1
|
Cabrera-Montes J, Sanz-Arranz A, Hernandez-Vicente J, Lara-Almunia M. Parkinson's disease and deep brain stimulation of the subthalamic nucleus (STN-DBS): long-term disease evaluation and neuropsychological outcomes in a 9-year matched-controlled study. Neurosurg Rev 2025; 48:74. [PMID: 39847189 DOI: 10.1007/s10143-025-03231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Matched-controlled long-term disease evaluation and neuropsychological outcomes derived from deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson´s disease (PD) are lacking, with inconsistent results regarding the cognitive impact of this procedure. Here we study the long-term effects associated to DBS comparing outcomes with a matched control group. A prospective observational study of 40 patients with PD with bilateral STN-DBS, with a mean follow-up of 9 (6-12) years was conducted. Disease evaluation was performed using the UPDRS-III, UPDRS-II, Hoehn-Yahr, and Schwab-England scales. Neuropsychological assessments were achieved utilizing the MMSE, DRS, RAVLT, BVRT, Stroop, and verbal fluency tests. A control group was used for comparison. Statistical analysis was performed with SPSSv.26. 40 patients were included, with a mean age of 62.8 ± 8.5 at the time of intervention. An improvement in motor symptoms of 48.6% (p < 0.001) and a reduction in LED of 58.6% (p < 0.001) was observed. No significant differences were observed in the MMSE (p = 0.414), DRS (p = 0.251), memory or interference assessments. A worsening in the construction subscale of DRS (p < 0.05) and in verbal fluency (phonemic and semantic) (p < 0.05) was observed. A head-to-head comparison showed significant differences between groups. An age ≤ 60 years was associated with a good long-term clinical prognosis (p = 0.019;OR = 6.75). STN-DBS is an effective and safe therapeutic option for the control of motor symptoms. However, it is associated with a selective deterioration in some cognitive functions in the long term. This study comprehensively evaluates STN-DBS in Parkinson´s disease in the long term, with findings that should be considered when indicating surgery in PD patients.
Collapse
Affiliation(s)
- Jorge Cabrera-Montes
- Department of Neurosurgery, Hospital Universitario Fundación Jiménez Díaz, Av. De los Reyes Católicos, 2, Madrid, 28040, Spain.
| | - Alberto Sanz-Arranz
- Faculty of Medicine and Health Sciences, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - Javier Hernandez-Vicente
- Department of Neurosurgery, Hospital Universitario de Salamanca, Salamanca, Castilla y León, Spain
| | - Mónica Lara-Almunia
- Department of Neurosurgery, Hospital Universitario Fundación Jiménez Díaz, Av. De los Reyes Católicos, 2, Madrid, 28040, Spain
| |
Collapse
|
2
|
Guichet C, Roger É, Attyé A, Achard S, Mermillod M, Baciu M. Midlife dynamics of white matter architecture in lexical production. Neurobiol Aging 2024; 144:138-152. [PMID: 39357455 DOI: 10.1016/j.neurobiolaging.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
We aimed to examine the white matter changes associated with lexical production difficulties, beginning in midlife with increased naming latencies. To delay lexical production decline, middle-aged adults may rely on domain-general and language-specific compensatory mechanisms proposed by the LARA model (Lexical Access and Retrieval in Aging). However, the white matter changes supporting these mechanisms remains largely unknown. Using data from the CAMCAN cohort, we employed an unsupervised and data-driven methodology to examine the relationships between diffusion-weighted imaging and lexical production. Our findings indicate that midlife is marked by alterations in brain structure within distributed dorsal, ventral, and anterior cortico-subcortical networks, marking the onset of lexical production decline around ages 53-54. Middle-aged adults may initially adopt a "semantic strategy" to compensate for lexical production challenges, but this strategy seems compromised later (ages 55-60) as semantic control declines. These insights underscore the interplay between domain-general and language-specific processes in the trajectory of lexical production performance in healthy aging and hint at potential biomarkers for language-related neurodegenerative pathologies.
Collapse
Affiliation(s)
- Clément Guichet
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble 38000, France
| | - Élise Roger
- Institut Universitaire de Gériatrie de Montréal, Communication and Aging Lab, Montreal, Quebec, Canada; Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Sophie Achard
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble 38000, France
| | | | - Monica Baciu
- Univ. Grenoble Alpes, CNRS LPNC UMR 5105, Grenoble 38000, France; Neurology Department, CMRR, Grenoble Hospital, Grenoble 38000, France.
