1
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Ni Y, Wang Z, Zhuge F, Zhou K, Zheng L, Hu X, Wang S, Fu O, Fu Z. Hydrolyzed Chicken Meat Extract and Its Bioactive Cyclopeptides Protect Neural Function by Attenuating Inflammation and Apoptosis via PI3K/AKT and AMPK Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16708-16725. [PMID: 39016108 DOI: 10.1021/acs.jafc.4c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Cognitive decline is inevitable with age, and due to the lack of well-established pharmacotherapies for neurodegenerative disorders, dietary supplements have become important alternatives to ameliorate brain deterioration. Hydrolyzed chicken meat extract (HCE) and its bioactive components were previously found to improve neuroinflammation and cognitive decline by regulating microglia polarization. However, the effects and mechanisms of these bioactives on neurons remain unclear. Here, the most potent bioactive component on neural function in HCE was screened out, and the detailed mechanism was clarified through in vivo and in vitro experiments. We found that HCE, cyclo(Val-Pro), cyclo(Phe-Phe), cyclo(His-Pro), cyclo(Leu-Lys), and arginine exerted stronger anti-inflammatory and antioxidant effects among the 12 bioactives in amyloid β (Aβ)-treated HT-22 cells. Further transcriptome sequencing and polymerase chain reaction (PCR) array analysis showed that these bioactives participated in different signaling pathways, and cyclo(Val-Pro) was identified as the most potent cyclic dipeptide. In addition, the antiapoptotic and neuroprotective effect of cyclo(Val-Pro) was partly regulated by the activation of PI3K/AKT and AMPK pathways, and the inhibition of these pathways abolished the effect of cyclo(Val-Pro). Moreover, cyclo(Val-Pro) enhanced cognitive function and neurogenesis and alleviated neuroinflammation and oxidative stress in middle-aged mice, with an effect similar to HCE. Hippocampal transcriptome analysis further revealed that HCE and cyclo(Val-Pro) significantly enriched the neuroactive ligand-receptor interaction pathway, verified by enhanced neurotransmitter levels and upregulated neurotransmitter receptor-related gene expression. Therefore, the mechanism of cyclo(Val-Pro) on neural function might be associated with PI3K/AKT and AMPK pathway-mediated antiapoptotic effect and neurogenesis and the activation of the neurotransmitter-receptor pathway.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhaorong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Kexin Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xinyang Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sisi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ou Fu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
3
|
Zhang Q, Lu M, Liu T, Zheng X, Chen T, Yang L, Ding L, Yang Y, Han Z, Gu L, Wang Z. Glechomenes A-G, diterpenoids with anti-inflammatory activities from the aerial part of Glechoma longituba. Fitoterapia 2024; 176:106034. [PMID: 38795853 DOI: 10.1016/j.fitote.2024.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Ten diterpenoids including six unreported abietane-type diterpenoids Glecholmenes A-F (1-6) and an undescribed labdane-type diterpenoid Glecholmene G (9), together with three known diterpenoids (7,8,10), were firstly isolated from the aerial part of G. longituba. Their structures were established mainly by nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) methods. Electronic circular dichroism (ECD) calculations and X-ray crystallographic analyses were used for the determination of their absolute configurations. The anti-inflammatory activity of all compounds was evaluated using the classical LPS-induced NO release model in RAW264.7 cells. Compound 2 displayed significant anti-inflammatory activities with IC50 values of 29.08 ± 1.40 μM (Aminoguanidine hydrochloride as the positive control, IC50 = 21.84 ± 0.48 μM).
Collapse
Affiliation(s)
- Qian Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China
| | - Meilong Lu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China
| | - Tianzi Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China
| | - Xiuqin Zheng
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianqi Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China
| | - Lili Ding
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China
| | - Yingbo Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhuzhen Han
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China.
| | - Lihua Gu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Öz M, Erdal H. A TNF-α inhibitor abolishes sepsis-induced cognitive impairment in mice by modulating acetylcholine and nitric oxide homeostasis, BDNF release, and neuroinflammation. Behav Brain Res 2024; 466:114995. [PMID: 38599251 DOI: 10.1016/j.bbr.2024.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.
