1
|
Dao HM, Sandoval MA, Cui Z, Williams Iii RO. Reconsidering freeze-induced protein aggregation: Air bubbles as the root cause of ice-water interface stress. Int J Pharm 2024; 665:124723. [PMID: 39299357 DOI: 10.1016/j.ijpharm.2024.124723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Freeze-induced stress causing aggregation of proteins has typically been primarily attributed to the ice-water interface. However, we hypothesize that the underlying observed and perceived detrimental effect of ice is, to some extent, attributed to air bubbles expelled from ice crystal lattices or to nanobubbles existing prior to freezing. The reduction of dissolved air was achieved via a deaeration process by placing samples in a reduced pressure chamber, while the reduction of nanobubbles was achieved by filtering samples via a syringe filter. The results showed that the reduction of both dissolved air molecules and stable colloidal nanobubbles in a bovine IgG solution prior to freezing led to a significant decrease in aggregation after thawing compared to untreated samples (∼6,000 vs. ∼ 40,000 particles/mL at a freezing rate of 100 K/s, respectively). The deaeration-filtration treatment works additively with cryoprotectants such as trehalose, further reducing the freeze-induced aggregation of IgG. The results also demonstrated that air-water interfacial aggregation of IgG in bulk liquid samples is a time-dependent process. The number of IgG subvisible particles increased with time and temperature, suggesting that random collisions of denatured molecules promoted the formation of aggregates with spherical morphology. In contrast, the IgG subvisible count after freeze-thawing had already reached its nominal value, suggesting a time-independent process where denatured protein molecules were compressed between ice crystals into filament-like aggregates. In summary, the findings shift the current paradigm from ice crystals being the main destabilizing factor during freezing to air bubbles, although the two are intertwined. From a translational aspect, this study underscores the value of deaeration-filtration as an essential supplemental process that can be applied in addition to formulation approaches such as the use of cryoprotectants to further reduce freezing stress on proteins and increase their stability.
Collapse
Affiliation(s)
- Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael A Sandoval
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Li Q, Shi R, Xu H, AboulFotouh K, Sung MMH, Oguin TH, Hayes M, Moon C, Dao HM, Ni H, Sahakijpijarn S, Cano C, Davenport GJ, Williams RO, Le Huray J, Cui Z, Weissman D. Thin-film freeze-drying of an influenza virus hemagglutinin mRNA vaccine in unilamellar lipid nanoparticles with blebs. J Control Release 2024; 375:829-838. [PMID: 39293526 DOI: 10.1016/j.jconrel.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Messenger RNA (mRNA) vaccines have revolutionized the fight against infectious diseases and are poised to transform other therapeutic areas. Lipid nanoparticles (LNP) represent the most successful delivery system for mRNA. While the mRNA-LNP products currently in clinics are stored as frozen suspensions, there is evidence that freeze-drying mRNA-LNP into dry powders can potentially enable their storage and handling at non-freezing temperatures. Previously, we successfully applied thin-film freeze-drying (TFFD) to transform a polyadenylic acid [poly(A)]-LNP formulation from a liquid suspension to dry powders. The poly(A)-LNP were structurally multilamellar spheres without blebs, but the mRNA vaccines in clinics are comprised of mRNA-LNP that are structurally spheres surrounded by a unilamellar lipid bilayer, with some containing blebs, and it was reported that the presence of blebs increases the sensitivity of mRNA-LNP to freeze-drying-induced stress. In the present study, using an influenza A virus hemagglutinin (HA) mRNA in LNP that were structurally similar to that in the COVID-19 mRNA vaccines currently in clinic, we studied the effect of TFFD on the physical properties, internal structure, as well as immunogenicity of the HA mRNA-LNP vaccine. We concluded that TFFD can be utilized to prepare dry powders of the HA mRNA-LNP, but a sufficient amount of excipients were needed to minimize changes in the physical properties, structure, and immunogenicity of the HA mRNA-LNP vaccine.
Collapse
Affiliation(s)
- Qin Li
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Ruiqi Shi
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Khaled AboulFotouh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | | | - Thomas H Oguin
- Duke University, Duke Human Vaccine Institute, Durham, NC, USA
| | - Madeline Hayes
- Duke University, Duke Human Vaccine Institute, Durham, NC, USA
| | - Chaeho Moon
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Huy M Dao
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Houping Ni
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA
| | | | - Chris Cano
- TFF Pharmaceuticals, Inc., Fort Worth, TX, USA
| | | | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | | | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| | - Drew Weissman
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Yu YS, Xu H, AboulFotouh K, Williams G, Suman J, Sahakijpijarn S, Cano C, Warnken ZN, Wu KCW, Williams RO, Cui Z. Intranasal delivery of thin-film freeze-dried monoclonal antibodies using a powder nasal spray system. Int J Pharm 2024; 653:123892. [PMID: 38350499 DOI: 10.1016/j.ijpharm.2024.123892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Monoclonal antibodies (mAbs) administered intranasally as dry powders can be potentially applied for the treatment or pre-exposure prevention of viral infections in the upper respiratory tract. However, a method to transform the mAbs from liquid to dry powders suitable for intranasal administration and a device that can spray the dry powders to the desired region of the nasal cavity are needed to fully realize the potentials of the mAbs. Herein, we report that thin-film freeze-dried mAb powders can be sprayed into the posterior nasal cavity using Aptar Pharma's Unidose (UDS) Powder Nasal Spray System. AUG-3387, a human-derived mAb that neutralizes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was used in the present study. First, we prepared thin-film freeze-dried AUG-3387 powders (i.e., TFF AUG-3387 powders) from liquid formulations containing different levels of mAbs. The TFF AUG-3387 powder with the highest solid content (i.e., TFF AUG-3387C) was then chosen for further characterization, including the evaluation of the plume geometry, spray pattern, and particle size distribution after the powder was sprayed using the UDS Powder Nasal Spray. Finally, the deposition patterns of the TFF AUG-3387C powder sprayed using the UDS Powder delivery system were studied using 3D-printed nasal replica casts based on the CT scans of an adult and a child. It is concluded that it is feasible to intranasally deliver mAbs as dry powders by transforming the mAbs into dry powders using thin-film freeze-drying and then spraying the powder using a powder nasal spray system.
Collapse
Affiliation(s)
- Yu-Sheng Yu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Khaled AboulFotouh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | | | | | - Chris Cano
- TFF Pharmaceuticals, Inc., Fort Worth, TX, United States
| | | | - Kevin C-W Wu
- National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan; National Health Research Institute, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
4
|
AboulFotouh K, Almanza G, Yu YS, Joyce R, Davenport GJ, Cano C, Williams Iii RO, Zanetti M, Cui Z. Inhalable dry powders of microRNA-laden extracellular vesicles prepared by thin-film freeze-drying. Int J Pharm 2024; 651:123757. [PMID: 38160992 DOI: 10.1016/j.ijpharm.2023.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Extracellular vesicles (EVs) are endogenous vesicles that comprise a variety of submicron vesicular structures. Among these, exosomes have been widely investigated as delivery systems for small and large molecules. Herein, the thin-film freeze-drying technology was utilized to engineer aerosolizable dry powders of miR-335-laden induced EVs (iEV-335) generated in B cells for potential delivery into the lung to treat primary lung cancer and/or pulmonary metastases. The size distribution, structure, and morphology of iEV-335 were preserved after they were subjected to thin-film freeze-drying with the proper excipients. Importantly, iEV-335, in liquid or reconstituted from thin-film freeze-dried powders, were equally effective in downregulating SOX4 gene expression in LM2 human triple-negative mammary cancer cells. The iEV-335 dry powder compositions showed mass median aerodynamic diameters (MMAD) of around 1.2 µm with > 60 % of the emitted doses had an MMAD of ≤ 3 µm, indicating that the powders can potentially achieve efficient deposition within the alveolar region following oral inhalation, which is desirable for treatment of primary lung cancer and pulmonary metastases. Overall, it is concluded that it is feasible to apply thin-film freeze-drying to prepare aerosolizable dry powders of iEVs for pulmonary delivery.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Gonzalo Almanza
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA; FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA
| | - Yu-Sheng Yu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Robert Joyce
- FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA
| | - Gregory J Davenport
- TFF Pharmaceuticals, Inc., 1751 River Run, Suite 400, Fort Worth, TX 76107, USA
| | - Chris Cano
- TFF Pharmaceuticals, Inc., 1751 River Run, Suite 400, Fort Worth, TX 76107, USA
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA; FutuRNA Pharmaceuticals, Inc., La Jolla, CA 92037, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Moon C, Sahakijpijarn S, Maier EY, Taft DR, Jara MO, Praphawatvet T, Manandhar R, Shetty N, Lubach J, Narang A, Nagapudi K, Williams RO. Inhaled JAK Inhibitor GDC-0214 Nanoaggregate Powder Exhibits Improved Pharmacokinetic Profile in Rats Compared to the Micronized Form: Benefits of Thin Film Freezing. Mol Pharm 2024; 21:564-580. [PMID: 38215042 DOI: 10.1021/acs.molpharmaceut.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC0-24h in the lungs with the lowest AUC0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.
