1
|
Tsutsui H, Kato M, Kuramoto S, Yoshinari K. Quantitative prediction of CYP3A induction-mediated drug-drug interactions in clinical practice. Drug Metab Pharmacokinet 2024; 57:101010. [PMID: 39043066 DOI: 10.1016/j.dmpk.2024.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 07/25/2024]
Abstract
There have been no reports on the quantitative prediction of CYP3A induction-mediated decreases in AUC and Cmax for drug candidates identified as a "victims" of CYP3A induction. Our previous study separately evaluated the fold-induction of hepatic and intestinal CYP3A by known inducers using clinical induction data and revealed that we were able to quantitatively predict the AUC ratio (AUCR) of a few CYP3A substrates in the presence and absence of CYP3A inducers. In the present study, we investigate the predictability of AUCR and also Cmax ratio (CmaxR) in additional 54 clinical studies. The fraction metabolized by CYP3A (fm), the intestinal bioavailability (Fg), and the hepatic intrinsic clearance (CLint) of substrates were determined by the in vitro experiments as well as clinical data used for calculating AUCR and CmaxR. The result showed that 65-69% and 65-67% of predictions were within 2-fold of observed AUCR and CmaxR, respectively. A simulation using multiple parameter combinations suggested that the variability of fm and Fg within a certain range might have a minimal impact on the calculation output. These findings suggest that clinical AUCR and CmaxR of CYP3A substrates can be quantitatively predicted from the preclinical stage.
Collapse
Affiliation(s)
- Haruka Tsutsui
- Chugai Pharmaceutical Co., Ltd., 216 Totsukacho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan; Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Motohiro Kato
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan
| | - Shino Kuramoto
- Chugai Pharmaceutical Co., Ltd., 216 Totsukacho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan
| | - Kouichi Yoshinari
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
2
|
Gillam EMJ, Kramlinger VM. Opportunities for Accelerating Drug Discovery and Development by Using Engineered Drug-Metabolizing Enzymes. Drug Metab Dispos 2023; 51:392-402. [PMID: 36460479 DOI: 10.1124/dmd.121.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
The study of drug metabolism is fundamental to drug discovery and development (DDD) since by mediating the clearance of most drugs, metabolic enzymes influence their bioavailability and duration of action. Biotransformation can also produce pharmacologically active or toxic products, which complicates the evaluation of the therapeutic benefit versus liability of potential drugs but also provides opportunities to explore the chemical space around a lead. The structures and relative abundance of metabolites are determined by the substrate and reaction specificity of biotransformation enzymes and their catalytic efficiency. Preclinical drug biotransformation studies are done to quantify in vitro intrinsic clearance to estimate likely in vivo pharmacokinetic parameters, to predict an appropriate dose, and to anticipate interindividual variability in response, including from drug-drug interactions. Such studies need to be done rapidly and cheaply, but native enzymes, especially in microsomes or hepatocytes, do not always produce the full complement of metabolites seen in extrahepatic tissues or preclinical test species. Furthermore, yields of metabolites are usually limiting. Engineered recombinant enzymes can make DDD more comprehensive and systematic. Additionally, as renewable, sustainable, and scalable resources, they can also be used for elegant chemoenzymatic, synthetic approaches to optimize or synthesize candidates as well as metabolites. Here, we will explore how these new tools can be used to enhance the speed and efficiency of DDD pipelines and provide a perspective on what will be possible in the future. The focus will be on cytochrome P450 enzymes to illustrate paradigms that can be extended in due course to other drug-metabolizing enzymes. SIGNIFICANCE STATEMENT: Protein engineering can generate enhanced versions of drug-metabolizing enzymes that are more stable, better suited to industrial conditions, and have altered catalytic activities, including catalyzing non-natural reactions on structurally complex lead candidates. When applied to drugs in development, libraries of engineered cytochrome P450 enzymes can accelerate the identification of active or toxic metabolites, help elucidate structure activity relationships, and, when combined with other synthetic approaches, provide access to novel structures by regio- and stereoselective functionalization of lead compounds.
Collapse
Affiliation(s)
- Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| | - Valerie M Kramlinger
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia (E.M.J.G.) and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (V.M.K.)
| |
Collapse
|
3
|
Fraser TR, Ross KE, Alexander U, Lenehan CE. Current knowledge of the degradation products of tattoo pigments by sunlight, laser irradiation and metabolism: a systematic review. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:343-355. [PMID: 34274958 DOI: 10.1038/s41370-021-00364-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The popularity of tattooing has increased significantly over recent years. This has raised concerns about the safety of tattoo inks and their metabolites/degradation products. The photolytic and metabolic degradation of tattoo pigments may result in the formation of toxic compounds, with unforeseen health risks. A systematic literature review was undertaken to determine the current state of knowledge of tattoo pigments' degradation products when irradiated with sunlight, laser light or metabolised. The review demonstrates that there is a lack of knowledge regarding tattoo pigment degradation/metabolism, with only eleven articles found pertaining to the photolysis of tattoo pigments and two articles on the metabolism of tattoo pigments. The limited research indicates that the photolysis of tattoo pigments could result in many toxic degradation products, including hydrogen cyanide and carcinogenic aromatic amines.
Collapse
Affiliation(s)
- Tristan R Fraser
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Ula Alexander
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Claire E Lenehan
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
4
|
Tsutsui H, Kuramoto S, Ozeki K. Evaluation of Methods to Assess CYP3A Induction Risk in Clinical Practice Using in Vitro Induction Parameters. Biol Pharm Bull 2021; 44:338-349. [PMID: 33642543 DOI: 10.1248/bpb.b20-00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Established guidelines have recommended a number of methods based on in vitro data to assess the CYP3A induction risk of new chemical entities in clinical practice. In this study, we evaluated the predictability of various assessment methods. We collected in vitro parameters from a variety of literature that includes data on 19 batches of hepatocytes. Clinical CYP3A induction was predicted using 3 direct approaches-the fold-change, basic model, and mechanistic static models-as well as 5 correlation approaches, including the relative induction score (RIS) and the relative factor (RF) method. These predictions were then compared with data from 30 clinical inductions. Collected in vitro parameters varied greatly between hepatocyte batches. Direct assessment methods using fixed cut-off values provided a lot of false predictions due to hepatocyte variability, which can overlook induction risk or lead to needless clinical drug-drug interaction (DDI) studies. On the other hand, correlation methods with the cut-off values set for each batch of hepatocytes accurately predicted the induction risk. Among these, the AUCu/inducer concentrations for half the maximum induction (EC50) and the RF methods which use the area under the curve (AUC) of the unbound inducers for calculating induction potential showed an especially good correlation with clinical induction. Correlation methods were better at predicting clinical induction risk than the other methods, regardless of hepatocyte variability. The AUCu/EC50 and the RF methods in particular had a small number of false predictions, and can therefore be used to assess induction risk along with the other correlation methods recommended in guidelines.