| |
Collapse
|
3
|
Bulut T, Hagoort P. Contributions of the left and right thalami to language: A meta-analytic approach. Brain Struct Funct 2024; 229:2149-2166. [PMID: 38625556 PMCID: PMC11611992 DOI: 10.1007/s00429-024-02795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Despite a pervasive cortico-centric view in cognitive neuroscience, subcortical structures including the thalamus have been shown to be increasingly involved in higher cognitive functions. Previous structural and functional imaging studies demonstrated cortico-thalamo-cortical loops which may support various cognitive functions including language. However, large-scale functional connectivity of the thalamus during language tasks has not been examined before. METHODS The present study employed meta-analytic connectivity modeling to identify language-related coactivation patterns of the left and right thalami. The left and right thalami were used as regions of interest to search the BrainMap functional database for neuroimaging experiments with healthy participants reporting language-related activations in each region of interest. Activation likelihood estimation analyses were then carried out on the foci extracted from the identified studies to estimate functional convergence for each thalamus. A functional decoding analysis based on the same database was conducted to characterize thalamic contributions to different language functions. RESULTS The results revealed bilateral frontotemporal and bilateral subcortical (basal ganglia) coactivation patterns for both the left and right thalami, and also right cerebellar coactivations for the left thalamus, during language processing. In light of previous empirical studies and theoretical frameworks, the present connectivity and functional decoding findings suggest that cortico-subcortical-cerebellar-cortical loops modulate and fine-tune information transfer within the bilateral frontotemporal cortices during language processing, especially during production and semantic operations, but also other language (e.g., syntax, phonology) and cognitive operations (e.g., attention, cognitive control). CONCLUSION The current findings show that the language-relevant network extends beyond the classical left perisylvian cortices and spans bilateral cortical, bilateral subcortical (bilateral thalamus, bilateral basal ganglia) and right cerebellar regions.
Collapse
Affiliation(s)
- Talat Bulut
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Department of Speech and Language Therapy, School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Maldonado IL, Descoteaux M, Rheault F, Zemmoura I, Benn A, Margulies D, Boré A, Duffau H, Mandonnet E. Multimodal study of multilevel pulvino-temporal connections: a new piece in the puzzle of lexical retrieval networks. Brain 2024; 147:2245-2257. [PMID: 38243610 PMCID: PMC11146422 DOI: 10.1093/brain/awae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/18/2023] [Accepted: 12/30/2023] [Indexed: 01/21/2024] Open
Abstract
Advanced methods of imaging and mapping the healthy and lesioned brain have allowed for the identification of the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams; one hypothesis being that of a subcortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and postoperative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 and 7 T datasets (n = 172) and operative microscope-assisted post-mortem fibre dissection (n = 12). We demonstrate the presence of four fundamental fibre contingents: (i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century and destined to the anterior temporal lobe; (ii) the optic radiations-like component, which leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; (iii) the lateral component, which crosses the temporal stem orthogonally and reaches the middle temporal gyrus; and (iv) the auditory radiations-like component, which leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.
Collapse
Affiliation(s)
- Igor Lima Maldonado
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France
- Department of Neurosurgery, CHRU de Tours, 37000 Tours, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, J1K 2X9 Sherbrooke, Quebec, Canada
- Imeka Solutions, J1H 4A7 Sherbrooke, Quebec, Canada
| | | | - Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France
- Department of Neurosurgery, CHRU de Tours, 37000 Tours, France
| | - Austin Benn
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris Cité, 75006 Paris, France
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX1 3QD Oxford, UK
| | - Daniel Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris Cité, 75006 Paris, France
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging Laboratory, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, J1K 2X9 Sherbrooke, Quebec, Canada
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34090 Montpellier, France
- Team ‘Plasticity of Central Nervous System, Stem Cells and Glial Tumors’, U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, 34000, Montpellier, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, AP-HP, 75010 Paris, France
- Frontlab, CNRS UMR 7225, INSERM U1127, Paris Brain Institute (ICM), 75013 Paris, France
- UFR Médecine, Université de Paris Cité, 75006 Paris, France
| |
Collapse
|
5
|
Chiang H, Mudar RA, Dugas CS, Motes MA, Kraut MA, Hart J. A modified neural circuit framework for semantic memory retrieval with implications for circuit modulation to treat verbal retrieval deficits. Brain Behav 2024; 14:e3490. [PMID: 38680077 PMCID: PMC11056716 DOI: 10.1002/brb3.3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Word finding difficulty is a frequent complaint in older age and disease states, but treatment options are lacking for such verbal retrieval deficits. Better understanding of the neurophysiological and neuroanatomical basis of verbal retrieval function may inform effective interventions. In this article, we review the current evidence of a neural retrieval circuit central to verbal production, including words and semantic memory, that involves the pre-supplementary motor area (pre-SMA), striatum (particularly caudate nucleus), and thalamus. We aim to offer a modified neural circuit framework expanded upon a memory retrieval model proposed in 2013 by Hart et al., as evidence from electrophysiological, functional brain imaging, and noninvasive electrical brain stimulation studies have provided additional pieces of information that converge on a shared neural circuit for retrieval of memory and words. We propose that both the left inferior frontal gyrus and fronto-polar regions should be included in the expanded circuit. All these regions have their respective functional roles during verbal retrieval, such as selection and inhibition during search, initiation and termination of search, maintenance of co-activation across cortical regions, as well as final activation of the retrieved information. We will also highlight the structural connectivity from and to the pre-SMA (e.g., frontal aslant tract and fronto-striatal tract) that facilitates communication between the regions within this circuit. Finally, we will discuss how this circuit and its correlated activity may be affected by disease states and how this circuit may serve as a novel target engagement for neuromodulatory treatment of verbal retrieval deficits.
