1
|
Morris S, Long M, Savage A, Owen A, Rannard S, Cauldbeck H. Ex vivo transdermal delivery of 3H-labelled atovaquone solid drug nanoparticles: a comparison of topical, intradermal injection and microneedle assisted administration. NANOSCALE ADVANCES 2023; 5:6400-6404. [PMID: 38024306 PMCID: PMC10662085 DOI: 10.1039/d3na00454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Inherent barrier properties of the skin impose significant challenges to the transdermal delivery of drugs to systemic circulation. Here, the ex vivo transdermal permeation and deposition of an anti-malarial prophylactic atovaquone solid drug nanoformulation is radiometrically evaluated following application of a solid microneedle format.
Collapse
Affiliation(s)
- Sam Morris
- Radiomaterials Laboratory, Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Mark Long
- Unilever Research Centre Port Sunlight, Quarry Road East, Bebington Wirral CH63 3JW UK
| | - Alison Savage
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
- Department of Pharmacology and Therapeutics, University of Liverpool Liverpool L7 3NY UK
| | - Steve Rannard
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
- Materials Innovation Factory, University of Liverpool Oxford Street Liverpool L7 3NY UK
| | - Helen Cauldbeck
- Radiomaterials Laboratory, Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
| |
Collapse
|
2
|
Liu T, Chen M, Fu J, Sun Y, Lu C, Quan G, Pan X, Wu C. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm Sin B 2021; 11:2326-2343. [PMID: 34522590 PMCID: PMC8424228 DOI: 10.1016/j.apsb.2021.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.
Collapse
Affiliation(s)
- Ting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Tobin KV, Fiegel J, Brogden NK. Thermosensitive Gels Used to Improve Microneedle-Assisted Transdermal Delivery of Naltrexone. Polymers (Basel) 2021; 13:polym13060933. [PMID: 33803552 PMCID: PMC8002892 DOI: 10.3390/polym13060933] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Transdermal delivery of naltrexone (NTX) can be enhanced using microneedles, although micropores generated this way can reseal by 48 h in humans, which prevents further drug delivery from a formulation. Poloxamer 407 (P407) is a thermosensitive polymer that may extend microneedle-assisted NTX delivery time by creating an in situ gel depot in the skin. We characterized gelation temperature, drug release, and permeation of P407 gels containing 7% NTX-HCl. To investigate microneedle effects on NTX-HCl permeation, porcine skin was treated with microneedles (600 or 750 μm length), creating 50 or 100 micropores. The formulations were removed from the skin at 48 h to simulate the effect of micropores resealing in vivo, when drug delivery is blunted. Gelation temperature increased slightly with addition of NTX-HCl. In vitro NTX-HCl release from P407 formulations demonstrated first order release kinetics. Microneedle treatment enhanced NTX-HCl permeation both from aqueous solution controls and P407 gels. Steady-state flux was overall lower in the P407 conditions compared to the aqueous solution, though ratios of AUCs before and after gel removal demonstrate that P407 gels provide more sustained release even after gel removal. This may be beneficial for reducing the required application frequency of microneedles for ongoing treatment.