Collapse
|
5
|
Šadibolová M, Zárybnický T, Smutný T, Pávek P, Šubrt Z, Matoušková P, Skálová L, Boušová I. Sesquiterpenes Are Agonists of the Pregnane X Receptor but Do Not Induce the Expression of Phase I Drug-Metabolizing Enzymes in the Human Liver. Int J Mol Sci 2019; 20:ijms20184562. [PMID: 31540101 PMCID: PMC6769599 DOI: 10.3390/ijms20184562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Sesquiterpenes, the main components of plant essential oils, are bioactive compounds with numerous health-beneficial activities. Sesquiterpenes can interact with concomitantly administered drugs due to the modulation of drug-metabolizing enzymes (DMEs). The aim of this study was to evaluate the modulatory effects of six sesquiterpenes (farnesol, cis-nerolidol, trans-nerolidol, α-humulene, β-caryophyllene, and caryophyllene oxide) on the expression of four phase I DMEs (cytochrome P450 3A4 and 2C, carbonyl reductase 1, and aldo-keto reductase 1C) at both the mRNA and protein levels. For this purpose, human precision-cut liver slices (PCLS) prepared from 10 patients and transfected HepG2 cells were used. Western blotting, quantitative real-time PCR and reporter gene assays were employed in the analyses. In the reporter gene assays, all sesquiterpenes significantly induced cytochrome P450 3A4 expression via pregnane X receptor interaction. However in PCLS, their effects on the expression of all the tested DMEs at the mRNA and protein levels were mild or none. High inter-individual variabilities in the basal levels as well as in modulatory efficacy of the tested sesquiterpenes were observed, indicating a high probability of marked differences in the effects of these compounds among the general population. Nevertheless, it seems unlikely that the studied sesquiterpenes would remarkably influence the bioavailability and efficacy of concomitantly administered drugs.
Collapse
Affiliation(s)
- Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Tomáš Zárybnický
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Tomáš Smutný
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic; (T.S.); (P.P.)
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic; (T.S.); (P.P.)
| | - Zdeněk Šubrt
- Department of General Surgery, Third Faculty of Medicine and University Hospital Královské Vinohrady, Charles University, 100 34 Prague, Czech Republic;
- Department of Surgery, University Hospital Hradec Králové, 500 05 Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Lenka Skálová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic (T.Z.); (P.M.); (L.S.)
- Correspondence: ; Tel.: +420-495-067-406
| |
Collapse
|
6
|
Effects of fenbendazole and triclabendazole on the expression of cytochrome P450 1A and flavin-monooxygenase isozymes in bovine precision-cut liver slices. Vet J 2019; 245:61-69. [DOI: 10.1016/j.tvjl.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/13/2022]
|
7
|
Kenny JR, Ramsden D, Buckley DB, Dallas S, Fung C, Mohutsky M, Einolf HJ, Chen L, Dekeyser JG, Fitzgerald M, Goosen TC, Siu YA, Walsky RL, Zhang G, Tweedie D, Hariparsad N. Considerations from the Innovation and Quality Induction Working Group in Response to Drug-Drug Interaction Guidances from Regulatory Agencies: Focus on CYP3A4 mRNA In Vitro Response Thresholds, Variability, and Clinical Relevance. Drug Metab Dispos 2018; 46:1285-1303. [PMID: 29959133 DOI: 10.1124/dmd.118.081927] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023] Open
Abstract
The Innovation and Quality Induction Working Group presents an assessment of best practice for data interpretation of in vitro induction, specifically, response thresholds, variability, application of controls, and translation to clinical risk assessment with focus on CYP3A4 mRNA. Single concentration control data and Emax/EC50 data for prototypical CYP3A4 inducers were compiled from many human hepatocyte donors in different laboratories. Clinical CYP3A induction and in vitro data were gathered for 51 compounds, 16 of which were proprietary. A large degree of variability was observed in both the clinical and in vitro induction responses; however, analysis confirmed in vitro data are able to predict clinical induction risk. Following extensive examination of this large data set, the following recommendations are proposed. a) Cytochrome P450 induction should continue to be evaluated in three separate human donors in vitro. b) In light of empirically divergent responses in rifampicin control and most test inducers, normalization of data to percent positive control appears to be of limited benefit. c) With concentration dependence, 2-fold induction is an acceptable threshold for positive identification of in vitro CYP3A4 mRNA induction. d) To reduce the risk of false positives, in the absence of a concentration-dependent response, induction ≥ 2-fold should be observed in more than one donor to classify a compound as an in vitro inducer. e) If qualifying a compound as negative for CYP3A4 mRNA induction, the magnitude of maximal rifampicin response in that donor should be ≥ 10-fold. f) Inclusion of a negative control adds no value beyond that of the vehicle control.
Collapse
Affiliation(s)
- Jane R Kenny
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Diane Ramsden
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - David B Buckley
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Shannon Dallas
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Conrad Fung
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Michael Mohutsky
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Heidi J Einolf
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Liangfu Chen
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Joshua G Dekeyser
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Maria Fitzgerald
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Theunis C Goosen
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Y Amy Siu
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Robert L Walsky
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - George Zhang
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Donald Tweedie
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| | - Niresh Hariparsad
- Genentech, South San Francisco, California (J.R.K.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Sekisui-XenoTech LLC, Kansas City, Kansas (D.B.B.); Janssen R&D, Spring House, Pennsylvania (S.D.); Vertex Pharmaceuticals, Boston, Massachusetts (C.F., N.H.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); Amgen Inc., Cambridge, Massachusetts (J.G.D.); Sanofi, Waltham, Massachusetts (M.F.); Pfizer Global Research and Development, Groton, Connecticut (T.C.G.); Eisai, Andover, Massachusetts (Y.A.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.L.W.); Corning Life Sciences, Woburn, Massachusetts (G.Z.); and Merck & Co., Inc., Kenilworth, New Jersey (D.T.)
| |
Collapse
|
8
|
Kuramoto S, Kato M, Shindoh H, Kaneko A, Ishigai M, Miyauchi S. Simple Evaluation Method for CYP3A4 Induction from Human Hepatocytes: The Relative Factor Approach with an Induction Detection Limit Concentration Based on the Emax Model. Drug Metab Dispos 2017; 45:1139-1145. [PMID: 28821485 DOI: 10.1124/dmd.117.076349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 01/31/2023] Open
Abstract
We investigated the robustness and utility of the relative factor (RF) approach based on the maximum induction effect (Emax) model, using the mRNA induction data of 10 typical CYP3A4 inducers in cryopreserved human hepatocytes. The RF value is designated as the ratio of the induction detection limit concentration (IDLC) for a standard inducer, such as rifampicin (RIF) or phenobarbital (PB), to that for the compound (e.g., RFRIF is IDLCRIF/IDLCcpd; RFPB is IDLCPB/IDLCcpd). An important feature of the RF approach is that the profiles of the induction response curves on the logarithmic scale remain unchanged irrespective of inducers but are shifted parallel depending on the EC50 values. A key step in the RF approach is to convert the induction response curve by finding the IDLC of a standard inducer. The relative induction score was estimated not only from Emax and EC50 values but also from those calculated by the RF approach. These values showed good correlation, with a correlation coefficient of more than 0.974, which revealed the RF approach to be a robust analysis irrespective of its simplicity. Furthermore, the relationship between RFRIF or RFPB multiplied by the steady-state unbound plasma concentration and the in vivo induction ratio plotted using 10 typical inducers gives adequate thresholds for CYP3A4 drug-drug interaction risk assessment. In light of these findings, the simple RF approach using the IDLC value could be a useful method to adequately assess the risk of CYP3A4 induction in humans during drug discovery and development without evaluation of Emax and EC50.