Collapse
Affiliation(s)
- Hsueh‐Sheng Chiang
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Raksha A. Mudar
- Department of Speech and Hearing ScienceUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Christine S. Dugas
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Motes
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| | - Michael A. Kraut
- Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreMarylandUSA
| | - John Hart
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
6
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
7
|
Guichet C, Banjac S, Achard S, Mermillod M, Baciu M. Modeling the neurocognitive dynamics of language across the lifespan. Hum Brain Mapp 2024; 45:e26650. [PMID: 38553863 PMCID: PMC10980845 DOI: 10.1002/hbm.26650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Healthy aging is associated with a heterogeneous decline across cognitive functions, typically observed between language comprehension and language production (LP). Examining resting-state fMRI and neuropsychological data from 628 healthy adults (age 18-88) from the CamCAN cohort, we performed state-of-the-art graph theoretical analysis to uncover the neural mechanisms underlying this variability. At the cognitive level, our findings suggest that LP is not an isolated function but is modulated throughout the lifespan by the extent of inter-cognitive synergy between semantic and domain-general processes. At the cerebral level, we show that default mode network (DMN) suppression coupled with fronto-parietal network (FPN) integration is the way for the brain to compensate for the effects of dedifferentiation at a minimal cost, efficiently mitigating the age-related decline in LP. Relatedly, reduced DMN suppression in midlife could compromise the ability to manage the cost of FPN integration. This may prompt older adults to adopt a more cost-efficient compensatory strategy that maintains global homeostasis at the expense of LP performances. Taken together, we propose that midlife represents a critical neurocognitive juncture that signifies the onset of LP decline, as older adults gradually lose control over semantic representations. We summarize our findings in a novel synergistic, economical, nonlinear, emergent, cognitive aging model, integrating connectomic and cognitive dimensions within a complex system perspective.
Collapse
Affiliation(s)
| | - Sonja Banjac
- Université Grenoble Alpes, CNRS LPNC UMR 5105GrenobleFrance
| | - Sophie Achard
- LJK, UMR CNRS 5224, Université Grenoble AlpesGrenobleFrance
| | | | - Monica Baciu
- Université Grenoble Alpes, CNRS LPNC UMR 5105GrenobleFrance
| |
Collapse
|
8
|
Xiong Y, Khlif MS, Egorova-Brumley N, Brodtmann A, Stark BC. Neural correlates of verbal fluency revealed by longitudinal T1, T2 and FLAIR imaging in stroke. Neuroimage Clin 2023; 38:103406. [PMID: 37104929 PMCID: PMC10165164 DOI: 10.1016/j.nicl.2023.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Diffusion-weighted imaging has been widely used in the research on post-stroke verbal fluency but acquiring diffusion data is not always clinically feasible. Achieving comparable reliability for detecting brain variables associated with verbal fluency impairments, based on more readily available anatomical, non-diffusion images (T1, T2 and FLAIR), enables clinical practitioners to have complementary neurophysiological information at hand to facilitate diagnosis and treatment of language impairment. Meanwhile, although the predominant focus in the stroke recovery literature has been on cortical contributions to verbal fluency, it remains unclear how subcortical regions and white matter disconnection are related to verbal fluency. Our study thus utilized anatomical scans of ischaemic stroke survivors (n = 121) to identify longitudinal relationships between subcortical volume, white matter tract disconnection, and verbal fluency performance at 3- and 12-months post-stroke. Subcortical grey matter volume was derived from FreeSurfer. We used an indirect probabilistic approach to quantify white matter disconnection in terms of disconnection severity, the proportion of lesioned voxel volume to the total volume of a tract, and disconnection probability, the probability of the overlap between the stroke lesion and a tract. These disconnection variables of each subject were identified based on the disconnectome map of the BCBToolkit. Using a linear mixed multiple regression method with 5-fold cross-validations, we correlated the semantic and phonemic fluency scores with longitudinal measurements of subcortical grey matter volume and 22 bilateral white matter tracts, while controlling for demographic variables (age, sex, handedness and education), total brain volume, lesion volume, and cortical thickness. The results showed that the right subcortical grey matter volume was positively correlated with phonemic fluency averaged over 3 months and 12 months. The finding generalized well on the test data. The disconnection probability of left superior longitudinal fasciculus II and left posterior arcuate fasciculus was negatively associated with semantic fluency only on the training data, but the result aligned with our previous study using diffusion scans in the same clinical population. In sum, our results presented evidence that routinely acquired anatomical scans can serve as a reliable source for deriving neural variables of post-stroke verbal fluency performance. The use of this method might provide an ecologically valid and more readily implementable analysis tool.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington IN 47408, USA.