Collapse
Affiliation(s)
- Kevin V. Tobin
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA 52242, USA;
| | - Jennifer Fiegel
- Department of Chemical and Biochemical Engineering, University of Iowa College of Engineering, Iowa City, IA 52242, USA;
| | - Nicole K. Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, Iowa City, IA 52242, USA;
- Department of Dermatology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
4
|
Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Ther Deliv 2021; 12:77-103. [DOI: 10.4155/tde-2020-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
Collapse
|
5
|
Gupta J, Gupta R, Vanshita. Microneedle Technology: An Insight into Recent Advancements and Future Trends in Drug and Vaccine Delivery. Assay Drug Dev Technol 2020; 19:97-114. [PMID: 33297823 DOI: 10.1089/adt.2020.1022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last decade, microneedle (MN) induced microporation multifunctional approaches to enhance the delivery of drugs through the skin. MN technology included micron-sized needles to create microchannels into the Stratum corneum of skin, the most significant protective layer. Delivery of drugs and vaccines through the transdermal route is an alternative route for hypodermic and oral. It overcomes the problems associated with gastrointestinal along with drug deterioration. It is affordable, noninvasive, painless, simple, and self-administered techniques that provide prolonged release of drugs to enhance patient compliance. The MN delivery focused on biopharmaceuticals like proteins or peptides. The novel concepts have drawn interest in using these techniques in tandem with other enhancement approaches. This review article discussed the latest advancements in MN technology. It emphasized types of MNs, methodology, mechanisms, strategies for delivery of several drugs and vaccines, and significant challenges in the marketing of biopharmaceuticals. Furthermore, relevant U.S. patents and clinical trials based on MNs are also accentuated. Therefore, MN techniques will play a pivotal role in promoting clinical applications and innovative research for scientists and researchers working in the pharmaceutical field.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | - Vanshita
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
6
|
Ghimirey KB, Ita K. Microneedle-Assisted Percutaneous Transport of Magnesium Sulfate. Curr Drug Deliv 2020; 17:140-147. [PMID: 31845631 DOI: 10.2174/1567201817666191217093936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In vitro diffusion experiments were performed to assess the permeation of magnesium sulfate across pig skin. METHODS The mean thickness of the dermatomed porcine skin was 648 ± 12 µm. Magnesium concentration was measured using inductively coupled plasma-optical emission spectroscopy. Transdermal flux of magnesium sulfate across MN-treated and untreated porcine skin was obtained from the slope of the steady-state linear portion of cumulative amount versus time curve. RESULTS Statistical analysis of the results was done with Student's t-test. The transdermal flux of magnesium sulfate across microneedle-treated porcine skin was 134.19 ± 2.4 µg/cm2/h and transdermal flux across untreated porcine skin was 4.64 ± 0.05 µg/cm2/h. Confocal microscopy was used to visualize the microchannels created by a solid microneedle roller (500 µm). CONCLUSION From our confocal microscopy studies, it was evident that the 500 μm long microneedles disrupted the stratum corneum and created microchannels measuring 191 ± 37 µm. The increase in transdermal flux across the microneedle-treated skin was statistically significant compared to that of controls, i.e., without the application of microneedles. With the application of microneedles, the transdermal flux of magnesium permeated over 12 h was approximately 33-fold higher in comparison to passive diffusion across an intact stratum corneum.
Collapse
Affiliation(s)
- Karna B Ghimirey
- College of Pharmacy Touro University, Mare Island-Vallejo California, CA 94592, United States
| | - Kevin Ita
- College of Pharmacy Touro University, Mare Island-Vallejo California, CA 94592, United States
| |
Collapse
|
7
|
Kollross B, Cunha-Filho M, Gelfuso GM, Gratieri T. Regulatory Requirements and Innovation: A Comparison of the Dermatologic Antifungal Drug Product Markets in Brazil and United States. Ther Innov Regul Sci 2018; 53:661-668. [PMID: 30286614 DOI: 10.1177/2168479018791791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Development of novel dermatological topical products for the treatment of cutaneous fungal infections is a constant necessity, especially in developing countries. Through public health policies, many developing countries have facilitated in the last decades the entry of generic products, which can be superficially seen as a threat to innovation. To verify whether regulatory requirements, or the waiving of some requirements, could have an impact on innovation, we performed a detailed technical comparison of the dermatologic antifungal markets of Brazil and of the United States, taking Brazil as an example of a developing country with more lenient requirements regarding the registration of generic topical drug products. METHODS The official databank of ANVISA (DATAVISA) and of US Food and Drug Administration (Orange Book) were assessed for valid topical dermatological antifungal drug products registered. RESULTS The Brazilian market has a greater number of registered drug products encompassing a greater variety of drug substances than the US, but the latter comprises more products with novel technologies. In both countries, cream was the predominant dosage form and imidazoles were the major substance group. Ketoconazole was the lead active substance in Brazil and ciclopirox was the lead drug in the US. Generic products dominated both markets. CONCLUSIONS Despite the great number of registered products, the Brazilian market lacks the latest technologies, reflecting that the ease of generics registration is not accompanied by innovation.