Collapse
Affiliation(s)
- Shino Kuramoto
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Motohiro Kato
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Hidetoshi Shindoh
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Akihisa Kaneko
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Masaki Ishigai
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| | - Seiji Miyauchi
- Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa, Japan (S.K., M.K., H.S., A.K., M.I.); and Department of Pharmacokinetics, Toho University School of Pharmaceutical Sciences, Chiba, Japan (S.M.)
| |
Collapse
|
9
|
Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:229-46. [DOI: 10.1007/978-3-319-16009-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Rubin K, Janefeldt A, Andersson L, Berke Z, Grime K, Andersson TB. HepaRG Cells as Human-Relevant In Vitro Model to Study the Effects of Inflammatory Stimuli on Cytochrome P450 Isoenzymes. Drug Metab Dispos 2014; 43:119-25. [DOI: 10.1124/dmd.114.059246] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Hu D, Wang Y, Chen Z, Ma Z, You Q, Zhang X, Zhou T, Xiao Y, Liang Q, Tan H, Xiao C, Tang X, Zhang B, Gao Y. Artemisinin protects against dextran sulfate-sodium-induced inflammatory bowel disease, which is associated with activation of the pregnane X receptor. Eur J Pharmacol 2014; 738:273-84. [DOI: 10.1016/j.ejphar.2014.04.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023]
|
12
|
Einolf HJ, Chen L, Fahmi OA, Gibson CR, Obach RS, Shebley M, Silva J, Sinz MW, Unadkat JD, Zhang L, Zhao P. Evaluation of Various Static and Dynamic Modeling Methods to Predict Clinical CYP3A Induction Using In Vitro CYP3A4 mRNA Induction Data. Clin Pharmacol Ther 2013; 95:179-88. [DOI: 10.1038/clpt.2013.170] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/20/2013] [Indexed: 01/06/2023]
|
13
|
Lake BG, Price RJ. Evaluation of the metabolism and hepatotoxicity of xenobiotics utilizing precision-cut slices. Xenobiotica 2012; 43:41-53. [DOI: 10.3109/00498254.2012.734643] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Honma M, Kozawa M, Suzuki H. Methods for the quantitative evaluation and prediction of CYP enzyme induction using human in vitro systems. Expert Opin Drug Discov 2012; 5:491-511. [PMID: 22823132 DOI: 10.1517/17460441003762717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD For successful drug development, it is important to investigate the potency of candidate drugs causing drug-drug interactions (DDI) during the early stages of development. The most common mechanisms of DDIs are the inhibition and induction of CYP enzymes. Therefore, it is important to develop co.mpounds with lower potencies for CYP enzyme induction. AREAS COVERED IN THIS REVIEW The aim of the present paper is to present an overview of the current knowledge of CYP induction mechanisms, particularly focusing on the transcriptional gene activation mediated by pregnane X receptor, aryl hydrocarbon receptor and constitutive androstane receptor. The adoptable options of in vitro assay methods for evaluating CYP induction are also summarized. Finally, we introduce a method for the quantitative prediction of CYP3A4 induction considering the turnover of CYP3A4 mRNA and protein in hepatocytes based on the data obtained from a reporter gene assay. WHAT THE READER WILL GAIN In order to predict in vivo CYP enzyme induction quantitatively based on in vitro information, an understanding of the physiological induction mechanisms and the features of each in vitro assay system is essential. We also present the estimation method of in vivo CYP induction potency of each compound based on the in vitro data which are routinely obtained but not necessarily utilized maximally in pharmaceutical companies. TAKE HOME MESSAGE It is desirable to select compounds with lower potencies for the inductive effect. For this purpose, an accurate prioritization procedure to evaluate the induction potency of each compound in a quantitative manner considering the pharmacologically effective concentration of each compound is necessary.
Collapse
Affiliation(s)
- Masashi Honma
- The University of Tokyo Hospital, Faculty of Medicine, Department of Pharmacy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan +81 3 3815 5411 ; +81 3 3816 6159 ;
| | | | | |
Collapse
|
15
|
Mahat B, Chae JW, Baek IH, Song GY, Song JS, Ma JY, Kwon KI. Biopharmaceutical characterization of decursin and their derivatives for drug discovery. Drug Dev Ind Pharm 2012; 39:1523-30. [PMID: 23003006 DOI: 10.3109/03639045.2012.717296] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Angelica gigas Nakai and its components are known to have neuroprotective, antiplatelet, and anticancer activities. The present study evaluated the in vitro and in vivo biopharmaceutical characterization of Angelica gigas component substances, including decursin (the main substance), decursinol angelate (decursin isomer), JH714 (ether form of decursin) and epoxide decursin (epoxide form of decursin). Decursin, decursinol angelate and JH714 exhibited acceptable metabolic stability (>50%) in liver microsomes from human and higher bound fraction (>90%) in human plasma operating ultrafiltration. Decursin and decursinol angelate in CYP1A2 and CYP2C19 indicated less than 50% CYP activity, suggesting inhibition of the CYP isoforms using Vivid® CYP screening kit. JH714 only showed an apparent permeability coefficient of <10 × 10⁻⁶ cm/s in MDCK cells, suggesting that it is poorly absorbed. Blood brain barrier permeability was examined after oral administration to male Sprague-Dawley (SD) rats, and pharmacokinetic studies were performed after oral and intravenous administration of 10 mg/kg compounds. Decursin, decursinol angelate and JH714 showed ratios of compound concentration in brain with respect to plasma (Cbrain/Cplasma) of >1.5, suggesting good brain/plasma ratio at 0.5, 1, 3, and 5 h. In contrast, Cbrain/Cplasma was <0.5 for epoxide decursin. For all test compounds, >1.5% of the dose remained in GI tract after 8 h, and the excretion rate in urine was <0.5% which suggests that gastro intestinal tract may be major site of disposition following oral administration. Finally, these results may be useful for the design of dosage regimens of decursin and its derivatives.
Collapse
Affiliation(s)
- Bimit Mahat
- College of Pharmacy, Chungnam National University, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Ioannides C. Up-regulation of cytochrome P450 and phase II enzymes by xenobiotics in precision-cut tissue slices. Xenobiotica 2012; 43:15-28. [DOI: 10.3109/00498254.2012.698766] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Ayed-Boussema I, Pascussi JM, Maurel P, Bacha H, Hassen W. Effect of aflatoxin B1 on nuclear receptors PXR, CAR, and AhR and their target cytochromes P450 mRNA expression in primary cultures of human hepatocytes. Int J Toxicol 2011; 31:86-93. [PMID: 21994236 DOI: 10.1177/1091581811422453] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aflatoxin B1 (AFB1), one of the most common mycotoxins found in human foods and animal feed, is principally hepatotoxic and hepatocarcinogenic. The aim of the present study was to explore the effect of AFB1 on messenger RNA (mRNA) expression of pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR) and some of their target cytochromes using primary cultures of human hepatocytes. Our results showed that AFB1, at noncytotoxic increasing concentrations, caused a significant upregulation of cytochrome P 2B6 (CYP2B6), CYP3A5, and to a lesser extent CYP3A4 and CYP2C9. Pregnane X receptor and CAR mRNA expression increased in the 3 treated livers. Aflatoxin B1 was found also to induce an overexpression of CYP1A1 and CYP1A2 genes accompanied by an increase in AhR mRNA expression. These findings suggest that AFB1 could activate PXR, CAR, and AhR; however, further investigations are needed to confirm nuclear receptor activation by AFB1.