Collapse
Affiliation(s)
- Mehmet Öz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkiye.
| | - Hüseyin Erdal
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, Aksaray, Turkiye
| |
Collapse
|
5
|
Dabouri Farimani F, Hosseini M, Amirahmadi S, Akbarian M, Shirazinia M, Barabady M, Rajabian A. Cedrol supplementation ameliorates memory deficits by regulating neuro-inflammation and cholinergic function in lipopolysaccharide-induced cognitive impairment in rats. Heliyon 2024; 10:e30356. [PMID: 38707398 PMCID: PMC11068808 DOI: 10.1016/j.heliyon.2024.e30356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Background Cedrol, a sesquiterpene alcohol, is found in a high amount in several conifers. It possess several beneficial health effects, including antioxidant and anti-inflammatory properties. Objective: This study evaluates the neuroprotective role of cedrol against lipopolysaccharide (LPS)-induced neuroinflammation and memory loss in rats. Methods Wistar rats were treated with cedrol (7.5, 15, and 30 mg/kg, oral, two weeks). During the last week, the rats (except for the control group) were treated with LPS (intraperitoneal injection, 1 mg/kg) to induce memory impairment. After that, the animals were subjected to behavioral studies (Morris water maze and passive avoidance) and biochemical assessments. Results Our results showed a significant decrease in learning and memory function-in LPS-induced rats which were reversed by cedrol. Also, there was a significant increase in the cerebral levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and malondialdehyde (MDA) as well as acetylcholinesterase (AChE) activity in LPS-treated rats. Besides, a significant reduction in total thiol and superoxide dismutase levels was observed in LPS-treated rats. However, cedrol significantly decreased the brain level of AChE, TNF-α, and IL-1β. Administration of cedrol also restored the oxidative stress markers. Conclusion the beneficial effects of cedrol against LPS-induced memory impairment could be due to antioxidant activities and modulation of neuro-inflammatory mediators.
Collapse
Affiliation(s)
- Faezeh Dabouri Farimani
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsan Akbarian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Shirazinia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moselm Barabady
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Darbandi ZK, Amirahmadi S, Goudarzi I, Hosseini M, Rajabian A. Folic acid improved memory and learning function in a rat model of neuroinflammation induced by lipopolysaccharide. Inflammopharmacology 2024; 32:1401-1411. [PMID: 37610560 DOI: 10.1007/s10787-023-01314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Folic acid (FA) plays an important role in the maintenance of normal neurological functions such as memory and learning function. Neuroinflammation contributes to the progression of cognitive disorders and Alzheimer's disease. Thus, this study aimed to investigate the effect of FA supplementation on cognitive impairment, oxidative stress, and neuro-inflammation in lipopolysaccharide (LPS)-injured rats. For this purpose, the rats were given FA (5-20 mg/kg/day, oral) for 3 weeks. In the third week, LPS (1 mg/kg/day; intraperitoneal injection) was given before the Morris water maze (MWM) and passive avoidance (PA) tests. Finally, the brains were removed for biochemical assessments. In the MWM test, LPS increased the escape latency and traveled distance to find the platform compared to the control group, whereas all doses of FA decreased them compared to the LPS group. The findings of the probe trial showed that FA increased the traveling time and distance in the target area. LPS impaired the performance of the rats in the PA test. FA increased delay and light time while decreasing the frequency of entry and time in the dark region of PA. LPS increased hippocampal levels of interleukin (IL)-6 and IL-1β. The hippocampal level of malondialdehyde was also increased but thiol content and superoxide dismutase activity were decreased in the LPS group. However, treatment with FA restored the oxidative stress markers along with a reduction in the levels of pro-inflammatory cytokines. In conclusion, FA could ameliorate the memory and learning deficits induced by LPS via normalizing the inflammatory response and oxidative stress markers in the brain.
Collapse
Affiliation(s)
- Zahra Kioumarsi Darbandi
- Department of Animal Biology, School of Biology, Damghan University, Damghan, Iran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iran Goudarzi
- Department of Animal Biology, School of Biology, Damghan University, Damghan, Iran.