Collapse
Affiliation(s)
- Bianca Kollross
- 1 Management of Post-registration Evaluation of Synthetic's Medicines, General Office of Medicines, Brazilian Health Surveillance Agency (ANVISA), Brasília, Brazil.,2 Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Marcilio Cunha-Filho
- 2 Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Guilherme Martins Gelfuso
- 2 Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| | - Tais Gratieri
- 2 Laboratory of Food, Drugs and Cosmetics (LTMAC), School of Health Sciences, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
8
|
Insulin delivery systems combined with microneedle technology. Adv Drug Deliv Rev 2018; 127:119-137. [PMID: 29604374 DOI: 10.1016/j.addr.2018.03.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 11/24/2022]
Abstract
Diabetes, a metabolic disorder of glucose, is a serious chronic disease and an important public health problem. Insulin is one of the hormones for modulating blood glucose level and the products of which is indispensable for most diabetes patients. Introducing microneedles (MNs) to insulin delivery is promising to pave the way for modulating glucose level noninvasively of diabetes patients, as which born to be painless, easy to handle and no need of any power supply. In this work, we review the process of insulin delivery systems (IDSs) based on MN technology in terms of two categories: drug free MNs and drug loaded MNs. Drug free MNs include solid MNs ("poke and patch"), hollow MNs ("poke and flow") and reservoir-based swelling MNs ("poke and swell R-type"), and drug loaded MNs include coated MNs ("coat and poke"), dissolving MNs ("poke and release") and insulin incorporated swelling MNs ("poke and swell I-type"). Majority researches of MN-based IDSs have been conducted by using hollow MNs or dissolving MNs, and almost all clinical trials for MN-based IDSs have employed hollow MNs. "Poke and patch" approach dramatically increase skin permeability compared to traditional transdermal patch, but MNs fabricated from silicon or metal may leave sharp waste in the skin and cause a safety issue. "Poke and flow" approach, similar to transitional subcutaneous (SC) injection, is capable of producing faster insulin absorption and action than SC injection but may associate with blockage, leakage and low flow rate. Coated MNs are able of retaining the activity of drug, which loaded in a solid phase, for a long time, however have been relatively less studied for insulin application as the low drug dosing. "Poke and release" approach leaves no biohazardous sharp medical waste and is capable of rapid drug release. "Poke and swell R-type" can be seen as a combination of "poke and flow" and "poke and patch" approach, while "poke and swell I-type" is an approach between "coat and poke" and "poke and release" approach. Insulin MNs are promising for painless diabetes therapeutics, and additional efforts for addressing fundamental issues including the drug loading, the PK/PD profile, the storage and the safety of insulin MNs will accelerate the clinical transformation.
Collapse
|
9
|
Song Y, Herwadkar A, Patel MG, Banga AK. Transdermal Delivery of Cimetidine Across Microneedle-Treated Skin: Effect of Extent of Drug Ionization on the Permeation. J Pharm Sci 2017; 106:1285-1292. [DOI: 10.1016/j.xphs.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
10
|
Microfabrication for Drug Delivery. MATERIALS 2016; 9:ma9080646. [PMID: 28773770 PMCID: PMC5509096 DOI: 10.3390/ma9080646] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems.