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Natalia Egorova-Brumley
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Brielle C Stark
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington IN 47408, USA
| |
Collapse
|
9
|
Stockert A, Hormig-Rauber S, Wawrzyniak M, Klingbeil J, Schneider HR, Pirlich M, Schob S, Hoffmann KT, Saur D. Involvement of Thalamocortical Networks in Patients With Poststroke Thalamic Aphasia. Neurology 2023; 100:e485-e496. [PMID: 36302664 PMCID: PMC9931083 DOI: 10.1212/wnl.0000000000201488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/14/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Theories assume that thalamic stroke may cause aphasia because of dysfunction in connected cortical networks. This takes into account that brain functions are organized in distributed networks, and in turn, localized damage may result in a network disorder such as thalamic aphasia. With this study, we investigate whether the integration of the thalamus into specific thalamocortical networks underlies symptoms after thalamic stroke. We hypothesize that thalamic lesions in patients with language impairments are functionally connected to cortical networks for language and cognition. METHODS We combined nonparametric lesion mapping methods in a retrospective cohort of patients with acute or subacute first-ever thalamic stroke. A relationship between lesion location and language impairments was assessed using nonparametric voxel-based lesion-symptom mapping. This method reveals regions more frequently damaged in patients with compared with those without a symptom of interest. To test whether these symptoms are linked to a common thalamocortical network, we additionally performed lesion-network-symptom mapping. This method uses normative connectome data from resting-state fMRI of healthy participants (n = 65) for functional connectivity analyses, with lesion sites serving as seeds. Resulting lesion-dependent network connectivity of patients with language impairments was compared with those with motor and sensory deficits as baseline. RESULTS A total of 101 patients (mean [SD] age 64.1 [14.6] years, 57 left, 42 right, and 2 bilateral lesions) were included in the study. Voxel-based lesion-symptom mapping showed an association of language impairments with damage to left mediodorsal thalamic nucleus lesions. Lesion-network-symptom mapping revealed that language compared with sensory deficits were associated with higher normative lesion-dependent network connectivity to left frontotemporal language networks and bilateral prefrontal, insulo-opercular, midline cingular, and parietal domain-general networks. Lesions related to motor and sensory deficits showed higher lesion-dependent network connectivity within the sensorimotor network spanning prefrontal, precentral, and postcentral cortices. DISCUSSION Thalamic aphasia relates to lesions in the left mediodorsal thalamic nucleus and to functionally connected left cortical language and bilateral cortical networks for cognitive control. This suggests that dysfunction in thalamocortical networks contributes to thalamic aphasia. We propose that inefficient integration between otherwise undamaged domain-general and language networks may cause thalamic aphasia.
Collapse
Affiliation(s)
- Anika Stockert
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany.
| | - Sophia Hormig-Rauber
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany
| | - Max Wawrzyniak
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany
| | - Julian Klingbeil
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany
| | - Hans Ralf Schneider
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany
| | - Mandy Pirlich
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany
| | - Stefan Schob
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany
| | - Karl-Titus Hoffmann
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany
| | - Dorothee Saur
- From the Language and Aphasia Laboratory (A.S., S.H.-R., M.W., J.K., H.R.S., M.P., D.S.), Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neuroradiology (S.S.), Clinic and Policlinic of Radiology, University Hospital Halle, Halle (Saale), Germany; and Department of Neuroradiology (K.-T.H.), University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
10
|
Sharif MS, Goldberg EB, Walker A, Hillis AE, Meier EL. The contribution of white matter pathology, hypoperfusion, lesion load, and stroke recurrence to language deficits following acute subcortical left hemisphere stroke. PLoS One 2022; 17:e0275664. [PMID: 36288353 PMCID: PMC9604977 DOI: 10.1371/journal.pone.0275664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
Aphasia, the loss of language ability following damage to the brain, is among the most disabling and common consequences of stroke. Subcortical stroke, occurring in the basal ganglia, thalamus, and/or deep white matter can result in aphasia, often characterized by word fluency, motor speech output, or sentence generation impairments. The link between greater lesion volume and acute aphasia is well documented, but the independent contributions of lesion location, cortical hypoperfusion, prior stroke, and white matter degeneration (leukoaraiosis) remain unclear, particularly in subcortical aphasia. Thus, we aimed to disentangle the contributions of each factor on language impairments in left hemisphere acute subcortical stroke survivors. Eighty patients with acute ischemic left hemisphere subcortical stroke (less than 10 days post-onset) participated. We manually traced acute lesions on diffusion-weighted scans and prior lesions on T2-weighted scans. Leukoaraiosis was rated on T2-weighted scans using the Fazekas et al. (1987) scale. Fluid-attenuated inversion recovery (FLAIR) scans were evaluated for hyperintense vessels in each vascular territory, providing an indirect measure of hypoperfusion in lieu of perfusion-weighted imaging. We found that language performance was negatively correlated with acute/total lesion volumes and greater damage to substructures of the deep white matter and basal ganglia. We conducted a LASSO regression that included all variables for which we found significant univariate relationships to language performance, plus nuisance regressors. Only total lesion volume was a significant predictor of global language impairment severity. Further examination of three participants with severe language impairments suggests that their deficits result from impairment in domain-general, rather than linguistic, processes. Given the variability in language deficits and imaging markers associated with such deficits, it seems likely that subcortical aphasia is a heterogeneous clinical syndrome with distinct causes across individuals.
Collapse
Affiliation(s)
- Massoud S. Sharif
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alexandra Walker
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Natalizi F, Piras F, Vecchio D, Spalletta G, Piras F. Preoperative Navigated Transcranial Magnetic Stimulation: New Insight for Brain Tumor-Related Language Mapping. J Pers Med 2022; 12:1589. [PMID: 36294728 PMCID: PMC9604795 DOI: 10.3390/jpm12101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Preoperative brain mapping methods are particularly important in modern neuro-oncology when a tumor affects eloquent language areas since damage to parts of the language circuits can cause significant impairments in daily life. This narrative review examines the literature regarding preoperative and intraoperative language mapping using repetitive navigated transcranial magnetic stimulation (rnTMS) with or without direct electrical stimulation (DES) in adult patients with tumors in eloquent language areas. The literature shows that rnTMS is accurate in detecting preexisting language disorders and positive intraoperative mapping regions. In terms of the region extent and clinical outcomes, rnTMS has been shown to be accurate in identifying positive sites to guide resection, reducing surgery duration and craniotomy size and thus improving clinical outcomes. Before incorporating rnTMS into the neurosurgical workflow, the refinement of protocols and a consensus within the neuro-oncology community are required.