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
7
|
Gilani SJ, Bin Jumah MN, Fatima F, Al-Abbasi FA, Afzal M, Alzarea SI, Sayyed N, Nadeem MS, Kazmi I. Hibiscetin attenuates lipopolysaccharide-evoked memory impairment by inhibiting BDNF/caspase-3/NF-κB pathway in rodents. PeerJ 2024; 12:e16795. [PMID: 38313003 PMCID: PMC10838095 DOI: 10.7717/peerj.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
This study explores the neuroprotective potential of hibiscetin concerning memory deficits induced by lipopolysaccharide (LPS) injection in rats. The aim of this study is to evaluate the effect of hibiscetin against LPS-injected memory deficits in rats. The behavioral paradigms were conducted to access LPS-induced memory deficits. Various biochemical parameters such as acetyl-cholinesterase activity, choline-acetyltransferase, antioxidant (superoxide dismutase, glutathione transferase, catalase), oxidative stress (malonaldehyde), and nitric oxide levels were examined. Furthermore, neuroinflammatory parameters such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and nuclear factor-kappa B expression and brain-derived neurotrophic factor as well as apoptosis marker i.e., caspase-3 were evaluated. The results demonstrated that the hibiscetin-treated group exhibited significant recovery in LPS-induced memory deficits in rats by using behavioral paradigms, biochemical parameters, antioxidant levels, oxidative stress, neuroinflammatory markers, and apoptosis markers. Recent research suggested that hibiscetin may serve as a promising neuroprotective agent in experimental animals and could offer an alternative in LPS-injected memory deficits in rodent models.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - May Nasser Bin Jumah
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Riyadh, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadeem Sayyed
- School of Pharmacy, Glocal University, Saharanpur, Uttar Pradesh, India
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Sharifi MR, Hakimi Z, Ghalibaf MHE, Fazeli E, Behshti F, Marefati N, Hosseini M. Acetyl-11-Keto-β-Boswellic Acid and Incensole Acetate Attenuate Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation and Oxidative Stress. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:S142-S152. [PMID: 38995282 DOI: 10.4103/sjkdt.sjkdt_41_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Boswellia serrata has been used in traditional medicine to treat various inflammatory diseases. Acetyl-11-keto-β-boswellic acid (AKBA) and incensole acetate (IA) are two active ingredients of B. serrata that possess anti-inflammatory and antioxidant activities. The present study aimed to investigate the protective effects of AKBA and IA against lipopolysaccharide (LPS)- induced acute kidney injury (AKI) in rats. Wistar rats were intraperitoneally pretreated with AKBA or IA for 2 weeks. After 30 min, an LPS injection was applied to induce AKI. Blood samples and kidney tissues were collected and used for biochemical assays. AKBA and IA not only significantly decreased interleukin-6 as a marker of renal inflammation but also attenuated the oxidative stress markers in kidney tissues. AKBA and IA also remarkably decreased serum creatinine and blood urea nitrogen. These results suggest that AKBA and IA have protective effects against AKI in rats through regulating inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Zhara Hakimi
- Department of Physiology, Faculty of Medicine, Ghalib University, Herat, Afghanistan
| | | | - Elham Fazeli
- Department of Biology, Islamic Azad University Mashhad Branch, Mashhad, Iran
| | - Farimah Behshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmoud Hosseini
- Department of Physiology, Psychiatry and Behavioral Sciences Research Center, School of Medicine, Azadi Square, Mashhad, Iran
| |
Collapse
|
9
|
Ahmadi-Soleimani SM, Amiry GY, Khordad E, Masoudi M, Beheshti F. Omega-3 fatty acids prevent nicotine withdrawal-induced impairment of learning and memory via affecting oxidative status, inflammatory response, cholinergic activity, BDNF and amyloid-B in rat hippocampal tissues. Life Sci 2023; 332:122100. [PMID: 37722588 DOI: 10.1016/j.lfs.2023.122100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In the present study, the main objective was to reveal whether treatment by Omega-3 fatty acids could prevent the adverse effects of adolescent nicotine withdrawal on spatial and avoidance memory in male rats. For this purpose, Morris water maze and passive avoidance tests were performed on male Wistar rats and the hippocampal levels of oxidative stress markers, inflammatory indices, brain-derived neurotrophic factor, nitrite, amyloid-B and acetylcholinesterase (AChE) were measured. Moreover, density of dark neurons were assessed in CA1 and CA3 regions. Results showed that adolescent nicotine exposure followed by a period of drug cessation exacerbates the behavioral indices of learning and memory through affecting a variety of biochemical markers within the hippocampal tissues. These changes lead to elevation of oxidative and inflammatory markers, reduction of neurotrophic capacity and increased AChE activity in hippocampal tissues. In addition, it was observed that co-administration of nicotine with Omega-3 fatty acids significantly prevents nicotine withdrawal-induced adverse effects through restoration of the mentioned biochemical disturbances. Therefore, we suggest administration of Omega-3 fatty acids as a safe, inexpensive and effective therapeutic strategy for prevention of memory dysfunctions associated with nicotine abstinence during adolescence.