Collapse
Affiliation(s)
- Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sawittree Sahakijpijarn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- TFF Pharmaceuticals, Inc., Austin, Texas 78753, United States
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78723, United States
| | - David R Taft
- Division of Pharmaceutical Sciences, Long Island University, Brooklyn, New York 11201, United States
| | - Miguel O Jara
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tuangrat Praphawatvet
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Nivedita Shetty
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Joseph Lubach
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Ajit Narang
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
AboulFotouh K, Southard B, Dao HM, Xu H, Moon C, Williams Iii RO, Cui Z. Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying. Int J Pharm 2024; 650:123688. [PMID: 38070660 DOI: 10.1016/j.ijpharm.2023.123688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
A library of 16 lipid nanoparticle (LNP) formulations with orthogonally varying lipid molar ratios was designed and synthesized, using polyadenylic acid [poly(A)] as a model for mRNA, to explore the effect of lipid composition in LNPs on (i) the initial size of the resultant LNPs and encapsulation efficiency of RNA and (ii) the sensitivity of the LNPs to various conditions including cold storage, freezing (slow vs. rapid) and thawing, and drying. Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to identify the optimal lipid molar ratios and interactions that favorably affect the physical properties of the LNPs and enhance their stability in various stress conditions. LNPs exhibited distinct responses under each stress condition, highlighting the effect of lipid molar ratios and lipid interactions on the LNP physical properties and stability. It was then demonstrated that it is feasible to use thin-film freeze-drying to convert poly(A)-LNPs from liquid dispersions to dry powders while maintaining the integrity of the LNPs. Importantly, the residual moisture content in LNP dry powders significantly affected the LNP integrity.Residual moisture content of ≤ 0.5% or > 3-3.5% w/w negatively affected the LNP size and/or RNA encapsulation efficiency, depending on the LNP composition. Finally, it was shown that the thin-film freeze-dried LNP powders have desirable aerosol properties for potential pulmonary delivery. It was concluded that Design of Experiments can be applied to identify mRNA-LNP formulations with the desired physical properties and stability profiles. Additionally, optimizing the residual moisture content in mRNA-LNP dry powders during (thin-film) freeze-drying is crucial to maintain the physical properties of the LNPs.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Benjamin Southard
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Wang JL, Southard B, Jara MO, Yu YS, Xu H, Kalafat J, Williams RO, Cui Z. Viability of Lactobacillus acidophilus in Thin-Film Freeze-Dried Powders Filled in Delayed-Release Vegetarian Capsules in a Simulated Gastric Fluid. AAPS PharmSciTech 2023; 24:193. [PMID: 37740105 DOI: 10.1208/s12249-023-02644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023] Open
Abstract
Previously, we have shown that thin-film freeze-drying can be applied to prepare dry powders of bacteria such as Lactobacillus acidophilus. Herein, we tested the viability of L. acidophilus in thin-film freeze-dried powders (TFF powders) filled in delayed-release vegetarian capsules in a simulated gastric fluid (SGF) consisting of 0.1N hydrochloric acid and sodium chloride. Initially, we determined the water removal rate from frozen thin films on relatively larger scales (i.e., 10-750 g). We then prepared and characterized two TFF powders of L. acidophilus with either sucrose and maltodextrin or sucrose and hydroxypropyl methylcellulose acetate succinate (HPMC-AS), a pH-sensitive polymer, as excipients and evaluated the viability of the bacteria after the TFF powders were filled in delayed-release vegetarian capsules and the capsules were incubated in the SGF for 30 min. On 10-750 g scales and at the settings specified, water removal from frozen thin films was faster than from slow shelf-frozen bulk solids. When the L. acidophilus in sucrose and HPMC-AS TFF powder was filled into a delayed-release capsule that was placed into another delayed-release capsule, the bacterial viability reduction after incubation in the SGF can be minimized to within 1 log in colony forming unit (CFU). However, for the L. acidophilus in sucrose and maltodextrin TFF powder, even in the capsule-in-capsule dosage form, bacterial CFU reduction was > 2 logs. TFF powders of live microorganisms containing an acid-resistant material in capsule-in-capsule delayed-release vegetarian capsules have the potential for oral delivery of those microorganisms.
Collapse
Affiliation(s)
- Jie-Liang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Benjamin Southard
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Miguel O Jara
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Yu-Sheng Yu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | | | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
8
|
Yu YS, AboulFotouh K, Xu H, Williams G, Suman J, Cano C, Warnken ZN, C-W Wu K, Williams Iii RO, Cui Z. Feasibility of intranasal delivery of thin-film freeze-dried, mucoadhesive vaccine powders. Int J Pharm 2023; 640:122990. [PMID: 37127138 DOI: 10.1016/j.ijpharm.2023.122990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Intranasal vaccination by directly applying a vaccine dry powder is appealing. However, a method that can be used to transform a vaccine from a liquid to a dry powder and a device that can be used to administer the powder to the desired region(s) of the nasal cavity are critical for successful intranasal vaccination. In the present study, using a model vaccine that contains liposomal monophosphoryl lipid A and QS-21 adjuvant (AdjLMQ) and ovalbumin (OVA) as a model antigen, it was shown that thin-film freeze-drying can be applied to convert the liquid vaccine containing sucrose at a sucrose to lipid ratio of 15:1 (w/w) into dry powders, in the presence or absence of carboxymethyl cellulose sodium salt (CMC) as a mucoadhesive agent. Ultimately, the thin-film freeze-dried AdjLMQ/OVA vaccine powder containing 1.9% (w/w) of CMC (i.e., TFF AdjLMQ/OVA/CMC1.9% powder) was selected for additional evaluation because the TFF AdjLMQ/OVA/CMC1.9% powder was mucoadhesive and maintained the integrity of the antigen and the physical properties of the vaccine. Compared to the TFF AdjLMQ/OVA powder that did not contain CMC, the TFF AdjLMQ/OVA/CMC1.9% powder had a lower moisture content and a higher glass transition temperature. In addition, the TFF AdjLMQ/OVA/CMC1.9% thin films were relatively thicker than the TFF AdjLMQ/OVA thin films without CMC. When sprayed with Aptar Pharma's Unidose Powder Nasal Spray System (UDSP), the TFF AdjLMQ/OVA powder and the TFF AdjLMQ/OVA/CMC1.9% powder generated similar particle size distribution curves, spray patterns, and plume geometries. Importantly, after the TFF AdjLMQ/OVA/CMC1.9% powder was sprayed with the UDSP nasal device, the integrity of the OVA antigen and the AdjLMQ liposomes did not change. Finally, a Taguchi L4 orthogonal array was applied to identify the optimal parameters for using the UDSP device to deliver the TFF AdjLMQ/OVA/CMC1.9% vaccine powder to the middle and lower turbinate and the nasopharynx regions in both adult and child nasal replica casts. Results from this study showed that it is feasible to apply the TFF technology to transform a nasal vaccine candidate from liquid to a dry powder and then use the UDSP nasal device to deliver the TFF vaccine powder to the desired regions in the nasal cavity for intranasal vaccination.