Collapse
Affiliation(s)
- Imen Ayed-Boussema
- Laboratoire de Recherche sur les Substances Biologiquement Compatibles, (LRSBC), Rue Avicenne, 5019 Monastir, Tunisia
| | | | | | | | | |
Collapse
|
18
|
Predicting Activation of the Promiscuous Human Pregnane X Receptor by Pharmacophore Ensemble/Support Vector Machine Approach. Chem Res Toxicol 2011; 24:1765-78. [DOI: 10.1021/tx200310j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Ayed-Boussema I, Pascussi JM, Rjiba K, Maurel P, Bacha H, Hassen W. The mycotoxin, patulin, increases the expression of PXR and AhR and their target cytochrome P450s in primary cultured human hepatocytes. Drug Chem Toxicol 2011; 35:241-50. [PMID: 21939362 DOI: 10.3109/01480545.2011.592194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mycotoxin, patulin (PAT), which is frequently found in apples, grapes, oranges, pear, peaches, and in apple juices, has previously been shown to be cytotoxic, genotoxic, and mutagenic. In this study, we have investigated the effect of PAT on mRNA level of pregnane X receptor (PXR), constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AhR), and their corresponding target cytochrome P450s. Using primary cultures of adult human hepatocytes, we evaluated PAT cytotoxicity on hepatocytes after 24 hours of treatment. Real time reverse-transcriptase polymerase chain reaction procedure was employed to determine the effect of PAT on receptors (PXR, CAR, and AhR) and cytochrome (CYP3A4, 2B6, 3A5, 2C9, 1A1, and 1A2) genes. Our results showed that PAT reduced hepatocyte viability. At a noncytotoxic range of PAT concentrations, PAT induced an upregulation of the PXR gene in the three treated hepatocytes cultures, whereas CAR was overexpressed in only 1 treated liver. PXR gene induction was accompanied by the enhancement of CYP2B6, 3A5, 2C9, and 3A4 expression. PAT was also found to induce an overexpression of AhR and CYP1A1 and CYP1A2 mRNA expression. These findings suggested that PAT may activate PXR and/or CAR and AhR. However, further investigations are needed to confirm nuclear receptor activation by PAT and to elucidate the molecular mechanism of PAT action.
Collapse
Affiliation(s)
- Imen Ayed-Boussema
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
20
|
Ayed-Boussema I, Pascussi JM, Zaied C, Maurel P, Bacha H, Hassen W. Ochratoxin A induces CYP3A4, 2B6, 3A5, 2C9, 1A1, and CYP1A2 gene expression in primary cultured human hepatocytes: a possible activation of nuclear receptors. Drug Chem Toxicol 2011; 35:71-80. [PMID: 21834667 DOI: 10.3109/01480545.2011.589438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi of two genera: Penicillium and Aspergillus. OTA has been shown to be nephrotoxic, hepatotoxic, teratogenic, and immunotoxic to several species of animals and to cause kidney and liver tumors in mice and rats. Biotransformation of OTA has not been entirely elucidated. Several metabolites have been characterized in vitro and/or in vivo, whereas other metabolites remain to be characterized. At present, data available regarding OTA metabolism and cytochrome inductions concern only rodents or in vitro systems. The aim of the present study was to explore the effect of OTA on mRNA expression of some cytochromes known to be regulated by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AhR), using primary cultures of human hepatocytes. Our results showed that OTA reduced hepatocyte viability in a dose-dependent manner. Using quantitative real-time reverse-transcription polymerase chain reaction, our study showed that treatment of primary cultured human hepatocytes with noncytotoxic increasing concentrations of OTA for 24 hours caused a significant upregulation of CYP3A4, CYP2B6, and, to a lesser extent, CYP3A5 and CYP2C9. PXR mRNA expression increased in only 1 treated liver, whereas CAR mRNA expression was not affected. OTA was found also to induce an overexpression of CYP1A1 and CYP1A2 genes accompanied by an increase in AhR mRNA expression. These findings suggest that OTA could activate PXR and AhR; however, further investigations are needed to confirm nuclear-receptor activation by OTA.
Collapse
Affiliation(s)
- Imen Ayed-Boussema
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
21
|
Shumiantseva VV, Suprun EV, Bulko TV, Dobrynina OV, Archakov AI. [Sensor systems for medical application based on hemoproteins and nanocomposite materials]. BIOMEDITSINSKAIA KHIMIIA 2011; 56:55-71. [PMID: 21328911 DOI: 10.18097/pbmc20105601055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent advances in nanotechnologies stimulate the development of sensor systems based on nanocomposite materials. This review discusses the prospects and challenges of sensors coupled with functionally important for medicine hemoproteins and nanoscale materials. Authors summarized their own experimental results and literature data on hemoprotein-based sensor systems. Mechanisms and the main function principles of electrochemical nanosensors are also discussed.