Collapse
Affiliation(s)
- S Mohammad Ahmadi-Soleimani
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ghulam Yahya Amiry
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Elnaz Khordad
- Department of Anatomical Sciences, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Maha Masoudi
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
10
|
Nayila I, Sharif S, Lodhi MS, Rehman MFU, Aman F. Synthesis, characterization and anti-breast cancer potential of an incensole acetate nanoemulsion from Catharanthus roseus essential oil; in silico, in vitro, and in vivo study. RSC Adv 2023; 13:32335-32362. [PMID: 37928847 PMCID: PMC10621725 DOI: 10.1039/d3ra06335f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
The characteristics of phytocompounds and essential oils have undergone extensive research in the medical and pharmaceutical sectors due to their extensive usage. In spite of the fact that these molecules are widely used, terpenes, terpenoids, and their derivatives have not yet been well characterized. This study intends to evaluate the prospective activity of incensole acetate (IA), a compound identified and isolated from Catharanthus roseus essential oil by GC/MS analysis and column chromatography, and to analyze the anticancer effect of an IA biosynthesized nanoemulsion against breast cancer. The in silico activity of IA against breast cancer targets was observed by molecular docking, ADMET assessment and molecular dynamics simulations. The IA-mediated nanoformulation exhibited cytotoxicity against breast cancer cell lines at an effective concentration when analyzed by MTT and crystal violet assay. The increased interleukin serum indicators were significantly improved as a result of nanoemulsion treatment in a DMBA-induced rat model. In addition, the anticancer properties of IA biosynthesized nanoemulsion are supported due to their potential effects on biochemical parameters, oxidative stress markers, proinflammatory cytokines, and upon tumor growth profiling in cancer-induced rats.
Collapse
Affiliation(s)
- Iffat Nayila
- Institute of Molecular Biology and Biotechnology, The University of Lahore Lahore Pakistan
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore Lahore Pakistan
| | - Madeeha Shahzad Lodhi
- Institute of Molecular Biology and Biotechnology, The University of Lahore Lahore Pakistan
| | | | - Farhana Aman
- Department of Chemistry, The University of Lahore Sargodha Campus Sargodha Pakistan
| |
Collapse
|
11
|
Agosto-Marlin IM, Nikodemova M, Dale EA, Mitchell GS. BDNF-induced phrenic motor facilitation shifts from PKCθ to ERK dependence with mild systemic inflammation. J Neurophysiol 2023; 129:455-464. [PMID: 36695529 PMCID: PMC9942899 DOI: 10.1152/jn.00345.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Moderate acute intermittent hypoxia (mAIH) elicits a form of phrenic motor plasticity known as phrenic long-term facilitation (pLTF), which requires spinal 5-HT2 receptor activation, ERK/MAP kinase signaling, and new brain-derived neurotrophic factor (BDNF) synthesis. New BDNF protein activates TrkB receptors that normally signal through PKCθ to elicit pLTF. Phrenic motor plasticity elicited by spinal drug administration (e.g., BDNF) is referred to by a more general term: phrenic motor facilitation (pMF). Although mild systemic inflammation elicited by a low lipopolysaccharide (LPS) dose (100 µg/kg; 24 h prior) undermines mAIH-induced pLTF upstream from BDNF protein synthesis, it augments pMF induced by spinal BDNF administration through unknown mechanisms. Here, we tested the hypothesis that mild inflammation shifts BDNF/TrkB signaling from PKCθ to alternative pathways that enhance pMF. We examined the role of three known signaling pathways associated with TrkB (MEK/ERK MAP kinase, PI3 kinase/Akt, and PKCθ) in BDNF-induced pMF in anesthetized, paralyzed, and ventilated Sprague Dawley rats 24 h post-LPS. Spinal PKCθ inhibitor (TIP) attenuated early BDNF-induced pMF (≤30 min), with minimal effect 60-90 min post-BDNF injection. In contrast, MEK inhibition (U0126) abolished BDNF-induced pMF at 60 and 90 min. PI3K/Akt inhibition (PI-828) had no effect on BDNF-induced pMF at any time. Thus, whereas BDNF-induced pMF is exclusively PKCθ-dependent in normal rats, MEK/ERK is recruited by neuroinflammation to sustain, and even augment downstream plasticity. Because AIH is being developed as a therapeutic modality to restore breathing in people living with multiple neurological disorders, it is important to understand how inflammation, a common comorbidity in many traumatic or degenerative central nervous system disorders, impacts phrenic motor plasticity.NEW & NOTEWORTHY We demonstrate that even mild systemic inflammation shifts signaling mechanisms giving rise to BDNF-induced phrenic motor plasticity. This finding has important experimental, biological, and translational implications, particularly since BDNF-dependent spinal plasticity is being translated to restore breathing and nonrespiratory movements in diverse clinical disorders, such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Ibis M Agosto-Marlin