Collapse
Affiliation(s)
- Yu-Sheng Yu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States; National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan
| | - Khaled AboulFotouh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States
| | | | | | - Chris Cano
- TFF Pharmaceuticals, Inc. Fort Worth, TX, United States
| | | | - Kevin C-W Wu
- National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan; National Health Research Institute, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Robert O Williams Iii
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States.
| |
Collapse
|
9
|
Recent progress in drying technologies for improving the stability and delivery efficiency of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:35-57. [PMID: 36568503 PMCID: PMC9768793 DOI: 10.1007/s40005-022-00610-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Background Most biopharmaceuticals are developed in liquid dosage forms that are less stable than solid forms. To ensure the stability of biopharmaceuticals, it is critical to use an effective drying technique in the presence of an appropriate stabilizing excipient. Various drying techniques are available for this purpose, such as freeze drying or lyophilization, spray drying, spray freeze-drying, supercritical fluid drying, particle replication in nonwetting templates, and fluidized bed drying. Area covered In this review, we discuss drying technologies and their applications in the production of stable solid-state biopharmaceuticals, providing examples of commercially available products or clinical trial formulations. Alongside this, we also review how different analytical methods may be utilized in the evaluation of aerosol performance and powder characteristics of dried protein powders. Finally, we assess the protein integrity in terms of conformational and physicochemical stability and biological activity. Expert opinion With the aim of treating either infectious respiratory diseases or systemic disorders, inhaled biopharmaceuticals reduce both therapeutic dose and cost of therapy. Drying methods in the presence of optimized protein/stabilizer combinations, produce solid dosage forms of proteins with greater stability. A suitable drying method was chosen, and the process parameters were optimized based on the route of protein administration. With the ongoing trend of addressing deficiencies in biopharmaceutical production, developing new methods to replace conventional drying methods, and investigating novel excipients for more efficient stabilizing effects, these products have the potential to dominate the pharmaceutical industry in the future.
Collapse
|
10
|
Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery. Pharm Res 2022; 40:1115-1140. [DOI: 10.1007/s11095-022-03442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
|
11
|
Praphawatvet T, Cui Z, Williams RO. Pharmaceutical dry powders of small molecules prepared by thin-film freezing and their applications – A focus on the physical and aerosol properties of the powders. Int J Pharm 2022; 629:122357. [DOI: 10.1016/j.ijpharm.2022.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
|
12
|
Pardeshi SR, Kole EB, Kapare HS, Chandankar SM, Shinde PJ, Boisa GS, Salgaonkar SS, Giram PS, More MP, Kolimi P, Nyavanandi D, Dyawanapelly S, Junnuthula V. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics 2022; 14:pharmaceutics14122632. [PMID: 36559129 PMCID: PMC9784462 DOI: 10.3390/pharmaceutics14122632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The surface drying process is an important technology in the pharmaceutical, biomedical, and food industries. The final stage of formulation development (i.e., the drying process) faces several challenges, and overall mastering depends on the end step. The advent of new emerging technologies paved the way for commercialization. Thin film freezing (TFF) is a new emerging freeze-drying technique available for various treatment modalities in drug delivery. TFF has now been used for the commercialization of pharmaceuticals, food, and biopharmaceutical products. The present review highlights the fundamentals of TFF along with modulated techniques used for drying pharmaceuticals and biopharmaceuticals. Furthermore, we have covered various therapeutic applications of TFF technology in the development of nanoformulations, dry powder for inhalations and vaccines. TFF holds promise in delivering therapeutics for lung diseases such as fungal infection, bacterial infection, lung dysfunction, and pneumonia.
Collapse
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Eknath B. Kole
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, India
| | - Harshad S. Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
| | - Sachin M. Chandankar
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Prashant J. Shinde
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Ganesh S. Boisa
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Sanjana S. Salgaonkar
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, India
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Mahesh P. More
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Buldhana 443101, India
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA
| | - Dinesh Nyavanandi
- Product Development, Continuus Pharmaceuticals, 25 Olympia Ave, Woburn, MA 01801, USA
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, NP Marg, Matunga, Mumbai 400019, India
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
- Correspondence: (M.P.M.); (S.D.); (V.J.)
| |
Collapse
|
13
|
Accelerated water removal from frozen thin films containing bacteria. Int J Pharm 2022; 630:122408. [PMID: 36400132 DOI: 10.1016/j.ijpharm.2022.122408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Freeze-drying, or lyophilization, is widely used to produce pharmaceutical solids that contain temperature-sensitive materials. Herein, using Escherichia coli as a model live organism, whose viability in dry powders is highly sensitive to the water content in the powders, we demonstrated that the drying rate from the frozen thin films generated by thin-film freezing (TFF) is significantly faster than from the bulk frozen solids in conventional shelf freeze-drying. This is likely because the loosely stacked frozen thin films provided a larger solid-air interface and the low thickness of the thin films provided a low mass transfer resistance. The highly porous microstructure and high specific surface area of the thin-film freeze-dried powders may also be related to the faster drying observed. Moreover, we demonstrated that TFF can be applied to produce dry powders of E. coli, a Gram-negative bacterium, or Lactobacillus acidophilus, a Gram-positive bacterium, with minimum bacterial viability loss (i.e., within one log reduction). It is concluded that the TFF technology is promising in accelerating water removal from frozen samples.