Collapse
|
22
|
Shumyantseva VV, Bulko TV, Suprun EV, Chalenko YM, Yu.Vagin M, Rudakov YO, Shatskaya MA, Archakov AI. Electrochemical investigations of cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:94-101. [DOI: 10.1016/j.bbapap.2010.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/22/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
|
23
|
Fahmi OA, Ripp SL. Evaluation of models for predicting drug–drug interactions due to induction. Expert Opin Drug Metab Toxicol 2010; 6:1399-416. [DOI: 10.1517/17425255.2010.516251] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 2010; 42:268-354. [PMID: 19961320 DOI: 10.3109/03602530903286476] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human CYP1A2 is one of the major CYPs in human liver and metabolizes a number of clinical drugs (e.g., clozapine, tacrine, tizanidine, and theophylline; n > 110), a number of procarcinogens (e.g., benzo[a]pyrene and aromatic amines), and several important endogenous compounds (e.g., steroids). CYP1A2 is subject to reversible and/or irreversible inhibition by a number of drugs, natural substances, and other compounds. The CYP1A gene cluster has been mapped on to chromosome 15q24.1, with close link between CYP1A1 and 1A2 sharing a common 5'-flanking region. The human CYP1A2 gene spans almost 7.8 kb comprising seven exons and six introns and codes a 515-residue protein with a molecular mass of 58,294 Da. The recently resolved CYP1A2 structure has a relatively compact, planar active site cavity that is highly adapted for the size and shape of its substrates. The architecture of the active site of 1A2 is characterized by multiple residues on helices F and I that constitutes two parallel substrate binding platforms on either side of the cavity. A large interindividual variability in the expression and activity of CYP1A2 has been observed, which is largely caused by genetic, epigenetic and environmental factors (e.g., smoking). CYP1A2 is primarily regulated by the aromatic hydrocarbon receptor (AhR) and CYP1A2 is induced through AhR-mediated transactivation following ligand binding and nuclear translocation. Induction or inhibition of CYP1A2 may provide partial explanation for some clinical drug interactions. To date, more than 15 variant alleles and a series of subvariants of the CYP1A2 gene have been identified and some of them have been associated with altered drug clearance and response and disease susceptibility. Further studies are warranted to explore the clinical and toxicological significance of altered CYP1A2 expression and activity caused by genetic, epigenetic, and environmental factors.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- Discpline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | | | | |
Collapse
|
25
|
Fahmi OA, Kish M, Boldt S, Obach RS. Cytochrome P450 3A4 mRNA is a more reliable marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-metabolizing enzymes. Drug Metab Dispos 2010; 38:1605-11. [PMID: 20566695 DOI: 10.1124/dmd.110.033126] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of cytochrome P450 (P450) activity in the clinic can result in therapeutic failure such as tissue rejection in transplant patients or unwanted pregnancy, among others. CYP3A4 is by far the most abundant isoform and is responsible for the majority of P450-related metabolism of all marketed drugs. However, it is of importance to understand the significance of induction mediated through other P450 enzymes. The objective of this investigation was to evaluate several known inducers in vitro using cryopreserved human hepatocytes, with the aim of assessing the relevant induction of CYP3A4, CYP2B6, CYP2C9, CYP2C19, and CYP3A5, based on mRNA expression. CYP3A4 induction was also assessed based on enzymatic activity in three different lots to investigate whether mRNA expression data have any advantages over enzymatic activity. In general, the mRNA fold-induction data results were more sensitive compared with activity data, and more informative in cases in which the drug is also a P450 inhibitor. The induction of transcription of other drug-metabolizing enzymes including CYP2B6 and CYP2C enzymes occurred every time that CYP3A4 mRNA levels increased, but to a lesser extent, indicating that measurement of CYP3A4 mRNA is a sensitive marker for the induction of these other enzymes. This was the case even for enzymes and inducers that are known to also act via the constitutive androstane receptor pathway. Finally, the utility of in vitro induction measurements in the identification of clinically meaningful inducers was tested by using two simple binary classification approaches: 1) fold-induction versus vehicle control and 2) induction response relative to rifampin. The best classification was observed when the cutoff criteria based on fold induction relative to the vehicle control, using mRNA data are used.
Collapse
Affiliation(s)
- Odette A Fahmi
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Inc. Global Research & Development, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | |
Collapse
|
26
|
Shumyantseva VV, Suprun EV, Bulko TV, Dobrynina OV, Archakov AI. Sensor systems for medical application based on hemoproteins and nanocomposite materials. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s199075081001004x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Aristoff PA, Garcia GA, Kirchhoff PD, Showalter HD. Rifamycins--obstacles and opportunities. Tuberculosis (Edinb) 2010; 90:94-118. [PMID: 20236863 DOI: 10.1016/j.tube.2010.02.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 11/30/2022]
Abstract
With nearly one-third of the global population infected by Mycobacterium tuberculosis, TB remains a major cause of death (1.7 million in 2006). TB is particularly severe in parts of Asia and Africa where it is often present in AIDS patients. Difficulties in treatment are exacerbated by the 6-9 month treatment times and numerous side effects. There is significant concern about the multi-drug-resistant (MDR) strains of TB (0.5 million MDR-TB cases worldwide in 2006). The rifamycins, long considered a mainstay of TB treatment, were a tremendous breakthrough when they were developed in the 1960's. While the rifamycins display many admirable qualities, they still have a number of shortfalls including: rapid selection of resistant mutants, hepatotoxicity, a flu-like syndrome (especially at higher doses), potent induction of cytochromes P450 (CYP) and inhibition of hepatic transporters. This review of the state-of-the-art regarding rifamycins suggests that it is quite possible to devise improved rifamycin analogs. Studies showing the potential of shortening the duration of treatment if higher doses could be tolerated, also suggest that more potent (or less toxic) rifamycin analogs might accomplish the same end. The improved activity against rifampin-resistant strains by some analogs promises that further work in this area, especially if the information from co-crystal structures with RNA polymerase is applied, should lead to even better analogs. The extensive drug-drug interactions seen with rifampin have already been somewhat ameliorated with rifabutin and rifalazil, and the use of a CYP-induction screening assay should serve to efficiently identify even better analogs. The toxicity due to the flu-like syndrome is an issue that needs effective resolution, particularly for analogs in the rifalazil class. It would be of interest to profile rifalazil and analogs in relation to rifampin, rifapentine, and rifabutin in a variety of screens, particularly those that might relate to hypersensitivity or immunomodulatory processes.
Collapse
|
28
|
Marathe PH, Rodrigues AD. Examination of CYP3A and P-glycoprotein-mediated drug-drug interactions using animal models. Methods Mol Biol 2010; 596:385-403. [PMID: 19949933 DOI: 10.1007/978-1-60761-416-6_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
With the advent of polytherapy for cancer treatment it has become prudent to minimize, as much as possible, the potential for drug-drug interactions (DDI). Toward this end, the metabolic and transporter pathways involved in the disposition of a drug candidate (phenotyping) and potential for inhibition and induction of drug-metabolizing enzymes and transporters are evaluated in vitro. Such in vitro human data can be made available prior to human dosing and enable in vitro to in vivo-based predictions of clinical outcomes. Despite some success, however, in vitro systems are not dynamic and sometimes fail to predict drug-drug interactions for a variety of reasons. In comparison, relatively less effort has been made to evaluate predictions based on data derived from in vivo animal models. This chapter will attempt to summarize different examples from the literature where animal models have been used to predict cytochrome P450 3A (CYP3A)- and P-glycoprotein-based DDI. When employing data from animal models one needs to be aware of species differences in enzyme- and transporter-activity leading to differences in pharmacokinetics, clearance pathways as well as species differences in selectivity and affinity of probe substrates and inhibitors. Because of these differences, in vivo animal studies alone, cannot be predictive of human DDI. Despite these caveats, the information obtained from validated in vivo animal models may prove useful when used in conjunction with in vitro-in vivo extrapolation methods. Such an integrated data set can be used to select drug candidates with a reduced DDI potential.
Collapse
Affiliation(s)
- Punit H Marathe
- Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Pennington, NJ, USA.
| | | |
Collapse
|
29
|
Boobis A, Watelet JB, Whomsley R, Benedetti MS, Demoly P, Tipton K. Drug interactions. Drug Metab Rev 2009; 41:486-527. [PMID: 19601724 DOI: 10.1080/10837450902891550] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drugs for allergy are often taken in combination with other drugs, either to treat allergy or other conditions. In common with many pharmaceuticals, most such drugs are subject to metabolism by P450 enzymes and to transmembrane transport. This gives rise to considerable potential for drug-drug interactions, to which must be added consideration of drug-diet interactions. The potential for metabolism-based drug interactions is increasingly being taken into account during drug development, using a variety of in silico and in vitro approaches. Prediction of transporter-based interactions is not as advanced. The clinical importance of a drug interaction will depend upon a number of factors, and it is important to address concerns quantitatively, taking into account the therapeutic index of the compound.