Collapse
|
11
|
Eldridge JA, Milewski M, Stinchcomb AL, Crooks PA. Synthesis and in vitro stability of amino acid prodrugs of 6-β-naltrexol for microneedle-enhanced transdermal delivery. Bioorg Med Chem Lett 2014; 24:5212-5. [PMID: 25442314 DOI: 10.1016/j.bmcl.2014.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/24/2014] [Indexed: 11/26/2022]
Abstract
A small library of amino acid ester prodrugs of 6-β-naltrexol (NTXOL, 1) was prepared in order to investigate the candidacy of these prodrugs for microneedle-enhanced transdermal delivery. Six amino acid ester prodrugs were synthesized (6a-f). 6b, 6d, and 6 e were stable enough at skin pH (pH 5.0) to move forward to studies in 50% human plasma. The lead compound (6 e) exhibited the most rapid bioconversion to NTXOL in human plasma (t1/2 = 2.2 ± 0.1h).
Collapse
Affiliation(s)
- Joshua A Eldridge
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; AllTranz, Lexington, KY 40505, USA
| | - Mikolaj Milewski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA; AllTranz, Lexington, KY 40505, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
12
|
Gomaa YA, Garland MJ, McInnes FJ, Donnelly RF, El-Khordagui LK, Wilson CG. Microneedle/nanoencapsulation-mediated transdermal delivery: Mechanistic insights. Eur J Pharm Biopharm 2014; 86:145-55. [PMID: 23461860 PMCID: PMC4074889 DOI: 10.1016/j.ejpb.2013.01.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/06/2013] [Accepted: 01/29/2013] [Indexed: 01/11/2023]
Abstract
A systematic study was undertaken to gain more insight into the mechanism of transdermal delivery of nanoencapsulated model dyes across microneedle (MN)-treated skin, a complex process not yet explored. Rhodamine B (Rh B) and fluorescein isothiocyanate (FITC) as model hydrophilic and hydrophobic small/medium-size molecules, respectively, were encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) and delivered through full thickness porcine skin pretreated with MN array. Permeation through MN-treated skin was affected by physicochemical characteristics of NPs and the encapsulated dyes. Dye flux was enhanced by smaller particle size, hydrophilicity, and negative zeta potential of NPs. Regarding encapsulated dyes, solubility at physiological pH and potential interaction with skin proteins proved to outweigh molecular weight as determinants of skin permeation. Data were verified using confocal laser scanning microscopy imaging. Findings coupled with the literature data are supportive of a mechanism involving influx of NPs, particularly of smaller size, deep into MN-created channels, generating depot dye-rich reservoirs. Molecular diffusion of the released dye across viable skin layers proceeds at a rate determined by its molecular characteristics. Data obtained provide mechanistic information of importance to the development of formulation strategies for more effective intradermal and transdermal MN-mediated delivery of nanoencapsulated therapeutic agents.
Collapse
Affiliation(s)
- Yasmine A Gomaa
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Scotland, UK; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Martin J Garland
- School of Pharmacy, Queen's University of Belfast, Northern Ireland, UK
| | - Fiona J McInnes
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Scotland, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University of Belfast, Northern Ireland, UK
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Scotland, UK
| |
Collapse
|
13
|
Liu S, Jin MN, Quan YS, Kamiyama F, Kusamori K, Katsumi H, Sakane T, Yamamoto A. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Eur J Pharm Biopharm 2014; 86:267-76. [DOI: 10.1016/j.ejpb.2013.10.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 11/29/2022]
|
14
|
Milewski M, Paudel KS, Brogden NK, Ghosh P, Banks SL, Hammell DC, Stinchcomb AL. Microneedle-assisted percutaneous delivery of naltrexone hydrochloride in yucatan minipig: in vitro-in vivo correlation. Mol Pharm 2013; 10:3745-57. [PMID: 24053426 DOI: 10.1021/mp400227e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although microneedle-assisted transdermal drug delivery has been the subject of multiple scientific investigations, very few attempts have been made to quantitatively relate in vitro and in vivo permeation. The case of naltrexone hydrochloride is not an exception. In the present study, a pharmacokinetic profile obtained following a "poke and patch" microneedle application method in the Yucatan minipig is reported. The profile demonstrates a rapid achievement of maximum naltrexone hydrochloride plasma concentration followed by a relatively abrupt concentration decline. No steady state was achieved in vivo. In an attempt to correlate the present in vivo findings with formerly published in vitro steady-state permeation data, a diffusion-compartmental mathematical model was developed. The model incorporates two parallel permeation pathways, barrier-thickness-dependent diffusional resistance, microchannel closure kinetics, and a pharmacokinetic module. The regression analysis of the pharmacokinetic data demonstrated good agreement with an independently calculated microchannel closure rate and in vitro permeation data. Interestingly, full-thickness rather than split-thickness skin employed in in vitro diffusion experiments provided the best correlation with the in vivo data. Data analysis carried out with the model presented herein provides new mechanistic insight and permits predictions with respect to pharmacokinetics coupled with altered microchannel closure rates.