Collapse
|
14
|
Dao HM, Sahakijpijarn S, Chrostowski R, Peng HH, Moon C, Xu H, Mangolini F, Do HH, Cui Z, Williams RO. Entrapment of air microbubbles by ice crystals during freezing exacerbates freeze-induced denaturation of proteins. Int J Pharm 2022; 628:122306. [DOI: 10.1016/j.ijpharm.2022.122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
15
|
AboulFotouh K, Uno N, Xu H, Moon C, Sahakijpijarn S, Christensen DJ, Davenport GJ, Cano C, Ross TM, Williams Iii RO, Cui Z. Formulation of dry powders of vaccines containing MF59 or AddaVax by Thin-Film Freeze-Drying: Towards a dry powder universal flu vaccine. Int J Pharm 2022; 624:122021. [PMID: 35842082 DOI: 10.1016/j.ijpharm.2022.122021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
MF59® is an oil-in-water (O/W) nanoemulsion-based vaccine adjuvant that is often used in seasonal and pandemic influenza vaccines. We explored the feasibility of developing dry powders of vaccines adjuvanted with MF59 or AddaVax™, a preclinical grade equivalent of MF59 with the same composition and droplet size as MF59, by thin-film freeze-drying (TFFD). Liquid AddaVax alone was successfully converted to a dry powder by TFFD using trehalose as a stabilizing agent while maintaining the droplet size distribution of AddaVax after it was reconstituted. TFFD was then applied to convert liquid AddaVax-adjuvanted vaccines containing either a model antigen (e.g., ovalbumin) or mono-, bi-, and tri-valent recombinant hemagglutinin (rHA) protein-based H1 and/or H3 (universal) influenza vaccine candidates, as well as the MF59-containing Fluad® Quadrivalent influenza vaccine to dry powders. Both antigens and stabilizing agents affected the physical properties of the vaccines (e.g., mean particle size and particle size distribution) after the vaccines were subjected to TFFD. Importantly, the integrity and hemagglutination activity of the rHA antigens did not significantly change and the immunogenicity of reconstituted influenza vaccine candidates was maintained when evaluated in a mouse model. The vaccine dry powder was not sensitive to repeated freezing-and-thawing, in contrast to its liquid counterpart. It is concluded that TFFD can be applied to convert liquid vaccines containing MF59 or AddaVax to dry powders while maintaining the immunogenicity of the vaccines. Ultimately, TFFD technology may be used to prepare dry powders of multivalent universal influenza vaccines.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Naoko Uno
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sawittree Sahakijpijarn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Chris Cano
- TFF Pharmaceuticals, Inc., Fort Worth, TX 76107, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
16
|
Dao HM, Sahakijpijarn S, Chrostowski RR, Moon C, Mangolini F, Cui Z, Williams RO. Aggregation of Lactoferrin Caused by Droplet Atomization Process via a Two-Fluid Nozzle: The Detrimental Effect of Air-Water Interfaces. Mol Pharm 2022; 19:2662-2675. [PMID: 35639017 DOI: 10.1021/acs.molpharmaceut.2c00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological macromolecules, especially therapeutic proteins, are delicate and highly sensitive to denaturation from stresses encountered during the manufacture of dosage forms. Thin-film freeze-drying (TFFD) and spray freeze-drying (SFD) are two processes used to convert liquid forms of protein into dry powders. In the production of inhalable dry powders that contain proteins, these potential stressors fall into three categories based on their occurrence during the primary steps of the process: (1) droplet formation (e.g., the mechanism of droplet formation, including spray atomization), (2) freezing, and (3) frozen water removal (e.g., sublimation). This study compares the droplet formation mechanism used in TFFD and SFD by investigating the effects of spraying on the stability of proteins, using lactoferrin as a model. This study considers various perspectives on the denaturation (e.g., conformation) of lactoferrin after subjecting the protein solution to the atomization process using a pneumatic two-fluid nozzle (employed in SFD) or a low-shear drop application through the nozzle. The surface activity of lactoferrin was examined to explore the interfacial adsorption tendency, diffusion, and denaturation process. Subsequently, this study also investigates the secondary and tertiary structure of lactoferrin and the quantification of monomers, oligomers, and, ultimately, aggregates. The spraying process affected the tertiary structure more negatively than the tightly woven secondary structure, resulting in the peak position corresponding to the tryptophan (Trp) residues red-shifting by 1.5 nm. This conformational change can either (a) be reversed at low concentrations via relaxation or (b) proceed to form irreversible aggregates at higher concentrations. Interestingly, when the sample was allowed to progress into micrometer-sized aggregates, such a dramatic change was not detected using methods such as size-exclusion chromatography, polyacrylamide gel electrophoresis, and dynamic light scattering at 173°. A more complete understanding of the heterogeneous protein sample was achieved only through a combination of 173 and 13° backward and forward scattering, a combination of derived count rate measurements, and microflow imaging (MFI). After studying the impact of droplet formation mechanisms on aggregation tendency of lactoferrin, we further investigated two additional model proteins with different surface activity: bovine IgG (serving as a non surface-active negative reference), and β-galactosidase (another surface-active protein). The results corroborated the lactoferrin findings that spray-atomization-related stress-induced protein aggregation was much more pronounced for proteins that are surface active (lactoferrin and β-galactosidase), but it was minimal for non-surface-active protein (bovine IgG). Finally, compared to the low-shear dripping used in the TFFD process, lactoferrin underwent a relatively fast conformational change upon exposure to the high air-water interface of the two-fluid atomization nozzle used in the SFD process as compared to the low shear dripping used in the TFFD process. The interfacial-induced denaturation that occurred during spraying was governed primarily by the size of the atomized droplets, regardless of the duration of exposure to air. The percentage of denatured protein population and associated activity loss, in the case of β-galactosidase, was determined to range from 2 to 10% depending on the air-flow rate of the spraying process.
Collapse
Affiliation(s)
- Huy M Dao
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | | | - Robert R Chrostowski
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas78712, United States
- Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas78712, United States
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas78712, United States
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
17
|
AboulFotouh K, Xu H, Moon C, Williams RO, Cui Z. Development of (Inhalable) Dry Powder Formulations of AS01 B-Containing Vaccines Using Thin-Film Freeze-Drying. Int J Pharm 2022; 622:121825. [PMID: 35577037 DOI: 10.1016/j.ijpharm.2022.121825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
AS01B is a liposomal formulation of two immunostimulants namely 3-O-desacyl-4́-monophosphoryl lipid A (MPL) and QS-21. The liposomal formulation of AS01B reduces the endotoxicity of MPL and the lytic activity of QS-21. The AS01B-adjuvanted Shingrix vaccine is marketed in a two-vial presentation, with the liquid AS01B liposomes in one vial and the antigen as a dry powder in another vial. In the present study, we tested the feasibility of applying thin-film freeze-drying (TFFD) to engineer dry powders of the AS01B liposomal adjuvant alone or vaccines containing AS01B as an adjuvant. Initially, we showed that after the AS01B liposomal adjuvant was subjected to TFFD using sucrose as a stabilizer at 4% w/v, the particle size distribution of AS01B liposomes reconstituted from the dry powder was identical to the liquid adjuvant before drying. We then showed using ovalbumin (OVA) as a model antigen adjuvanted with AS01B (AS01B/OVA) that subjecting the AS01B/OVA vaccine to TFFD and subsequent reconstitution did not negatively affect the AS01B liposome particle size, nor the immunogenicity of the vaccine. Importantly, the thin-film freeze-dried AS01B/OVA vaccine, unlike its liquid counterpart, was not sensitive to repeated freezing-and-thawing. The developed AS01B/OVA dry powder also showed the desirable aerosol properties (i.e., fine particle fraction of 66.3 ± 4.9% and mass median aerodynamic diameter of 2.4 ± 0.1 µm) for potential pulmonary administration. Finally, the feasibility of using TFFD to prepare dry powders of AS01B-adjuvanted vaccines was further confirmed using AS01B-adjuvanted Fluzone Quadrivalent and Shingrix, which contains AS01B. It is concluded that the TFFD technology can enable the formulation of AS01B-adjuvanted vaccines as freezing-insensitive, inhalable dry powders in a single-vial presentation.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Hufnagel S, Xu H, Sahakijpijarn S, Moon C, Chow LQ, Williams III RO, Cui Z. Dry Powders for Inhalation Containing Monoclonal Antibodies Made by Thin-Film Freeze-Drying. Int J Pharm 2022; 618:121637. [DOI: 10.1016/j.ijpharm.2022.121637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
19
|