Collapse
Affiliation(s)
- Federica Natalizi
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| |
Collapse
|
12
|
Sakata Y, Nakamura T, Ichinose F, Matsuo M. Thalamic aphasia associated with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes: A case report. Brain Dev 2022; 44:583-587. [PMID: 35562277 DOI: 10.1016/j.braindev.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with aphasia is a rare disorder, with the associated aphasia reported as either Wernicke's or Broca's. Herein, we report a patient with MELAS complicated by thalamic aphasia. CASE A 15-year-old right-handed girl presented with headache, nausea, right homonymous hemianopsia, and aphasia. She could repeat words said by others, but had word-finding difficulty, paraphasia, and dysgraphia. Brain MRI revealed abnormal signals from the left occipital lobe to the temporal lobe and left thalamus, but Wernicke's area and Broca's area were not involved. Additionally, she had short stature, lactic acidosis, bilateral sensorineural hearing loss, and a maternal family history of diabetes and mild deafness. Based on clinical findings and the presence of a mitochondrial A3243G mutation, she was diagnosed with MELAS. With treatment, the brain MRI lesions disappeared and her symptoms improved. Her aphasia was classified as amnesic aphasia because she could repeat words, despite having word-finding difficulty, paraphasia, and dysgraphia. Based on MRI findings of a left thalamic lesion, we diagnosed her with thalamic aphasia. CONCLUSION Thalamic aphasia may be caused by MELAS. Assessment of whether repetition is preserved is important for classifying aphasia.
Collapse
Affiliation(s)
- Yurie Sakata
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Takuji Nakamura
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Fumio Ichinose
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Thalamic aphasia is a rare language disorder resulting from lesions to the thalamus. While most patients exhibit mild symptoms with a predominance of lexical-semantic difficulties, variations in phenotype have been described. Overall, the exact mechanisms of thalamic aphasia await empirical research. The article reviews recent findings regarding phenotypes and possible underlying mechanisms of thalamic aphasia. RECENT FINDINGS Variations in phenotype of thalamic aphasia may be related to different lesion locations. Overall, the thalamus' role in language is thought to be due to its involvement in cortico-thalamic language networks with lesioning of certain nuclei resulting in the diachisis of otherwise interconnected areas. Its possible monitoring function in such a network might be due to its different cellular firing modes. However, no specific evidence has been collected to date. While recent findings show a more distinct understanding of thalamic aphasia phenotypes and possible underlying mechanisms, further research is needed. Additionally, as standard language testing might oftentimes not pick up on its subtle symptoms, thalamic aphasia might be underdiagnosed.
Collapse
Affiliation(s)
- Merve Fritsch
- grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Ida Rangus
- grid.6363.00000 0001 2218 4662Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H. Nolte
- grid.6363.00000 0001 2218 4662Department of Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Center for Stroke Research Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Subcortical structures have long been thought to play a role in language processing. Increasingly spirited debates on language studies, arising from as early as the nineteenth century, grew remarkably sophisticated as the years pass. In the context of non-thalamic aphasia, a few theoretical frameworks have been laid out. The disconnection hypothesis postulates that basal ganglia insults result in aphasia due to a rupture of connectivity between Broca and Wernicke's areas. A second viewpoint conjectures that the basal ganglia would more directly partake in language processing, and a third stream proclaims that aphasia would stem from cortical deafferentation. On the other hand, thalamic aphasia is more predominantly deemed as a resultant of diaschisis. This article reviews the above topics with recent findings on deep brain stimulation, neurophysiology, and aphasiology. RECENT FINDINGS The more recent approach conceptualizes non-thalamic aphasias as the offspring of unpredictable cortical hypoperfusion. Regarding the thalamus, there is mounting evidence now pointing to leading contributions of the pulvinar/lateral posterior nucleus and the anterior/ventral anterior thalamus to language disturbances. While the former appears to relate to lexical-semantic indiscrimination, the latter seems to bring about a severe breakdown in word selection and/or spontaneous top-down lexical-semantic operations. The characterization of subcortical aphasias and the role of the basal ganglia and thalamus in language processing continues to pose a challenge. Neuroimaging studies have pointed a path forward, and we believe that more recent methods such as tractography and connectivity studies will significantly expand our knowledge in this particular area of aphasiology.