Collapse
Affiliation(s)
- Mikolaj Milewski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536-0082, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Ghosh P, Brogden NK, Stinchcomb AL. Effect of formulation pH on transport of naltrexone species and pore closure in microneedle-enhanced transdermal drug delivery. Mol Pharm 2013; 10:2331-9. [PMID: 23590208 DOI: 10.1021/mp3007083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microneedle-enhanced transdermal drug delivery greatly improves the subset of pharmacologically active molecules that can be transported across the skin. Formulation pH plays an important role in all drug delivery systems; however, for transdermal delivery it becomes specifically significant since a wide range of pH values can be exploited for patch formulation as long as it does not lead to skin irritation or sensitization issues. Wound healing literature has shown significant pH effects on barrier recovery. Stability and solubility of the drug, and thus transport across skin, are all affected by formulation pH. The current study examined the role of ionization state of the drug naltrexone on transdermal flux and permeability across microneedle treated skin, as compared to intact skin. Impedance spectroscopy was done in pigs in vivo to assess the role of formulation pH on the rate of micropore closure under the influence of three different pH conditions. The data indicated that while there was significant advantage of using a lower pH formulation in terms of total transport across microneedle treated skin, the pH however did not have any significant effect on the rate of micropore closure beyond the first 24 h.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | | | |
Collapse
|
16
|
Chandrasekhar S, Iyer LK, Panchal JP, Topp EM, Cannon JB, Ranade VV. Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opin Drug Deliv 2013; 10:1155-70. [PMID: 23662940 DOI: 10.1517/17425247.2013.797405] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Peptide and protein microarray and microneedle array technology provides direct information on protein function and potential drug targets in drug discovery and delivery. Because of this unique ability, these arrays are well suited for protein profiling, drug target identification/validation and studies of protein interaction, biochemical activity, immune responses, clinical prognosis and diagnosis and for gene, protein and drug delivery. AREAS COVERED The aim of this review is to describe and summarize past and recent developments of microarrays in their construction, characterization and production and applications of microneedles in drug delivery. The scope and limitations of various technologies in this respect are discussed. EXPERT OPINION This article offers a review of microarray/microneedle technologies and possible future directions in targeting and in the delivery of pharmacologically active compounds for unmet needs in biopharmaceutical research. A better understanding of the production and use of microarrays and microneedles for delivery of peptides, proteins and vaccines is needed.
Collapse
Affiliation(s)
- Saradha Chandrasekhar
- Purdue University, Department of Industrial and Physical Pharmacy, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
17
|
Hirobe S, Okada N, Nakagawa S. Transcutaneous vaccines--current and emerging strategies. Expert Opin Drug Deliv 2013; 10:485-98. [PMID: 23316778 DOI: 10.1517/17425247.2013.760542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vaccination, which is the major fundamental prophylaxis against illness and death from infectious disease, has greatly contributed to the global improvement of human health. However, the disadvantages of conventional injection systems hamper the delivery of vaccination technologies to developing countries. The imminent practice of easy-to-use vaccination methods is expected to overcome certain issues associated with injectable vaccinations. One innovative method is the transcutaneous immunization (TCI) system. AREAS COVERED Two major strategies for TCI are discussed in this review. One is to promote antigen permeation of the skin barrier by patch systems or nanoparticles. The other is the delivery of antigens into the skin by electroporation and microneedles in order to physically overcome the skin barrier. Moreover, adjuvant development for TCI is discussed. EXPERT OPINION Many different approaches have been developed for TCI, which have the potential to be effective, easy-to-use and painless methods of vaccination. However, in practical terms, the guidelines concerning the manufacturing processes and clinical trial evaluation of the procedures have not kept pace with the development of these novel formulations. The accumulation of information regarding skin characteristics and the properties of TCI devices will help refine TCI system development guidelines and thus lead to the improvement of transcutaneous vaccination.