Xu H, Bhowmik T, Gong K, Huynh TNA, Williams RO, Cui Z. Thin-film freeze-drying of a bivalent Norovirus vaccine while maintaining the potency of both antigens. Int J Pharm 2021; 609:121126. [PMID: 34560208 DOI: 10.1016/j.ijpharm.2021.121126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
A bivalent Norovirus vaccine candidate has been developed that contains Norovirus strain GI.1 Norwalk-virus like particles (VLP) and strain GII.4 Consensus VLP adsorbed on aluminum (oxy)hydroxide. The Norwalk and Consensus antigens have different stability profiles, making it challenging to prepare a dry powder form of the Norovirus vaccine while maintaining the potency of both antigens. In the present study, we tested the feasibility of converting the vaccine from a liquid suspension to dry powders by thin-film freeze-drying (TFFD). With the proper amount of trehalose and/or sucrose as cryoprotectant (i.e. sucrose alone at 4.55% or 5.55%, w/v, or trehalose at 3-4% with 0.55% of sucrose), TFFD can be applied to successfully convert the Norovirus vaccine candidate into dry powders without causing antigen loss or particle aggregation, while maintaining the relative potency of both antigens within a specified acceptable range. In an accelerated stability study, the potency of the antigens was also maintained in the specified acceptable range after the dry powders prepared by TFFD in the presence of 5.55% (w/v) of sucrose were stored for eight weeks at 40 °C, 75% relative humidity. It is concluded that it is feasible to apply TFFD to convert the Norovirus vaccine from a liquid suspension to stable dry powders.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | | | | | - Thu Ngoc Anh Huynh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
20
|
Zhang Y, Soto M, Ghosh D, Williams RO. Manufacturing Stable Bacteriophage Powders by Including Buffer System in Formulations and Using Thin Film Freeze-drying Technology. Pharm Res 2021; 38:1793-1804. [PMID: 34697726 DOI: 10.1007/s11095-021-03111-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Bacteriophage (phage) therapy has re-gained attention lately given the ever-increasing prevalence of multi-drug resistance 'super-bugs'. To develop therapeutic phage into clinically usable drug products, the strategy of solidifying phage formulations has been implemented to diversify the dosage forms and to overcome the storage condition limitations for liquid phage formulations. METHOD In our work, we hypothesize and tested that an advanced technology, thin film freeze-drying (TFFD), can be used to produce phage containing dry powders without significantly losing phage viability. Here we selected T7 phage as our model phage in a preliminary screening study. RESULTS We found that a binary excipient matrix of sucrose and leucine at ratios of 90:10 or 75:25 by weight, protected phage from the stresses encountered during the TFFD process. In addition, we confirmed that incorporating a buffer system in the formulation significantly improved the survival of phage during the initial freezing step and subsequent sublimation step in the solidifying processes. The titer loss of phage in SM buffer (Tris/NaCl/MgSO4) containing formulation was as low as 0.19 log plaque forming units, which indicated that phage function was well preserved after the TFFD process. The presence of buffers markedly reduced the geometric particle sizes as determined by a dry dispersion method using laser diffraction, which indicated that the TFFD phage powder formulations were easily sheared into smaller powder aggregates, an ideal property for facilitating a variety of topical drug delivery routes including pulmonary delivery through dry powder inhalers, nebulization after reconstitution, and intranasal or wound therapy, etc. CONCLUSION: From these findings, we show that introducing buffer system can stabilize phage during dehydration processes, and TFFD, as a novel particle engineering method, can successfully produce phage containing powders that possess the desired properties for bioactivity and potentially for inhalation therapy.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.,Formulation Development Department, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Melissa Soto
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
21
|
Zhang H, Zhang Y, Williams RO, Smyth HDC. Development of PEGylated chitosan/CRISPR-Cas9 dry powders for pulmonary delivery via thin-film freeze-drying. Int J Pharm 2021; 605:120831. [PMID: 34175380 DOI: 10.1016/j.ijpharm.2021.120831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022]
Abstract
Gene therapy and more recently, gene editing is attractive via pulmonary delivery for enhanced regional targeting. However, processing of sensitive therapeutics into dry powders for inhalation can be problematic due to relatively stressful spraying or milling steps. Thin-film freeze-drying (TFFD) has attracted attention with its promising application in the production of DPI formulations possessing respirable particle size range (1-5 µm) particularly for thermally or shear sensitive therapeutics. In this study, gene editing dry powder formulations containing PEGylated chitosan/CRISPR-Cas9 nanocomplexes were prepared by TFFD. To evaluate stability during processing, nanocomplex size, zeta potential and transfection efficiency of reconstituted formulations were evaluated, and six potential DPI formulations were identified and characterized in terms of geometric particle size, powder surface morphology, and crystallinity. It was found that two formulations containing 3% mannitol with or without leucine were identified as suitable for inhalation with a desired aerodynamic performance. The flow rate dependency and inhaler dependency of these two formulations were also evaluated at different flow rates (60 L/min and 45 L/min) and different inhaler devices (RS01 DPI and HandiHaler) using NGI testing. This study demonstrated that TFFD processing of CRISPR-Cas9 polymer nanocomplexes resulted in a suitable dry powder for inhalation.
Collapse
Affiliation(s)
- Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
22
|
Chang RYK, Chow MY, Khanal D, Chen D, Chan HK. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev 2021; 172:64-79. [PMID: 33705876 DOI: 10.1016/j.addr.2021.02.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic biologics such as genes, peptides, proteins, virus and cells provide clinical benefits and are becoming increasingly important tools in respiratory medicine. Pulmonary delivery of therapeutic biologics enables the potential for safe and effective treatment option for respiratory diseases due to high bioavailability while minimizing absorption into the systemic circulation, reducing off-target toxicity to other organs. Development of inhalable powder formulation requires stabilization of complex biological materials, and each type of biologics may present unique challenges and require different formulation strategy combined with manufacture process to ensure biological and physical stabilities during production and over shelf-life. This review examines key formulation strategies for stabilizing proteins, nucleic acids, virus (bacteriophages) and bacterial cells in inhalable powders. It also covers characterization methods used to assess physicochemical properties and aerosol performance of the powders, biological activity and structural integrity of the biologics, and chemical analysis at the nanoscale. Furthermore, the review includes manufacture technologies which are based on lyophilization and spray-drying as they have been applied to manufacture Food and Drug Administration (FDA)-approved protein powders. In perspective, formulation and manufacture of inhalable powders for biologic are highly challenging but attainable. The key requirements are the stability of both the biologics and the powder, along with the powder dispersibility. The formulation to be developed depends on the manufacture process as it will subject the biologics to different stresses (temperature, mechanical and chemical) which could lead to degradation by different pathways. Stabilizing excipients coupled with the suitable choice of process can alleviate the stability issues of inhaled powders of biologics.
Collapse
|
23
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
24
|
AboulFotouh K, Cui Z, Williams RO. Next-Generation COVID-19 Vaccines Should Take Efficiency of Distribution into Consideration. AAPS PharmSciTech 2021; 22:126. [PMID: 33835300 PMCID: PMC8034273 DOI: 10.1208/s12249-021-01974-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
The dire need for safe and effective coronavirus disease (COVID-19) vaccines is met with many vaccine candidates being evaluated in pre-clinical and clinical studies. The COVID-19 vaccine candidates currently in phase 3 or phase 2/3 clinical trials as well as those that recently received emergency use authorization (EUA) from the United States Food and Drug Administration (FDA) and/or other regulatory agencies worldwide require either cold (i.e., 2–8°C) or even freezing temperatures as low as −70°C for storage and distribution. Thus, existing cold chain will struggle to support both the standard national immunization programs and COVID-19 vaccination. The requirement for cold chain is now a major challenge towards worldwide rapid mass vaccination against COVID-19. In this commentary, we stress that thermostabilizing technologies are available to enable cold chain-free vaccine storage and distribution, as well as potential needle-free vaccination. Significant efforts on thermostabilizing technologies must now be applied on next-generation COVID-19 vaccines for more cost-effective worldwide mass vaccination and COVID-19 eradication.