Collapse
|
15
|
Zhang J, Zhou Z, Li L, Ye J, Shang D, Zhong S, Yao B, Xu C, Yu Y, He F, Ye X, Luo B. Cerebral perfusion mediated by thalamo-cortical functional connectivity in non-dominant thalamus affects naming ability in aphasia. Hum Brain Mapp 2021; 43:940-954. [PMID: 34698418 PMCID: PMC8764486 DOI: 10.1002/hbm.25696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/04/2023] Open
Abstract
Naming is a commonly impaired language domain in various types of aphasia. Emerging evidence supports the cortico‐subcortical circuitry subserving naming processing, although neurovascular regulation of the non‐dominant thalamic and basal ganglia subregions underlying post‐stroke naming difficulty remains unclear. Data from 25 subacute stroke patients and 26 age‐, sex‐, and education‐matched healthy volunteers were analyzed. Region‐of‐interest‐wise functional connectivity (FC) was calculated to measure the strength of cortico‐subcortical connections. Cerebral blood flow (CBF) was determined to reflect perfusion levels. Correlation and mediation analyses were performed to identify the relationship between cortico‐subcortical connectivity, regional cerebral perfusion, and naming performance. We observed increased right‐hemispheric subcortical connectivity in patients. FC between the right posterior superior temporal sulcus (pSTS) and lateral/medial prefrontal thalamus (lPFtha/mPFtha) exhibited significantly negative correlations with total naming score. Trend‐level increased CBF in subcortical nuclei, including that in the right lPFtha, and significant negative correlations between naming and regional perfusion of the right lPFtha were observed. The relationship between CBF in the right lPFtha and naming was fully mediated by the lPFtha‐pSTS connectivity in the non‐dominant hemisphere. Our findings suggest that perfusion changes in the right thalamic subregions affect naming performance through thalamo‐cortical circuits in post‐stroke aphasia. This study highlights the neurovascular pathophysiology of the non‐dominant hemisphere and demonstrates thalamic involvement in naming after stroke.
Collapse
Affiliation(s)
- Jie Zhang
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lingling Li
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Ye
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Desheng Shang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuchang Zhong
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bo Yao
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Cong Xu
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yamei Yu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangping He
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Ye
- Rehabilitation Medicine Center & Rehabilitation Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Benyan Luo
- Department of Neurology & Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Crosson B. The Role of the Thalamus in Declarative and Procedural Linguistic Memory Processes. Front Psychol 2021; 12:682199. [PMID: 34630202 PMCID: PMC8496746 DOI: 10.3389/fpsyg.2021.682199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Typically, thalamic aphasias appear to be primarily lexical-semantic disorders representing difficulty using stored declarative memories for semantic information to access lexical word forms. Yet, there also is reason to believe that the thalamus might play a role in linguistic procedural memory. For more than two decades, we have known that basal ganglia dysfunction is associated with difficulties in procedural learning, and specific thalamic nuclei are the final waypoint back to the cortex in cortico-basal ganglia-cortical loops. Recent analyses of the role of the thalamus in lexical-semantic processes and of the role of the basal ganglia in linguistic processes suggest that thalamic participation is not simply a matter of declarative vs. procedural memory, but a matter of how the thalamus participates in lexical-semantic processes and in linguistic procedural memory, as well as the interaction of these processes. One role for the thalamus in accessing lexical forms for semantic concepts relates to the stabilization of a very complex semantic-lexical interface with thousands of representations on both sides of the interface. Further, the possibility is discussed that the thalamus, through its participation in basal ganglia loops, participates in two linguistic procedural memory processes: syntactic/grammatical procedures and procedures for finding words to represent semantic concepts, with the latter interacting intricately with declarative memories. These concepts are discussed in detail along with complexities that can be addressed by future research.
Collapse
Affiliation(s)
- Bruce Crosson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, United States.,Department of Neurology, Emory University, Atlanta, GA, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
17
|
Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 2021; 15:721186. [PMID: 34489648 PMCID: PMC8418311 DOI: 10.3389/fncir.2021.721186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
The corticothalamic (CT) pathways emanate from either Layer 5 (L5) or 6 (L6) of the neocortex and largely outnumber the ascending, thalamocortical pathways. The CT pathways provide the anatomical foundations for an intricate, bidirectional communication between thalamus and cortex. They act as dynamic circuits of information transfer with the ability to modulate or even drive the response properties of target neurons at each synaptic node of the circuit. L6 CT feedback pathways enable the cortex to shape the nature of its driving inputs, by directly modulating the sensory message arriving at the thalamus. L5 CT pathways can drive the postsynaptic neurons and initiate a transthalamic corticocortical circuit by which cortical areas communicate with each other. For this reason, L5 CT pathways place the thalamus at the heart of information transfer through the cortical hierarchy. Recent evidence goes even further to suggest that the thalamus via CT pathways regulates functional connectivity within and across cortical regions, and might be engaged in cognition, behavior, and perceptual inference. As descending pathways that enable reciprocal and context-dependent communication between thalamus and cortex, we venture that CT projections are particularly interesting in the context of hierarchical perceptual inference formulations such as those contemplated in predictive processing schemes, which so far heavily rely on cortical implementations. We discuss recent proposals suggesting that the thalamus, and particularly higher order thalamus via transthalamic pathways, could coordinate and contextualize hierarchical inference in cortical hierarchies. We will explore these ideas with a focus on the auditory system.