Collapse
Affiliation(s)
- Alan Boobis
- Department of Experimental Medicine and Toxicology, Division of Medicine, Imperial College London, Hammersmith Campus, London.
| | | | | | | | | | | |
Collapse
|
30
|
Croyle MA. Long-term virus-induced alterations of CYP3A-mediated drug metabolism: a look at the virology, immunology and molecular biology of a multi-faceted problem. Expert Opin Drug Metab Toxicol 2009; 5:1189-211. [PMID: 19732028 DOI: 10.1517/17425250903136748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus infections are on the rise. Although the first description of CYP expression during virus infection was recorded 50 years ago, mechanistic studies of this phenomenon only began to appear in the last decade due to breakthroughs in molecular biology, genomic and transgenic technology. This review describes the relationship(s) among CYP-mediated drug metabolism, virus infection and the immune response and evaluates in vitro and in vivo models for mechanistic studies. The first studies that assessed CYP expression during infection focused on inflammatory mediators and the innate immune response at early time points. Recent studies assessing virus infection and its effect on hepatic CYP expression noted more long-term effects. An obvious approach toward understanding how viruses affect hepatic CYP3A expression and function would be to assess key regulators of CYP during infection. Improvements in techniques to identify post-translational modifications of CYP and systems that focus on virus-receptor interactions which allow subtraction and addition of immunological and regulatory elements that drive CYP will demonstrate that long-term changes in drug metabolism start from the time the virus enters the circulation, are reinforced by virus binding to cellular targets and further solidified by changes in cellular processes long after the virus is cleared.
Collapse
Affiliation(s)
- Maria A Croyle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmaceutics and Institute of Cellular and Molecular Biology, PHR 4.214D, 2409 W University Avenue, Austin, TX 78712-1074, USA.
| |
Collapse
|
31
|
Krämer S, Testa B. The Biochemistry of Drug Metabolism - An Introduction. Chem Biodivers 2009; 6:1477-660, table of contents. [DOI: 10.1002/cbdv.200900233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 2009; 30:297-343. [PMID: 19427329 DOI: 10.1016/j.mam.2009.04.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
33
|
Shumyantseva VV, Bulko TV, Kuznetsova GP, Samenkova NF, Archakov AI. Electrochemistry of cytochromes P450: Analysis of current-voltage characteristics of electrodes with immobilized cytochromes P450 for the screening of substrates and inhibitors. BIOCHEMISTRY (MOSCOW) 2009; 74:438-44. [DOI: 10.1134/s0006297909040129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Chu V, Einolf HJ, Evers R, Kumar G, Moore D, Ripp S, Silva J, Sinha V, Sinz M, Skerjanec A. In Vitro and in Vivo Induction of Cytochrome P450: A Survey of the Current Practices and Recommendations: A Pharmaceutical Research and Manufacturers of America Perspective. Drug Metab Dispos 2009; 37:1339-54. [DOI: 10.1124/dmd.109.027029] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
35
|
McGinnity DF, Zhang G, Kenny JR, Hamilton GA, Otmani S, Stams KR, Haney S, Brassil P, Stresser DM, Riley RJ. Evaluation of Multiple in Vitro Systems for Assessment of CYP3A4 Induction in Drug Discovery: Human Hepatocytes, Pregnane X Receptor Reporter Gene, and Fa2N-4 and HepaRG Cells. Drug Metab Dispos 2009; 37:1259-68. [DOI: 10.1124/dmd.109.026526] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
36
|
Jones BC, Middleton DS, Youdim K. 6 Cytochrome P450 Metabolism and Inhibition: Analysis for Drug Discovery. PROGRESS IN MEDICINAL CHEMISTRY 2009; 47:239-63. [DOI: 10.1016/s0079-6468(08)00206-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Kenny JR, Chen L, McGinnity DF, Grime K, Shakesheff KM, Thomson B, Riley R. Efficient assessment of the utility of immortalized Fa2N-4 cells for cytochrome P450 (CYP) induction studies using multiplex quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and substrate cassette methodologies. Xenobiotica 2008; 38:1500-17. [DOI: 10.1080/00498250802495846] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Guillouzo A, Guguen-Guillouzo C. Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 2008; 4:1279-94. [PMID: 18798698 DOI: 10.1517/17425255.4.10.1279] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of human cell models stably expressing functional properties of the in vivo cells they are derived from for predicting toxicity of chemicals is a major challenge. For mimicking the liver, a major target of toxic chemicals, primary hepatocytes represent the most pertinent model. Their use is limited by interdonor functional variability and early phenotypic changes although their lifespan can be extended not only by culturing in a 2D dimension under sophisticated conditions but also by the use of synthetic and natural scaffolds as 3D supporting templates that allow cells to have a more stable microenvironment. Hepatocytes derived from stem cells could be the most appropriate alternative but up to now only liver progenitors/hepatoblasts are obtained in vitro. A few hepatocyte cell lines have retained a variable set of liver-specific functions. Among them are the human hepatoma HepaRG cells that express drug metabolism capacity at levels close to those found in primary hepatocytes making them a suitable model for both acute and chronic toxicity studies. New screening strategies are now proposed based on miniaturized and automated systems; they include the use of microfluidic chips and cell chips coupled with high content imaging analysis. Toxicogenomics technologies (particularly toxicotranscriptomics) have emerged as promising in vitro approaches for better identification and discrimination of cellular responses to chemicals. They should allow to discriminate compounds on the basis of the identification of a set of markers and/specific signaling pathways.
Collapse
Affiliation(s)
- André Guillouzo
- Université de Rennes I and INSERM U620, Faculté des Pharmacie, 35043 Rennes Cedex, France.
| | | |
Collapse
|
39
|
Mandlekar SV, Rose AV, Cornelius G, Sleczka B, Caporuscio C, Wang J, Marathe PH. Development of anin vivorat screen model to predict pharmacokinetic interactions of CYP3A4 substrates. Xenobiotica 2008; 37:923-42. [PMID: 17896322 DOI: 10.1080/00498250701570269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With the advent of polytherapy, drug interactions have become a common clinical problem. Although in vitro data are routinely used for the prediction of drug interactions, in vitro systems are not dynamic and sometimes fail to predict drug interactions. We sought to use the rat as an in vivo screening model to predict pharmacokinetic interactions with ketoconazole. The pharmacokinetic studies were conducted following an oral dose of CYP3A substrates and an optimized oral regimen of ketoconazole. In vitro reaction phenotyping was conducted using individual human and rat cDNA-expressed CYP enzymes and human or rat liver microsomes in the presence of ketoconazole. The in vitro experiments indicated that the test compounds were largely metabolized by CYP3A in both human and rat. The compounds could be rank-ordered with respect to the increase in C(max) and area under the curve (AUC) values relative to midazolam in the presence of ketoconazole. The degree of pharmacokinetic interaction with ketoconazole was dependent, in part, upon their in vitro metabolism in the presence of rat CYP3A1/3A2 and in rat and human microsomes, co-incubated with ketoconazole, and on their fraction metabolized (f(m)) in the rat relative to other disposition pathways. Based on the rank-order of interaction, the compounds could be prioritized for further preclinical development.