Collapse
|
25
|
Wang JL, Hanafy MS, Xu H, Leal J, Zhai Y, Ghosh D, Williams III RO, David Charles Smyth H, Cui Z. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int J Pharm 2021; 596:120215. [DOI: 10.1016/j.ijpharm.2021.120215] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022]
|
26
|
Alzhrani RF, Xu H, Moon C, Suggs LJ, Williams RO, Cui Z. Thin-Film Freeze-Drying Is a Viable Method to Convert Vaccines Containing Aluminum Salts from Liquid to Dry Powder. Methods Mol Biol 2021; 2183:489-498. [PMID: 32959262 DOI: 10.1007/978-1-0716-0795-4_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aluminum salts are used as an adjuvant in many human and veterinary vaccines. However, aluminum salt-adjuvanted vaccines are sensitive to temperature change and must be stored at 2-8 °C. Inadvertently exposing them to slow freezing temperatures can cause irreversible aggregation of aluminum salt microparticles and loss of potency and/or immunogenicity of the vaccines. There have been efforts to overcome this limitation by either adding stabilizing agents to the liquid vaccine or converting the vaccine from a liquid to a dry powder. Thin-film freeze-drying (TFFD) has proven to be an effective process to convert aluminum salt-adjuvanted vaccines from liquid to dry powder without causing particle aggregation or loss of immunogenicity upon reconstitution. This chapter provides a review of the TFFD process and examples for preparing stable aluminum salt-adjuvanted vaccine dry powders using TFFD.
Collapse
Affiliation(s)
- Riyad F Alzhrani
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Laura J Suggs
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
27
|
Wang J, Peng Y, Xu H, Cui Z, Williams RO. The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation. AAPS PharmSciTech 2020; 21:225. [PMID: 32761294 PMCID: PMC7405756 DOI: 10.1208/s12249-020-01744-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.
Collapse
Affiliation(s)
- Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
28
|
AboulFotouh K, Zhang Y, Maniruzzaman M, Williams RO, Cui Z. Amorphous solid dispersion dry powder for pulmonary drug delivery: Advantages and challenges. Int J Pharm 2020; 587:119711. [PMID: 32739389 DOI: 10.1016/j.ijpharm.2020.119711] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Amorphous solid dispersion (ASD) is commonly used in pharmaceutical industry. It has been mainly employed to enhance the oral bioavailability of poorly water-soluble drugs that belong to class II and IV of the biopharmaceutical classification system but has showed promise in other areas of pharmaceutical research. In this review, the potential and limitations of ASD dry powder for inhalation are discussed. ASD powder for inhalation (ASD-IP) is commonly prepared by spray drying technique. The physicochemical characteristics of ASD-IP could be tailored to achieve effective lung deposition. ASD-IP could also attain rapid dissolution behavior to achieve therapeutically effective concentration either locally or systemically before particle clearance in the lung. The key challenges of using ASD powder for inhalation include the possible chemical and/or physical instability of the amorphous phase during manufacturing and in vivo, and the moisture and temperature sensitivity of ASD-IP that affects its storage stability.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yi Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
29
|
Zhang Y, MacKenzie B, Koleng JJ, Maier E, Warnken ZN, Williams RO. Development of an Excipient-Free Peptide Dry Powder Inhalation for the Treatment of Pulmonary Fibrosis. Mol Pharm 2020; 17:632-644. [PMID: 31913640 DOI: 10.1021/acs.molpharmaceut.9b01085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The caveolin scaffolding domain peptide (CSP) is being developed for the therapeutic intervention of a lethal lung disease, idiopathic pulmonary fibrosis. While direct respiratory delivery of CSP7 (a 7-mer fragment of CSP) is considered an effective route, proper formulation and processing of the peptide are required. First, air-jet milling technology was performed in order to micronize the neat peptide powder. Next, the fine particles were subjected to a stability study with physical and chemical characterizations. In addition, the in vivo efficacy of processed CSP7 powder was evaluated in an animal model of lung fibrosis. The results revealed that, with jet milling, the particle size of CSP7 was reduced to a mass median aerodynamic diameter of 1.58 ± 0.1 μm and 93.3 ± 3.3% fine particle fraction, optimal for deep lung delivery. A statistically significant reduction of collagen was observed in diseased lung tissues of mice that received CSP7 powder for inhalation. The particles remained chemically and physically stable after micronization and during storage. This work demonstrated that jet milling is effective in the manufacturing of a stable, excipient-free CSP7 inhalation powder for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , 2409 University Avenue , Austin , Texas 78712 , United States
| | - BreAnne MacKenzie
- Lung Therapeutics Inc. , 2600 Via Fortuna, Suite 360 , Austin , Texas 78746 , United States
| | - John J Koleng
- Lung Therapeutics Inc. , 2600 Via Fortuna, Suite 360 , Austin , Texas 78746 , United States
| | - Esther Maier
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , 2409 University Avenue , Austin , Texas 78712 , United States
| | - Zachary N Warnken
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , 2409 University Avenue , Austin , Texas 78712 , United States
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy , The University of Texas at Austin , 2409 University Avenue , Austin , Texas 78712 , United States
| |
Collapse
|
30
|
Moon C, Sahakijpijarn S, Koleng JJ, Williams RO. Processing design space is critical for voriconazole nanoaggregates for dry powder inhalation produced by thin film freezing. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
31
|
Moon C, Watts AB, Lu X, Su Y, Williams RO. Enhanced Aerosolization of High Potency Nanoaggregates of Voriconazole by Dry Powder Inhalation. Mol Pharm 2019; 16:1799-1812. [PMID: 30925839 DOI: 10.1021/acs.molpharmaceut.8b00907] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Invasive pulmonary aspergillosis is a deadly fungal infection with a high mortality rate, particularly in patients having undergone transplant surgery. Voriconazole, a triazole antifungal pharmaceutical product, is considered as a first-line therapy for invasive pulmonary aspergillosis, and exhibits efficacy even for patients who have failed other antifungal drug therapies. The objective of this study is to develop high potency nanoaggregates of crystalline voriconazole composition for dry powder inhalation using the particle engineering process, thin film freezing. In this study, mannitol at low concentrations acted as a surface texture-modifying agent, and we evaluated the physicochemical and aerodynamic properties of the voriconazole formulations containing different amounts of mannitol. In vitro aerosol performance data demonstrated that powder formulations consisting of 90 to 97% (w/w) voriconazole were the optimum for inhalation with a fine particle fraction (% of delivered dose) as high as 73.6 ± 3.2% and mass median aerodynamic diameter of 3.03 ± 0.17 μm when delivered by a commercially available device. The thin film freezing process enabled phase-separated submicron crystalline mannitol to be oriented such as to modify the surface texture of the crystalline voriconazole nanoaggregates, thus enhancing their aerosolization. Addition of as low as 3% (w/w) mannitol significantly increased the fine particle fraction (% of metered dose) of voriconazole nanoaggregates when compared to compositions without mannitol (40.8% vs 24.6%, respectively). The aerosol performance of the voriconazole nanoaggregates with 5% (w/w) mannitol was maintained for 13 months at 25 °C/60% RH. Therefore, voriconazole nanoaggregates having low amounts of surface texture-modifying mannitol made by thin film freezing are a feasible local treatment option for invasive pulmonary aspergillosis with high aerosolization efficiency and drug loading for dry powder inhalation.
Collapse
Affiliation(s)
- Chaeho Moon
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Alan B Watts
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Xingyu Lu
- Merck Research Laboratories , Merck & Co., Inc., Kenilworth , New Jersey 07033 , United States
| | - Yongchao Su
- Merck Research Laboratories , Merck & Co., Inc., Kenilworth , New Jersey 07033 , United States
| | - Robert O Williams
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
32
|
Moon C, Smyth HDC, Watts AB, Williams RO. Delivery Technologies for Orally Inhaled Products: an Update. AAPS PharmSciTech 2019; 20:117. [PMID: 30783904 DOI: 10.1208/s12249-019-1314-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/18/2019] [Indexed: 12/22/2022] Open
Abstract
Orally inhaled products have well-known benefits. They allow for effective local administration of many drugs for the treatment of pulmonary disease, and they allow for rapid absorption and avoidance of first-pass metabolism of several systemically acting drugs. Several challenges remain, however, such as dosing limitations, low and variable deposition of the drug in the lungs, and high drug deposition in the oropharynx region. These challenges have stimulated the development of new delivery technologies. Both formulation improvements and new device technologies have been developed through an improved understanding of the mechanisms of aerosolization and lung deposition. These new advancements in formulations have enabled improved aerosolization by controlling particle properties such as density, size, shape, and surface energy. New device technologies emerging in the marketplace focus on minimizing patient errors, expanding the range of inhaled drugs, improving delivery efficiency, increasing dose consistency and dosage levels, and simplifying device operation. Many of these new technologies have the potential to improve patient compliance. This article reviews how new delivery technologies in the form of new formulations and new devices enhance orally inhaled products.