Collapse
Affiliation(s)
- Sachiko Hirobe
- Osaka University, Graduate School of Pharmaceutical Sciences, Laboratory of Biotechnology and Therapeutics, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
18
|
Singh ND, Banga AK. Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles. J Drug Target 2013; 21:354-66. [PMID: 23311703 DOI: 10.3109/1061186x.2012.757768] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to investigate the effect of modulated current application using iontophoresis- and microneedle-mediated delivery on transdermal permeation of ropinirole hydrochloride. AdminPatch® microneedles and microchannels formed by them were characterized by scanning electron microscopy, dye staining and confocal microscopy. In vitro permeation studies were carried out using Franz diffusion cells, and skin extraction was used to quantify drug in underlying skin. Effect of microneedle pore density and ions in donor formulation was studied. Active enhancement techniques, continuous iontophoresis (74.13 ± 2.20 µg/cm(2)) and microneedles (66.97 ± 10.39 µg/cm(2)), significantly increased the permeation of drug with respect to passive delivery (8.25 ± 2.41 µg/cm(2)). Modulated iontophoresis could control the amount of drug delivered at a given time point with the highest flux being 5.12 ± 1.70 µg/cm(2)/h (5-7 h) and 5.99 ± 0.81 µg/cm(2)/h (20-22 h). Combination of modulated iontophoresis and microneedles (46.50 ± 6.46 µg/cm(2)) showed significantly higher delivery of ropinirole hydrochloride compared to modulated iontophoresis alone (84.91 ± 9.21 µg/cm(2)). Modulated iontophoresis can help in maintaining precise control over ropinirole hydrochloride delivery for dose titration in Parkinson's disease therapy and deliver therapeutic amounts over a suitable patch area and time.
Collapse
Affiliation(s)
- Neha D Singh
- College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | | |
Collapse
|
19
|
Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64:1547-68. [PMID: 22575858 DOI: 10.1016/j.addr.2012.04.005] [Citation(s) in RCA: 1019] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022]
Abstract
Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications.
Collapse
|
20
|
Gomaa YA, Garland MJ, McInnes FJ, Donnelly RF, El-Khordagui LK, Wilson CG. Flux of ionic dyes across microneedle-treated skin: effect of molecular characteristics. Int J Pharm 2012; 438:140-9. [PMID: 22960319 DOI: 10.1016/j.ijpharm.2012.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 02/07/2023]
Abstract
Drug flux across microneedle (MN)-treated skin is influenced by the characteristics of the MN array, formed microconduits and physicochemical properties of the drug molecules in addition to the overall diffusional resistance of microconduits and viable tissue. Relative implication of these factors has not been fully explored. In the present study, the in vitro permeation of a series of six structurally related ionic xanthene dyes with different molecular weights (MW) and chemical substituents, across polymer MN-pretreated porcine skin was investigated in relation of their molecular characteristics. Dyes equilibrium solubility, partition coefficient in both n-octanol or porcine skin/aqueous system, and dissociation constants were determined. Results indicated that for rhodamine dyes, skin permeation of the zwitterionic form which predominates at physiological pH, was significantly reduced by an increase in MW, the skin thickness and by the presence of the chemically reactive isothiocyanate substituent. These factors were generally shown to override the aqueous solubility, an important determinant of drug diffusion in an aqueous milieu. The data obtained provided more insight into the mechanism of drug permeation across MN-treated skin, which is of importance to both the design of MN-based transdermal drug delivery systems and of relevance to skin permeation research.