Collapse
Affiliation(s)
- S V Mandlekar
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Precision-cut liver slices from rats of different ages: basal cytochrome P450-dependent monooxygenase activities and inducibility. Anal Bioanal Chem 2008; 392:1173-84. [PMID: 18629480 DOI: 10.1007/s00216-008-2253-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/13/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
The biotransformation capacity - of the cytochrome P450 (CYP) system for example - is lower but inducibility is more pronounced in neonates than in adults. On the other hand, both enzyme activities and inducibility decline with senescence. Precision-cut rat liver slices are widely used as an in vitro tool for the examination of drug toxicity, xenobiotic metabolism or enzyme induction. The aim of the present study was to assess whether age-related changes in CYP activities and induction observed in vivo are also mirrored in vitro in liver slices. For this purpose, different CYP model reactions were measured in precision-cut liver slices from one-day-old, 40-day-old and one-year-old rats after in vitro exposure to various inducers. Similar to the in vivo situation, basal CYP activities were distinctly lower and inducibility was much more pronounced in liver slices from neonatal than in those from adult animals. Also, enzyme activities were mostly somewhat lower in liver slices from aged rats compared to those from 40-day-old rats. However, CYP inducibility was less pronounced than with younger animals too. Thus, precision-cut rat liver slices are a suitable in vitro tool for investigating age-related changes in CYP activities and induction as well as developmental differences in drug metabolism and toxicity.
Collapse
|
41
|
Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 2008; 82:667-715. [PMID: 18618097 DOI: 10.1007/s00204-008-0332-8] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Variability of drug metabolism, especially that of the most important phase I enzymes or cytochrome P450 (CYP) enzymes, is an important complicating factor in many areas of pharmacology and toxicology, in drug development, preclinical toxicity studies, clinical trials, drug therapy, environmental exposures and risk assessment. These frequently enormous consequences in mind, predictive and pre-emptying measures have been a top priority in both pharmacology and toxicology. This means the development of predictive in vitro approaches. The sound prediction is always based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms; consequently the description of these aspects is the purpose of this review. We cover both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches. Just because validation is an essential part of any in vitro-in vivo extrapolation scenario, we cover also necessary in vivo research and findings in order to provide a proper view to justify in vitro approaches and observations.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, PO Box 5000 (Aapistie 5 B), 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The aim of this current review is to summarize the present status of pharmacokinetics in Drug Discovery. The review is structured into four sections. The first section is a general overview of what we understand by pharmacokinetics and the different LADMET aspects: Liberation, Absorption, Distribution, Metabolism, Excretion, and Toxicity. The second section highlights the different computational or in silico approaches to estimate/predict one or several aspects of the pharmacokinetic profile of a discovery lead compound. The third section discusses the most commonly used in vitro methodologies. The fourth and last section examines the various approaches employed towards the pharmacokinetic assessment of discovery molecules; including all the LADME processes, discussing the different mathematical methodologies available to establish the PK profile of a test compound; what the main differences are and what should be the criteria for using one or another mathematical approach. The major conclusion of this review is that the use of the appropriate preclinical assays has a key role in the long-term viability of a pharmaceutical company since applying the right tools early in discovery will play a key role in determining the company's ability to discover novel safe and effective therapeutics to patients as quickly as possible.
Collapse
Affiliation(s)
- Ana Ruiz-Garcia
- Pharmacokinetics and Drug Metabolism, Amgen, Inc, 1201 Amgen Court West, Seattle, Washington 98119, USA.
| | | | | | | |
Collapse
|
43
|
Harmsen S, Koster AS, Beijnen JH, Schellens JHM, Meijerman I. Comparison of two immortalized human cell lines to study nuclear receptor-mediated CYP3A4 induction. Drug Metab Dispos 2008; 36:1166-71. [PMID: 18347084 DOI: 10.1124/dmd.107.017335] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Since CYP3A4 is responsible for the biotransformation of over 50% of all clinically used drugs, induction results in an increased clearance of many concomitantly administered drugs, thereby decreasing treatment efficacy or, in the case of prodrugs, lead to severe intoxications. CYP3A4 induction is regulated by the pregnane X receptor, constitutive androstane receptor, and vitamin D receptor. Since these nuclear receptors show large interspecies differences, accurate prediction of nuclear receptor-mediated CYP3A4 induction in humans requires the use of human systems. Because primary cultures of human hepatocytes or enterocytes have major drawbacks like poor availability and poor reproducibility, human cell lines are a good alternative. In this study, the widely used HepG2 cell line was compared with the LS180 cell line to serve as a model to study CYP3A4 induction. There was a clear difference between the cell lines with respect to CYP3A enzyme expression and induction. In LS180, CYP3A4 was expressed and was found to be induced by prototypical nuclear receptor agonists, whereas in HepG2, CYP3A4 was nonresponsive to treatment with rifampicin, CITCO [6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-3,4-dichlorobenzyl) oxime], or calcitriol. We subsequently evaluated whether these host-cell differences also have an effect on CYP3A4 reporter gene activity. We clearly show that there are differences in CYP3A4 reporter activity between the cell lines, and based on these results and those found on mRNA and protein level, we conclude that LS180 is a more suitable cell line to study CYP3A4 induction than the widely used HepG2.
Collapse
Affiliation(s)
- S Harmsen
- Division of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Olinga P, Elferink MGL, Draaisma AL, Merema MT, Castell JV, Pérez G, Groothuis GMM. Coordinated induction of drug transporters and phase I and II metabolism in human liver slices. Eur J Pharm Sci 2008; 33:380-9. [PMID: 18328680 DOI: 10.1016/j.ejps.2008.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 11/26/2022]
Abstract
Although regulation of phase I drug metabolism in human liver is relatively well studied, the regulation of phase II enzymes and of drug transporters is incompletely characterized. Therefore, we used human liver slices to investigate the PXR, CAR and AhR-mediated induction of drug transporters and phase I and II metabolic enzymes. Precision-cut human liver slices were incubated for 5 or 24h with prototypical inducers: phenobarbital (PB) (50 microM) for CAR, beta-naphthoflavone (BNF) (25 microM) for AhR, and rifampicin (RIF) (10 microM) for PXR, and gene expression of the phase I enzymes CYP1A1, 1A2, 3A4, 3A5, 2B6, 2A6, the phase II enzymes UGT1A1 and 1A6, and the transporters MRP2, MDR1, BSEP, NTCP and OATP8 was measured. BNF induced CYP1A1, UGT1A1 and UGT1A6 and MRP2, NTCP and MDR1. RIF induced CYP3A4, 3A5, 2B6, 2A6, UGT1A1, UGT1A6 and BSEP, MRP2 and MDR1 and slightly downregulated OATP8. PB induced CYP3A4, 3A5, 2B6 and 2A6, UGT1A1 and all transporters. Large interindividual differences were found with respect to the level of induction. Enzyme activity of CYP3A4, measured by testosterone metabolism, was increased after 24h by RIF. 7-Ethoxycoumarin O-deethylation activity, mediated predominantly by CYP 1A1/1A2 but also by other CYPs, was increased after 24h with PB. We have shown that regulation of all phases of the (in)activation of a drug via the CAR, AhR and the PXR pathways can be studied in human liver slices. The concomitant induction of metabolic enzymes and transporters shows that also in the human liver transporters and metabolic enzymes are regulated coordinately.