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, United States
| | - Maria Nikodemova
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
- Department of Physical, Therapy University of Florida, Gainesville, Florida, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - Erica A Dale
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, United States
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, United States
- Department of Physical, Therapy University of Florida, Gainesville, Florida, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
12
|
Kumar A, Verma A, Chaurasia RN. Vitamin D and inflammatory cytokines association in mild cognitive impaired subjects. Neurosci Lett 2023; 795:137044. [PMID: 36592816 DOI: 10.1016/j.neulet.2022.137044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a prodromal stage of Alzheimer's disease (AD). The association of low Vitamin D and chronic inflammation in the onset of cognitive decline in the elderly population has been established but the variable population-based study is still lacking. METHODOLOGY The present study aims to investigate the level of plasma Vitamin D, pro-inflammatory cytokines IL-1β, IL-6, TNF-α, cognitive performance, and white matter changes in the elderly population in the North-Eastern part of Uttar Pradesh, India. RESULTS 70 participants with (Mean age- 75.14 ± 1.24, Male/Female- 50/20) with an Mini Mental State Examination (MMSE) score of (24.82 ± 1.82) and Montreal Cognitive Assessment Test (MOCA) score (21.83 ± 1.75), were cognitive decline, against the 70 healthy controls (Mean Age-73.18 ± 1.43; Male/Female- 50/20) with MMSE score (28.1 ± 1.5) and MOCA (28.5 ± 1.65), White matter variable Fractional Anisotropy (FA) and Apparent Diffusion Coefficient (ADC) values in MCI subject was found significantly altered in Right temporal lobe, Corpus Callosum (Right) and Hippocampus body (Right), Hippocampus body (left), Hippocampus head (Right) and Hippocampus head (Left)as compared with healthy controls. The level of cytokines IL-1β, IL-6, TNF-α, was significantly high in MCI subjects as compared with controls. Further lower Vitamin D level in plasma was detected in MCI as compared with healthy controls. CONCLUSION The result from the present study depicts that chronic inflammation and lower Vitamin D level influences neurodegeneration and decline in cognitive performance in the elderly population. These variables can be used as biomarkers for early identification of AD and interventional strategies can be designed for prevention at the prodromal stage of AD.
Collapse
Affiliation(s)
- Abhai Kumar
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University Varanasi, 221005, India; Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India; Centre of Genomics and Bioinformatics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| | - Ashish Verma
- Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University Varanasi, 221005, India.
| |
Collapse
|
13
|
Electroacupuncture Alleviates Neuroinflammation by Inhibiting the HMGB1 Signaling Pathway in Rats with Sepsis-Associated Encephalopathy. Brain Sci 2022; 12:brainsci12121732. [PMID: 36552192 PMCID: PMC9776077 DOI: 10.3390/brainsci12121732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-Associated Encephalopathy (SAE) is common in sepsis patients, with high mortality rates. It is believed that neuroinflammation is an important mechanism involved in SAE. High mobility group box 1 protein (HMGB1), as a late pro-inflammatory factor, is significantly increased during sepsis in different brain regions, including the hippocampus. HMGB1 causes neuroinflammation and cognitive impairment through direct binding to advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). Electroacupuncture (EA) at Baihui (GV20) and Zusanli (ST36) is beneficial for neurological diseases and experimental sepsis. Our study used EA to treat SAE induced by lipopolysaccharide (LPS) in male Sprague-Dawley rats. The Y maze test was performed to assess working memory. Immunofluorescence (IF) and Western blotting (WB) were used to determine neuroinflammation and the HMGB1 signaling pathway. Results showed that EA could improve working memory impairment in rats with SAE. EA alleviated neuroinflammation by downregulating the hippocampus's HMGB1/TLR4 and HMGB1/RAGE signaling, reducing the levels of pro-inflammatory factors, and relieving microglial and astrocyte activation. However, EA did not affect the tight junctions' expression of the blood-brain barrier (BBB) in the hippocampus.