Collapse
|
33
|
Manufacturing and ambient stability of shelf freeze dried bacteriophage powder formulations. Int J Pharm 2018; 542:1-7. [DOI: 10.1016/j.ijpharm.2018.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 12/18/2022]
|
34
|
Thakkar SG, Ruwona TB, Williams RO, Cui Z. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures. Hum Vaccin Immunother 2017; 13:936-946. [PMID: 28051903 DOI: 10.1080/21645515.2016.1259042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Insoluble aluminum salts such as aluminum oxyhydroxide have been used for decades as adjuvants in human vaccines, and many vaccines contain aluminum salts as adjuvants. Aluminum salt-adjuvanted vaccines must be managed in cold-chain (2-8° C) during transport and storage, as vaccine antigens in general are too fragile to be stable in ambient temperatures, and unintentional slowing freezing causes irreversible aggregation and permanent damage to the vaccines. Previously, we reported that thin-film freeze-drying can be used to convert vaccines adjuvanted with an aluminum salt from liquid suspension into dry powder without causing particle aggregation or decreasing in immunogenicity following reconstitution. In the present study, using ovalbumin (OVA)-adsorbed Alhydrogel® (i.e. aluminum oxyhydroxide, 2% w/v) as a model vaccine, we showed that the immunogenicity of thin-film freeze-dried OVA-adsorbed Alhydrogel® vaccine powder was not significantly changed after it was exposed for an extended period of time in temperatures as high as 40° C or subjected to repeated slow freezing-and-thawing. It is expected that immunization programs can potentially benefit by integrating thin-film freeze-drying into vaccine preparations.
Collapse
Affiliation(s)
- Sachin G Thakkar
- a The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division , Austin , TX , USA
| | - Tinashe B Ruwona
- a The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division , Austin , TX , USA
| | - Robert O Williams
- a The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division , Austin , TX , USA
| | - Zhengrong Cui
- a The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division , Austin , TX , USA
| |
Collapse
|
35
|
Roth SV. A deep look into the spray coating process in real-time-the crucial role of x-rays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:403003. [PMID: 27537198 DOI: 10.1088/0953-8984/28/40/403003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.
Collapse
Affiliation(s)
- Stephan V Roth
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany. Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
36
|
Maincent J, Williams RO. Precipitation Technologies for Nanoparticle Production. FORMULATING POORLY WATER SOLUBLE DRUGS 2016. [DOI: 10.1007/978-3-319-42609-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Liu S, Watts AB, Du J, Bui A, Hengsawas S, Peters JI, Williams RO. Formulation of a novel fixed dose combination of salmeterol xinafoate and mometasone furoate for inhaled drug delivery. Eur J Pharm Biopharm 2015. [DOI: 10.1016/j.ejpb.2015.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Park K. Thin-film freeze-drying for lyophilization of vaccines. J Control Release 2015; 204:98. [DOI: 10.1016/j.jconrel.2015.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/09/2015] [Accepted: 03/20/2015] [Indexed: 11/15/2022]
|
39
|
A method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitution. J Control Release 2015; 204:38-50. [PMID: 25735896 DOI: 10.1016/j.jconrel.2015.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
Many currently licensed and commercially available human vaccines contain aluminum salts as vaccine adjuvants. A major limitation with these vaccines is that they must not be exposed to freezing temperatures during transport or storage such that the liquid vaccine freezes, because freezing causes irreversible coagulation that damages the vaccines (e.g., loss of efficacy). Therefore, vaccines that contain aluminum salts as adjuvants are formulated as liquid suspensions and are required to be kept in cold chain (2-8°C) during transport and storage. Formulating vaccines adjuvanted with aluminum salts into dry powder that can be readily reconstituted before injection may address this limitation. Spray freeze-drying of vaccines with low concentrations of aluminum salts and high concentrations of trehalose alone, or a mixture of sugars and amino acids, as excipients can convert vaccines containing aluminum salts into dry powder, but fails to preserve the particle size and/or immunogenicity of the vaccines. In the present study, using ovalbumin as a model antigen adsorbed onto aluminum hydroxide or aluminum phosphate, a commercially available tetanus toxoid vaccine adjuvanted with potassium alum, a human hepatitis B vaccine adjuvanted with aluminum hydroxide, and a human papillomavirus vaccine adjuvanted with aluminum hydroxyphosphate sulfate, it was shown that vaccines containing a relatively high concentration of aluminum salts (i.e., up to ~1%, w/v, of aluminum hydroxide) can be converted into a dry powder by thin-film freezing followed by removal of the frozen solvent by lyophilization while using low levels of trehalose (i.e., as low as 2% w/v) as an excipient. Importantly, the thin-film freeze-drying process did not cause particle aggregation, nor decreased the immunogenicity of the vaccines. Moreover, repeated freezing-and-thawing of the dry vaccine powder did not cause aggregation. Thin-film freeze-drying is a viable platform technology to produce dry powders of vaccines that contain aluminum salts.
Collapse
|
40
|
Wang YB, Watts AB, Peters JI, Liu S, Batra A, Williams RO. In vitro and in vivo performance of dry powder inhalation formulations: comparison of particles prepared by thin film freezing and micronization. AAPS PharmSciTech 2014; 15:981-93. [PMID: 24824172 DOI: 10.1208/s12249-014-0126-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/10/2014] [Indexed: 11/30/2022] Open
Abstract
Recently, inhaled immunosuppressive agents have attracted increasing attention for maintenance therapy following lung transplantation. The rationale for this delivery approach includes a more targeted and localized delivery to the diseased site with reduced systemic exposure, potentially leading to decreased adverse side effects. In this study, the in vitro and in vivo performance of an amorphous formulation prepared by thin film freezing (TFF) and a crystalline micronized formulation produced by milling was compared for tacrolimus (TAC). Despite the relatively large geometric size, the TFF-processed formulation was capable of achieving deep lung delivery due to its low-density, highly porous, and brittle characteristics. When emitted from a Miat® monodose inhaler, TFF-processed TAC formulations exhibited a fine particle fraction (FPF) of 83.3% and a mass median aerodynamic diameter (MMAD) of 2.26 μm. Single-dose 24-h pharmacokinetic studies in rats demonstrated that the TAC formulation prepared by TFF exhibited higher pulmonary bioavailability with a prolonged retention time in the lung, possibly due to decreased clearance (e.g., macrophage phagocytosis), compared to the micronized TAC formulation. Additionally, TFF formulation generated a lower systemic TAC concentration with smaller variability than the micronized formulation following inhalation, potentially leading to reduced side effects related to the drug in systemic circulation.