Collapse
Affiliation(s)
- P Olinga
- Department of Pharmacokinetics and Drug Delivery, Groningen Research Institute for Pharmacy, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Graaf IAMD, Groothuis GMM, Olinga P. Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin Drug Metab Toxicol 2007; 3:879-98. [DOI: 10.1517/17425255.3.6.879] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Kanebratt KP, Andersson TB. HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans. Drug Metab Dispos 2007; 36:137-45. [PMID: 17954527 DOI: 10.1124/dmd.107.017418] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HepaRG is a highly differentiated cell line that displays several hepatocyte-like functions, including drug-metabolizing enzymes. In this study, the HepaRG cells were characterized and evaluated as an in vitro model to predict cytochrome P450 (P450) enzyme induction of drugs in humans. Exposure of HepaRG cells to prototypical inducers resulted in induction of CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4 mRNA, as well as phenacetin O-dealkylase, bupropion hydroxylase, diclofenac 4'-hydroxylase, and midazolam 1'-hydroxylase activities. The observed induction is consistent with the previously reported expression of the nuclear receptors pregnane X receptor, constitutive androstane receptor, and aryl hydrocarbon receptor, which are necessary for a P450 induction response. To avoid problems with toxicity and solubility, the induction potency of test compounds was evaluated by calculating the concentrations leading to a 2-fold increase of baseline mRNA or enzyme activity levels (F(2) values) instead of EC(50) values from full dose-response curves. For CYP3A4 mRNA, the obtained F(2) values were related to the in vivo exposure [area under the plasma concentration versus time curve (AUC)] of the inducer (AUC/F(2)). This score was then correlated with the decrease in AUC for a CYP3A probe drug, administered before and after treatment with the inducing agent. By using this method an excellent correlation (R(2) = 0.863) was obtained, which implies that the degree of CYP3A induction in vivo can be predicted from CYP3A4 mRNA induction in HepaRG cells. The present study shows that HepaRG cells are a valuable model to be used for prediction of induction of drug-metabolizing P450 enzymes in vivo in humans.
Collapse
Affiliation(s)
- Kajsa P Kanebratt
- Development DMPK & Bioanalysis, AstraZeneca R&D Mölndal, S-431 83 Mölndal, Sweden
| | | |
Collapse
|
47
|
Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol 2007; 6:793-804. [PMID: 17706563 DOI: 10.1016/s1474-4422(07)70215-6] [Citation(s) in RCA: 256] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Despite the introduction of many second-generation antiepileptic drugs (AEDs) in the past 15 years, a third of patients with epilepsy remain refractory to available treatments, and newer and more effective therapies are needed. Although our understanding of the mechanisms of drug resistance is fragmented, novel AED targets have been identified, and models of refractory epilepsy have been developed that can help to select candidate compounds for development. There are more than 20 compounds with potential antiepileptic activity in various stages of clinical development, and for many of these promising clinical trial results are already available. Several incentives justify further investment into the discovery of newer and more effective AEDs. Moreover, developments in clinical trial methodology enable easier completion of proof-of-concept studies, earlier definition of the therapeutic potential of candidate compounds, and more efficient completion of trials for various epilepsy indications.
Collapse
Affiliation(s)
- Emilio Perucca
- Institute of Neurology, IRCCS C Mondino Foundation, Pavia, Italy
| | | | | |
Collapse
|
48
|
Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 2007; 47:566-78. [PMID: 17442683 DOI: 10.1177/0091270007299930] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Erratic or unpredictable response to drugs remains a challenge of modern drug therapy. An important determinant of such interindividual differences in drug response is variability in the expression of drug-metabolizing enzymes and/or transporters at sites of absorption and/or tissue distribution. Variable drug-metabolizing enzyme and transporter expression can result in unpredictable exposure and tissue distribution of drugs and may manifest as adverse effects or therapeutic failure. In the past decade, important new insights have been made relating to the regulatory mechanisms governing the expression of drug-metabolizing enzymes and transporters by ligand-activated nuclear receptors. Specifically, there is compelling evidence to demonstrate that PXR, CAR, FXR, LXR, VDR, HNF4alpha, and AhR form a battery of nuclear receptors that regulate the expression of many important drug-metabolizing enzyme and transporters. In this review, the authors focus on clinically important drug-metabolizing enzymes such as CYP3A4, CYP2B6, CYP2C9, CYP2C19, UGT1A1, SULT2A1, and glutathione S-transferases and their regulation by nuclear receptors. They also review the nuclear receptor-mediated regulation of drug transporters such as MDR1, MRP2, MRP4, BSEP, BCRP, NTCP, OATP1B3, and OATP1A2. Finally, they outline how the drug development process has been affected by the current understanding of the involvement of nuclear receptors in the regulation of drug disposition genes.
Collapse
Affiliation(s)
- Bradley L Urquhart
- Division of Clinical Pharmacology, London Health Sciences Centre-University Hospital, Room ALL-152, 339 Windermere Road, London, Ontario N6A 5A5, Canada
| | | | | |
Collapse
|
49
|
Harmsen S, Meijerman I, Beijnen JH, Schellens JHM. The role of nuclear receptors in pharmacokinetic drug–drug interactions in oncology. Cancer Treat Rev 2007; 33:369-80. [PMID: 17451886 DOI: 10.1016/j.ctrv.2007.02.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/06/2007] [Accepted: 02/11/2007] [Indexed: 01/17/2023]
Abstract
Drug-drug interactions can have a major impact on treatment outcome in cancer patients. These patients are at high risk of such interactions, because they are treated with combinations of multiple cytotoxic anticancer drugs or hormonal agents often co-administered with prophylactic antiemetics and analgesics to provide palliation. Interactions between drugs can affect the pharmacokinetics of concomitantly administered chemotherapeutic agents. Especially, due to the specific properties of anticancer drugs, such as a narrow therapeutic index and steep dose-toxicity curve, small pharmacokinetic changes can have significant clinical consequences like decreased therapeutic efficacy or increased toxicity. An important mechanism that underlies these interactions is the induction of enzymes or efflux transporters involved in the biotransformation and clearance of anticancer drugs. Several nuclear receptors, like the pregnane X receptor (PXR), constitutively androstane receptor (CAR), have been shown to regulate induction. Activation of these receptors will lead to induction of important enzymes like cytochrome P450 3A4 (CYP3A4), which is involved in the biotransformation of more than 50% of all clinically used drugs. Therefore, concomitant administration of agents that activate PXR will affect the pharmacokinetics of drugs that are substrate for PXRs target genes, which include CYP3A4 and MDR-1. Understanding of the molecular mechanisms that underlie enzyme induction and the identification of (new) drugs involved in pharmacokinetic drug-drug interactions may contribute to the predictability of drug-drug interactions and eventually help to develop safer anticancer regimens.
Collapse
Affiliation(s)
- S Harmsen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Biomedical Analysis, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Wahlstrom JL, Rock DA, Slatter JG, Wienkers LC. Advances in predicting CYP-mediated drug interactions in the drug discovery setting. Expert Opin Drug Discov 2006; 1:677-91. [DOI: 10.1517/17460441.1.7.677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|