Collapse
|
14
|
Ullah R, Ali G, Baseer A, Irum Khan S, Akram M, Khan S, Ahmad N, Farooq U, Kanwal Nawaz N, Shaheen S, Kumari G, Ullah I. Tannic acid inhibits lipopolysaccharide-induced cognitive impairment in adult mice by targeting multiple pathological features. Int Immunopharmacol 2022; 110:108970. [DOI: 10.1016/j.intimp.2022.108970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
|
15
|
Acetyl-11-Keto- β-Boswellic Acid (AKBA) Prevents Lipopolysaccharide-Induced Inflammation and Cytotoxicity on H9C2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2620710. [PMID: 35399644 PMCID: PMC8986374 DOI: 10.1155/2022/2620710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Acetyl-11-keto-beta-boswellic acid (AKBA), the major component of Boswellia serrata, exhibits anti-inflammatory activities. This in vitro study investigated the protective effects of AKBA against lipopolysaccharide (LPS)-induced cardiac dysfunction. In this study, the H9C2 cardiomyocytes were pretreated with AKBA (2.5, 5, and 10 μM for 24 h), and then cotreated with LPS for another 24 h. The MTT assay, ELISA test kits, and quantitative real-time PCR analysis assessed the cell viability, levels of proinflammatory factors (IL-β, IL-6, TNF- α, and PGE2), and the gene expression of IL-β, IL-6, TNF- α, iNOS, and COX-2, respectively. The nitric oxide (NO) and thiol levels were also measured using a biochemical assay. The results indicated that LPS exposure markedly reduced cell viability and total thiol content, but increased the inflammatory cytokines, NO metabolites, and gene expression of proinflammatory mediators in H9C2 cells. AKBA pretreatment significantly altered the mentioned factors induced by LPS. Our results demonstrated that AKBA might be a promising therapeutic agent for treating sepsis-related cardiac dysfunction in the future.
Collapse
|
16
|
Zhao G, Shi J, Chen Y. Analysis of Influencing Factors of Serum Stress Index and Prognosis of HICH Patients by Different Anesthesia Methods Combined with Small Bone Window Microsurgery. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6971092. [PMID: 35368920 PMCID: PMC8975646 DOI: 10.1155/2022/6971092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022]
Abstract
In order to investigate the effects of sevoflurane on the serum stress index level and prognosis of patients with hypertensive cerebral hemorrhage (HICH) during small bone window microsurgery, a total of 102 HICH patients are selected for analysis. MAP values in both groups decreased significantly at T1 and T2 (P < 0.05), and the changes in MAP and HR indexes in the sevoflurane combined group were more stable than those in the control group. The time of postoperative awakening in the sevoflurane combined group decreases significantly than the control group (P < 0.001). The levels of T-AOC and GSH-Px in both groups increase significantly after operation, and those in the sevoflurane combined group increase significantly than the control group (P < 0.001). The levels of MDA and 8-OHDG in the sevoflurane combined group decrease significantly than the control group after operation (P < 0.05). Spearman correlation coefficient analysis shows that the levels of T-AOC and GSH-Px are negatively correlated with the prognosis of HICH patients, while MDA and 8-OHDG are positively correlated with the prognosis of HICH patients (P < 0.001). Sevoflurane interventional anesthesia has a high anesthetic effect in small bone window microsurgery, which has positive effects on controlling blood pressure of HICH patients, shortening postoperative recovery time and improving patients' stress response and neurological function. This paper conducts an in-depth analysis of the prognosis of HICH patients, indicating that the prognosis of HICH patients is closely related to their serum stress indicators T-AOC, GSH-Px, MDA, and 8-OHDG, providing a new direction for follow-up clinical diagnosis and treatment of HICH patients and accurate prognosis assessment.