Collapse
|
41
|
Wang YB, Watts A, Williams R. Effect of processing parameters on the physicochemical and aerodynamic properties of respirable brittle matrix powders. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50079-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Lang B, McGinity JW, Williams RO. Dissolution enhancement of itraconazole by hot-melt extrusion alone and the combination of hot-melt extrusion and rapid freezing--effect of formulation and processing variables. Mol Pharm 2013; 11:186-96. [PMID: 24283890 DOI: 10.1021/mp4003706] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated the effects of the hot-melt extrusion (HME) process on the properties of itraconazole (ITZ) amorphous solid dispersions made by thin film freezing (TFF) technology. The ITZ-HPMCAS L (1:2) TFF composition exhibited limited drug release in acidic media. HME of the ITZ-HPMCAS TFF composition with hydrophilic carriers improved the drug release rate in acidic media. The type and level of hydrophilic carrier in the composition affected the dissolution profiles of the extrudates. A design of experiments (DoE) study was conducted to elucidate those effects. Hot-melt extrusion processing variables such as extrusion temperature and screw configuration also played a critical role on the properties of the extruded compositions. A higher degree of mixing reduced the crystallinity of semicrystalline excipients and favored the drug release in the acidic media; moreover, the drug precipitation rate in the neutral pH media was reduced.
Collapse
Affiliation(s)
- Bo Lang
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , 2409 University Avenue, Mail Stop A1920, Austin, Texas 78712, United States
| | | | | |
Collapse
|
43
|
Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ. Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal-Air Battery Electrodes. J Phys Chem Lett 2013; 4:1254-9. [PMID: 26282138 DOI: 10.1021/jz400595z] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Perovskites are of great interest as replacements for precious metals and oxides used in bifunctional air electrodes involving the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Herein, we report the synthesis and activity of a phase-pure nanocrystal perovskite catalyst that is highly active for the OER and ORR. The OER mass activity of LaNiO3, synthesized by the calcination of a rapidly dried nanoparticle dispersion and supported on nitrogen-doped carbon, is demonstrated to be nearly 3-fold that of 6 nm IrO2 and exhibits no hysteresis during oxygen evolution. Moreover, strong OER/ORR bifunctionality is shown by the low total overpotential (1.02 V) between the reactions, on par or better than that of noble metal catalysts such as Pt (1.16 V) and Ir (0.92 V). These results are examined in the context of surface hydroxylation, and a new OER cycle is proposed that unifies theory and the unique surface properties of LaNiO3.
Collapse
Affiliation(s)
| | | | - Xiqing Wang
- #Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- #Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | | |
Collapse
|
44
|
Miller MA, Rodrigues MA, Glass MA, Singh SK, Johnston KP, Maynard JA. Frozen-state storage stability of a monoclonal antibody: aggregation is impacted by freezing rate and solute distribution. J Pharm Sci 2013; 102:1194-208. [PMID: 23400717 DOI: 10.1002/jps.23473] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/08/2013] [Accepted: 01/22/2013] [Indexed: 01/13/2023]
Abstract
Freezing of protein solutions perturbs protein conformation, potentially leading to aggregate formation during long-term storage in the frozen state. Macroscopic protein concentration profiles in small cylindrical vessels were determined for a monoclonal antibody frozen in a trehalose-based formulation for various freezing protocols. Slow cooling rates led to concentration differences between outer edges of the tank and the center, up to twice the initial concentration. Fast cooling rates resulted in much smaller differences in protein distribution, likely due to the formation of dendritic ice, which traps solutes in micropockets, limiting their transport by convection and diffusion. Analysis of protein stability after more than 6 months storage at either -10°C or -20°C [above glass transition temperature (T'g )] or -80°C (below T'g ) revealed that aggregation correlated with the cooling rate. Slow-cooled vessels stored above T'g exhibited increased aggregation with time. In contrast, fast-cooled vessels and those stored below T'g showed small to no increase in aggregation at any position. Rapid entrapment of protein in a solute matrix by fast freezing results in improved stability even when stored above T'g . © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1194-1208, 2013.
Collapse
Affiliation(s)
- Maria A Miller
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Respirable low-density microparticles formed in situ from aerosolized brittle matrices. Pharm Res 2012; 30:813-25. [PMID: 23229856 DOI: 10.1007/s11095-012-0922-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Inhalation of low-density porous particles enables deep lung delivery with less dependence on device design and patient inspiration. The purpose of this study was to implement Thin Film Freezing (TFF) to investigate a novel approach to dry powder inhalation. METHODS Powders produced by TFF were evaluated for aerodynamic and geometric particle size by cascade impaction and laser light scattering, respectively. Density measurements were conducted according to USP methods and calculated using data from particle size measurements. Excipient inclusion and its effect on moisture sorption was measured by Dynamic Vapor Sorption (DVS). RESULTS TFF-produced brittle matrix powders were sheared apart into respirable microparticles using a passive DPI device, producing fine particle fractions (FPF) up to 69% and mass median aerodynamic diameters (MMAD) as low as 2.6 μm. Particles had a mean geometric diameter ranging from 25 μm to 50 μm and mass densities of approximately 0.01 g/cm(3). Powders were susceptible to moisture-induced matrix collapse, capillary forces and electrostatic charging; although formulations containing mannitol or no sugar excipient proved to be more robust. CONCLUSIONS Aerosolized brittle matrices produced by TFF may prove to be a useful platform for highly efficient pulmonary delivery of thermally labile, highly potent, and poorly soluble drugs.
Collapse
|
47
|
Miller MA, Khan TA, Kaczorowski KJ, Wilson BK, Dinin AK, Borwankar AU, Rodrigues MA, Truskett TM, Johnston KP, Maynard JA. Antibody nanoparticle dispersions formed with mixtures of crowding molecules retain activity and in vivo bioavailability. J Pharm Sci 2012; 101:3763-78. [PMID: 22777686 DOI: 10.1002/jps.23256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/01/2012] [Accepted: 06/14/2012] [Indexed: 01/07/2023]
Abstract
Monoclonal antibodies continue to command a large market for treatment of a variety of diseases. In many cases, the doses required for therapeutic efficacy are large, limiting options for antibody delivery and administration. We report a novel formulation strategy based on dispersions of antibody nanoclusters that allows for subcutaneous injection of highly concentrated antibody (≈ 190 mg/mL). A solution of monoclonal antibody 1B7 was rapidly frozen and lyophilized using a novel spiral-wound in-situ freezing technology to generate amorphous particles. Upon gentle stirring, a translucent dispersion of approximately 430 nm protein clusters with low apparent viscosity (≈ 24 cp) formed rapidly in buffer containing the pharmaceutically acceptable crowding agents such as trehalose, polyethylene glycol, and n-methyl-2-pyrrolidone. Upon in vitro dilution of the dispersion, the nanoclusters rapidly reverted to monomeric protein with full activity, as monitored by dynamic light scattering and antigen binding. When administered to mice as an intravenous solution, subcutaneous solution, or subcutaneous dispersion at similar (4.6-7.3 mg/kg) or ultra-high dosages (51.6 mg/kg), the distribution and elimination kinetics were within error and the protein retained full activity. Overall, this method of generating high-concentration, low-viscosity dispersions of antibody nanoclusters could lead to improved administration and patient compliance, providing new opportunities for the biotechnology industry.
Collapse
Affiliation(s)
- Maria A Miller
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Zhang J, Wu L, Chan HK, Watanabe W. Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 2011; 63:441-55. [PMID: 21118707 DOI: 10.1016/j.addr.2010.11.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/17/2010] [Accepted: 11/21/2010] [Indexed: 12/17/2022]
Abstract
Nanoparticles bring many benefits to pulmonary drug delivery applications, especially for systemic delivery and drugs with poor solubility. They have recently been explored in pressurized metered dose inhaler, nebulizer, and dry powder inhaler applications, mostly in polymeric forms. This article presents a review of processes that have been used to generate pure (non polymeric) drug nanoparticles, methods for characterizing the particles/formulations, their in-vitro and in-vivo performances, and the fate of inhaled nanoparticles.
Collapse
|
50
|
Tam JM, Engstrom JD, Ferrer D, Williams RO, Johnston KP. Templated Open Flocs of Anisotropic Particles for Pulmonary Delivery with Pressurized Metered Dose Inhalers. J Pharm Sci 2010; 99:3150-65. [DOI: 10.1002/jps.22091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|