on the available evidence in RCTs, compared with chlorhexidine as an adjunct to SRP, curcumin has a similar effect on reducing PPD, CAL, GI, and PI. The quality of evidence is low, limited by the number of studies and their limitations. Further studies are needed to firmly establish the clinical efficacy of curcumin.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Danuta Mazurel
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hanhua Zheng
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingmei Yang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Disease, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Jakubczyk A, Kiersnowska K, Ömeroğlu B, Gawlik-Dziki U, Tutaj K, Rybczyńska-Tkaczyk K, Szydłowska-Tutaj M, Złotek U, Baraniak B. The Influence of Hypericum perforatum L. Addition to Wheat Cookies on Their Antioxidant, Anti-Metabolic Syndrome, and Antimicrobial Properties. Foods 2021; 10:1379. [PMID: 34203621 PMCID: PMC8232325 DOI: 10.3390/foods10061379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to characterize wheat cookies enriched with 0.5% and 1.0% of Hypericum perforatum L. (St. John's wort, SJW) and determine their pro-health properties in vitro after hydrolysis in simulated gastrointestinal conditions. The results indicated that 1.0 SJW was characterized by the highest content of polyphenols, flavonoids, and phenolic acids (2.32 mg mL-1, 4.93 µg mL-1, and 12.35 µg mL-1, respectively). The enriching cookies had no effect on water absorption capacity (WAC) and oil absorption capacity (OAC). After in vitro hydrolysis, the highest peptide content was noted in 1.0 SJW (0.52 mg mL-1), and the bioactive compounds were characterized by high potential bioaccessibility (PAC), but poor bioavailability (PAV). The addition of SJW increased the ACE, α-amylase, and LOX inhibitory effect, but reduced the inhibition of pancreatic lipase. The highest antioxidant activity was noted for 1.0 SJW. The results showed that only 0.5 SJW and 1.0 SJW had slight antimicrobial activity against E. coli ATCC 25922 and B. cereus ATCC 14579 with MIC = 12.5 mg mL-1. Fractions with molecular mass <3.0 kDa were characterized with the highest p-coumaric acid content. The results show that SJW cookies had a higher content of bioactive compounds and more potent anti-metabolic syndrome effects.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| | - Kaja Kiersnowska
- Scientific Students Group of Food Biochemistry and Nutrition, Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Begümhan Ömeroğlu
- Department of Nutrition and Dietetics, Marmara Üniversitesi Göztepe Yerleşkesi, Kadıköy/İstanbul 34722, Turkey;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| | - Krzysztof Tutaj
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, St. Leszczyńskiego 7, 20-069 Lublin, Poland;
| | - Magdalena Szydłowska-Tutaj
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| | - Urszula Złotek
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| | - Barbara Baraniak
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (A.J.); (U.G.-D.); (M.S.-T.); (B.B.)
| |
Collapse
|
12
|
Libreros S, Shay AE, Nshimiyimana R, Fichtner D, Martin MJ, Wourms N, Serhan CN. A New E-Series Resolvin: RvE4 Stereochemistry and Function in Efferocytosis of Inflammation-Resolution. Front Immunol 2021; 11:631319. [PMID: 33643307 PMCID: PMC7902526 DOI: 10.3389/fimmu.2020.631319] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
The resolution of the acute inflammatory response is governed by phagocytes actively clearing apoptotic cells and pathogens. Biosynthesis of the specialized pro-resolving mediators (SPMs) is pivotal in the resolution of inflammation via their roles in innate immune cells. Resolvin E4 (RvE4: 5S,15S-dihydroxy-eicosapentaenoic acid) is a newly uncovered member of the E-series resolvins biosynthesized from eicosapentaenoic acid (EPA) recently elucidated in physiologic hypoxia. This new resolvin was termed RvE4 given its ability to increase efferocytosis of apoptotic cells by macrophages. Herein, we report on the total organic synthesis of RvE4 confirming its unique structure, complete stereochemistry assignment and function. This synthetic RvE4 matched the physical properties of biogenic RvE4 material, i.e. ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, as well as bioactivity. We confirmed RvE4 potent responses with human M2 macrophage efferocytosis of human apoptotic neutrophils and senescent red blood cells. Together, these results provide direct evidence for the assignment of the complete stereochemistry of RvE4 as 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid and its bioactions in human phagocyte response.
Collapse
Affiliation(s)
- Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashley E Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - David Fichtner
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Michael J Martin
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Nicholas Wourms
- Cayman Chemical, Research and Development Department, Ann Arbor, MI, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|