Collapse
Affiliation(s)
- Guangping Zhao
- Anesthesiology Department, Handan Central Hospital, Handan 056001, China
| | - Jiong Shi
- Anesthesiology Department, Handan Central Hospital, Handan 056001, China
| | - Yongxue Chen
- Anesthesiology Department, Handan Central Hospital, Handan 056001, China
| |
Collapse
|
17
|
Hussain H, Rashan L, Hassan U, Abbas M, Hakkim FL, Green IR. Frankincense diterpenes as a bio-source for drug discovery. Expert Opin Drug Discov 2022; 17:513-529. [PMID: 35243948 DOI: 10.1080/17460441.2022.2044782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Frankincense (Boswellia sp.) gum resins have been employed as an incense in cultural and religious ceremonies for many years. Frankincense resin has over the years been employed to treat depression, inflammation, and cancer in traditional medicines. AREAS COVERED This inclusive review focuses on the significance of frankincense diterpenoids, and in particular, incensole derivatives for establishment future treatments of depression, neurological disorders, and cancer. The authors survey the available literature and furnish an overview of future perspectives of these intriguing molecules. EXPERT OPINION Numerous diterpenoids including cembrane, prenylaromadendrane, and the verticillane-type have been isolated from various Boswellia resins. Cembrane-type diterpenoids occupy a crucial position in pharmaceutical chemistry and related industries because of their intriguing biological and encouraging pharmacological potentials. Several cembranes have been reported to possess anti-Alzheimer, anti-inflammatory, hepatoprotective, and antimalarial effects along with a good possibility to treat anxiety and depression. Although some slight drawbacks of these compounds have been noted, including the selectivity of these diterpenoids, there is a great need to address these in future research endeavors. Moreover, it is vitally important for medicinal chemists to prepare libraries of incensole-heterocyclic analogs as well as hybrid compounds between incensole or its acetate and anti-depressant or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Luay Rashan
- Medicinal Plants Division, Research Center, Dhofar University, Salalah, Oman
| | - Uzma Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Muzaffar Abbas
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | | | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
18
|
Wu Z, Wang Z, Xie Z, Zhu H, Li C, Xie S, Zhou W, Zhang Z, Li M. Glycyrrhizic Acid Attenuates the Inflammatory Response After Spinal Cord Injury by Inhibiting High Mobility Group Box-1 Protein Through the p38/Jun N-Terminal Kinase Signaling Pathway. World Neurosurg 2021; 158:e856-e864. [PMID: 34838764 DOI: 10.1016/j.wneu.2021.11.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuroinflammation is an important secondary aggravating factor in spinal cord injury (SCI). Inhibition of the inflammatory response is critical for SCI treatment. Glycyrrhizic acid (GA) is an anti-inflammatory drug, but its utility for SCI is unclear. This study aimed to evaluate the effects of GA on inflammation after SCI and the underlying mechanism. METHODS Cell counting kit-8 assays were performed to assess the viability of highly aggressively proliferating immortalized cells that had been treated with lipopolysaccharide (LPS) and/or GA. Reverse transcription quantitative polymerase chain reaction and Western blotting were performed to assess expression of high mobility group box-1 protein (HMGB1), ionized calcium binding adaptor molecule 1, and inflammatory factors in vitro and in vivo. GA (100 mg/kg) was intraperitoneally injected into rats. Anti-inflammatory effects of GA were analyzed in SCI tissues. p38/Jun N-terminal kinase signaling pathway proteins were analyzed by Western blotting. RESULTS Cell counting kit-8 assay results showed that treatment with 100 ng/mL LPS for 12 hours was optimal. After LPS treatment, highly aggressively proliferating immortalized cells were activated; messenger RNA expression levels of HMGB1 and inflammatory factors were increased. GA significantly inhibited LPS-induced HMGB1 expression and inflammatory responses, as determined by reverse transcription quantitative polymerase chain reaction and Western blotting. Transfection with an HMGB1-overexpression plasmid reversed the anti-inflammatory effects of GA. In addition, intraperitoneal injection of GA (100 mg/kg) into rats for 3 days significantly reduced expression levels of HMGB1 and inflammatory factors after SCI in vivo. GA reduced phosphorylation, but not levels, of p38 and Jun N-terminal kinase proteins. CONCLUSIONS GA attenuates the inflammatory response after SCI by inhibiting HMGB1 through the p38/JNK signaling pathway and thus has therapeutic potential for SCI.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhihua Wang
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiping Xie
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huaxin Zhu
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengcai Li
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenke Xie
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu Zhou
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhixiong Zhang
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery and Jiangxi Key Laboratory of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|