Collapse
Affiliation(s)
- Flora M. Antunes
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
18
|
Crosson B. Subcortical Functions in Cognition. Neuropsychol Rev 2021; 31:419-421. [PMID: 34292467 DOI: 10.1007/s11065-021-09511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Bruce Crosson
- Department of Neurology, Emory University, Atlanta, Georgia. .,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, Georgia.
| |
Collapse
|
19
|
Tiedt HO, Ehlen F, Wyrobnik M, Klostermann F. Thalamic but Not Subthalamic Neuromodulation Simplifies Word Use in Spontaneous Language. Front Hum Neurosci 2021; 15:656188. [PMID: 34093151 PMCID: PMC8173144 DOI: 10.3389/fnhum.2021.656188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022] Open
Abstract
Several investigations have shown language impairments following electrode implantation surgery for Deep Brain Stimulation (DBS) in movement disorders. The impact of the actual stimulation, however, differs between DBS targets with further deterioration in formal language tests induced by thalamic DBS in contrast to subtle improvement observed in subthalamic DBS. Here, we studied speech samples from interviews with participants treated with DBS of the thalamic ventral intermediate nucleus (VIM) for essential tremor (ET), or the subthalamic nucleus (STN) for Parkinson’s disease (PD), and healthy volunteers (each n = 13). We analyzed word frequency and the use of open and closed class words. Active DBS increased word frequency in case of VIM, but not STN stimulation. Further, relative to controls, both DBS groups produced fewer open class words. Whereas VIM DBS further decreased the proportion of open class words, it was increased by STN DBS. Thus, VIM DBS favors the use of relatively common words in spontaneous language, compatible with the idea of lexical simplification under thalamic stimulation. The absence or even partial reversal of these effects in patients receiving STN DBS is of interest with respect to biolinguistic concepts suggesting dichotomous thalamic vs. basal ganglia roles in language processing.
Collapse
Affiliation(s)
- Hannes Ole Tiedt
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felicitas Ehlen
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychiatry, Jüdisches Krankenhaus Berlin, Berlin, Germany
| | - Michelle Wyrobnik
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Heard M, Li X, Lee YS. Hybrid auditory fMRI: In pursuit of increasing data acquisition while decreasing the impact of scanner noise. J Neurosci Methods 2021; 358:109198. [PMID: 33901568 DOI: 10.1016/j.jneumeth.2021.109198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Two challenges in auditory fMRI include the loud scanner noise during sound presentation and slow data acquisition. Here, we introduce a new auditory imaging protocol, termed "hybrid", that alleviates these obstacles. NEW METHOD We designed a within-subject experiment (N = 14) wherein language-driven activity was measured by hybrid, interleaved silent (ISSS), and continuous multiband acquisition. To determine the advantage of noise attenuation during sound presentation, hybrid was compared to multiband. To identify the benefits of increased temporal resolution, hybrid was compared to ISSS. Data were evaluated by whole-brain univariate general linear modeling (GLM) and multivariate pattern analysis (MVPA). RESULTS Comparison with existing methods: CONCLUSIONS: Our data revealed that hybrid imaging restored neural activity in the canonical language network that was absent due to the loud noise or slow sampling in the conventional imaging protocols. With its noise-attenuated sound presentation windows and increased acquisition speed, the hybrid protocol is well-suited for auditory fMRI research tracking neural activity pertaining to fast, time-varying acoustic events.
Collapse
Affiliation(s)
- Matthew Heard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, United States
| | - Xiangrui Li
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, United States
| | - Yune S Lee
- School of Behavioral and Brain Sciences, University of Texas at Dallas, United States; Center for BrainHealth, University of Texas at Dallas, United States.
| |
Collapse
|
21
|
Keser Z, Meier EL, Stockbridge MD, Breining BL, Sebastian R, Hillis AE. Thalamic Nuclei and Thalamocortical Pathways After Left Hemispheric Stroke and Their Association with Picture Naming. Brain Connect 2021; 11:553-565. [PMID: 33797954 DOI: 10.1089/brain.2020.0831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Previous studies utilized lesion-centric approaches to study the role of the thalamus in language. In this study, we tested the hypotheses that non-lesioned dorsomedial and ventral anterior nuclei (DMVAC) and pulvinar lateral posterior nuclei complexes (PLC) of the thalamus and their projections to the left hemisphere show secondary effects of the strokes, and that their microstructural integrity is closely related to language-related functions. Methods: Subjects with language impairments after a left-hemispheric cortical and/or subcortical, early stroke (n = 31, ≤6 months) or late stroke (n = 30, ≥12 months) sparing thalamus underwent the Boston Naming Test (BNT) and diffusion tensor imaging (DTI). The tissue integrity of DMVAC, PLC, and their cortical projections was quantified with DTI. The right-left asymmetry profiles of these structures were evaluated in relation to the time since stroke. The association between microstructural integrity and BNT score was investigated in relation to stroke chronicity with partial correlation analyses adjusted for confounds. Results: In both early stroke and late stroke groups, left-sided tracts showed significantly higher mean diffusivities (MDs), which were likely due to Wallerian degeneration. Higher MD values of the cortical projections from the left PLC (r = -0.5, p = 0.005) and DMVAC (r = -0.53, p = 0.002) were correlated with lower BNT score in the late stroke but not early stroke group. Conclusion: Nonlesioned thalamic nuclei and thalamocortical pathways show rightward lateralization of the microstructural integrity after a left hemispheric stroke, and this pattern is associated with poorer naming.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bonnie L Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Krishnamurthy LC, Champion GN, McGregor KM, Krishnamurthy V, Turabi A, Roberts SR, Nocera JR, Borich MR, Rodriguez AD, Belagaje SR, Harrington RM, Harris-Love ML, Harnish SM, Drucker JH, Benjamin M, Meadows ML, Seeds L, Zlatar ZZ, Sudhyadhom A, Butler AJ, Garcia A, Patten C, Trinastic J, Kautz SA, Gregory C, Crosson BA. The effect of time since stroke, gender, age, and lesion size on thalamus volume in chronic stroke: a pilot study. Sci Rep 2020; 10:20488. [PMID: 33235210 PMCID: PMC7686360 DOI: 10.1038/s41598-020-76382-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Recent stroke studies have shown that the ipsi-lesional thalamus longitudinally and significantly decreases after stroke in the acute and subacute stages. However, additional considerations in the chronic stages of stroke require exploration including time since stroke, gender, intracortical volume, aging, and lesion volume to better characterize thalamic differences after cortical infarct. This cross-sectional retrospective study quantified the ipsilesional and contralesional thalamus volume from 69 chronic stroke subjects' anatomical MRI data (age 35-92) and related the thalamus volume to time since stroke, gender, intracortical volume, age, and lesion volume. The ipsi-lesional thalamus volume was significantly smaller than the contra-lesional thalamus volume (t(68) = 13.89, p < 0.0001). In the ipsilesional thalamus, significant effect for intracortical volume (t(68) = 2.76, p = 0.008), age (t(68) = 2.47, p = 0.02), lesion volume (t(68) = - 3.54, p = 0.0008), and age*time since stroke (t(68) = 2.46, p = 0.02) were identified. In the contralesional thalamus, significant effect for intracortical volume (t(68) = 3.2, p = 0.002) and age (t = - 3.17, p = 0.002) were identified. Clinical factors age and intracortical volume influence both ipsi- and contralesional thalamus volume and lesion volume influences the ipsilesional thalamus. Due to the cross-sectional nature of this study, additional research is warranted to understand differences in the neural circuitry and subsequent influence on volumetrics after stroke.
Collapse
Affiliation(s)
- Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA.
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA.
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, USA.
| | - Gabriell N Champion
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Keith M McGregor
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Aaminah Turabi
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
| | - Simone R Roberts
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Joe R Nocera
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Michael R Borich
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Amy D Rodriguez
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Samir R Belagaje
- Department of Neurology, Emory University, Atlanta, GA, USA
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, USA
| | - Rachael M Harrington
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | - Stacy M Harnish
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH, USA
| | - Jonathan H Drucker
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Michelle Benjamin
- Department of Physical Therapy, Brooks Rehabilitation Center, Jacksonville, FL, USA
| | - M Lawson Meadows
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
| | - Lauren Seeds
- Department of Physical Therapy, Brooks Rehabilitation Center, Jacksonville, FL, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Atchar Sudhyadhom
- Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew J Butler
- School of Health Professions, University of Alabama Birmingham, Birmingham, AL, USA
| | - Amanda Garcia
- Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Carolynn Patten
- Department of Physical Medicine and Rehabilitation, University of California Davis, Sacramento, CA, USA
| | | | - Steven A Kautz
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Chris Gregory
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Bruce A Crosson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
23
|
Valle-Bautista R, Márquez-Valadez B, Fragoso-Cabrera AD, García-López G, Díaz NF, Herrera-López G, Griego E, Galván EJ, Arias-Montaño JA, Molina-Hernández A. Impaired Cortical Cytoarchitecture and Reduced Excitability of Deep-Layer Neurons in the Offspring of Diabetic Rats. Front Cell Dev Biol 2020; 8:564561. [PMID: 33042999 PMCID: PMC7527606 DOI: 10.3389/fcell.2020.564561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Maternal diabetes has been related to low verbal task scores, impaired fine and gross motor skills, and poor performance in graphic and visuospatial tasks during childhood. The primary motor cortex is important for controlling motor functions, and embryos exposed to high glucose show changes in cell proliferation, migration, and differentiation during corticogenesis. However, the existing studies do not discriminate between embryos with or without neural tube defects, making it difficult to conclude whether the reported changes are related to neural tube defects or other anomalies. Furthermore, postnatal effects on central nervous system cytoarchitecture and function have been scarcely addressed. Through molecular, biochemical, morphological, and electrophysiological approaches, we provide evidence of impaired primary motor cerebral cortex lamination and neuronal function in pups from diabetic rats, showing an altered distribution of SATB2, FOXP2, and TBR1, impaired cell migration and polarity, and decreased excitability of deep-layer cortical neurons, suggesting abnormalities in cortico-cortical and extra-cortical innervation. Furthermore, phase-plot analysis of action potentials suggests changes in the activity of potassium channels. These results indicate that high-glucose insult during development promotes complex changes in migration, neurogenesis, cell polarity establishment, and dendritic arborization, which in turn lead to reduced excitability of deep-layer cortical neurons.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Berenice Márquez-Valadez
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - América D Fragoso-Cabrera
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Guadalupe García-López
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Néstor Fabián Díaz
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Gabriel Herrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Laboratorio de Investigación en Células Troncales y Biología del Desarrollo, Departamento de Fisiología y Desarrollo Celular, Subdirección de Investigación Biomédica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|