Collapse
Affiliation(s)
- Yasmine A Gomaa
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Milewski M, Pinninti RR, Stinchcomb AL. Naltrexone Salt Selection for Enhanced Transdermal Permeation Through Microneedle-Treated Skin. J Pharm Sci 2012; 101:2777-86. [DOI: 10.1002/jps.23189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/24/2012] [Indexed: 11/09/2022]
|
22
|
Skin needling to enhance depigmenting serum penetration in the treatment of melasma. PLASTIC SURGERY INTERNATIONAL 2011; 2011:158241. [PMID: 22567235 PMCID: PMC3335478 DOI: 10.1155/2011/158241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/20/2011] [Accepted: 02/15/2011] [Indexed: 02/03/2023]
Abstract
Melasma is a common hypermelanotic disorder affecting the facial area which has a considerable psychological impact on the patient. Managing melasma is a difficult challenge that requires long-term treatment with a number of topical agents, such as rucinol and sophora-alpha. Aims. We aim to compare the combined treatment of skin needling and depigmenting serum with that using depigmenting serum alone in the treatment of melasma, in order to evaluate the use of microneedles as a means to enhance the drug's transdermal penetration. Methods. Twenty patients were treated with combined skin needling and depigmenting serum on one side of the face and with depigmenting serum alone on the other side. The outcome was evaluated periodically for up to two months using the Melasma Area Severity Index score and the Spectrocolorimeter X-Rite 968. Results. The side with combined treatment (skin needling + depigmenting serum) presented a statistically significant reduction in MASI score and luminosity index (L) levels compared to the side treated with depigmenting serum alone, and clinical symptoms were significantly improved. Conclusions. Our study suggests the potential use of combining skin needling with rucinol and sophora-alpha compounds to achieve better results in melasma treatment compared to rucinol and sophora-alpha alone.
Collapse
|
23
|
Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: Do all ways lead to Rome? J Control Release 2010; 148:266-82. [DOI: 10.1016/j.jconrel.2010.09.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/13/2010] [Indexed: 01/09/2023]
|
24
|
Milewski M, Brogden NK, Stinchcomb AL. Current aspects of formulation efforts and pore lifetime related to microneedle treatment of skin. Expert Opin Drug Deliv 2010; 7:617-29. [PMID: 20205604 DOI: 10.1517/17425241003663228] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The efficacy of microneedles in the area of transdermal drug delivery is well documented. Multiple studies have shown that enhancement of skin permeation by means of the creation of microscopic pores in the stratum corneum can greatly improve the delivery rates of drugs. However, skin pretreatment with microneedles is not the only factor affecting drug transport rates. Other factors, including drug formulation and rate of micropore closure, are also important for optimizing delivery by this route. AREAS COVERED IN THIS REVIEW This review aims to highlight work that has been done in these areas, with an emphasis on drug formulation parameters that affect transdermal flux. WHAT THE READER WILL GAIN This review creates an appreciation for the many factors affecting microneedle-enhanced delivery. Most results clearly indicate that microneedle skin pretreatment by itself may have different effects on drug transport depending on the formulation used, and formulation characteristics have different effects on the transport through untreated skin and microneedle-treated skin. Several formulation approaches are reported to optimize microneedle-enhanced drug delivery, including co-solvent use, vesicular, nanoparticulate and gel systems. TAKE HOME MESSAGE In addition to well-established factors that affect microneedle-assisted delivery (geometry, type of microneedle, etc.), formulation and pore viability are also critical factors that must be considered.
Collapse
Affiliation(s)
- Mikolaj Milewski
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, 459 Wethington Bldg, Lexington, KY 40536-0082, USA
| | | | | |
Collapse
|
25
|
Banks SL, Pinninti RR, Gill HS, Paudel KS, Crooks PA, Brogden NK, Prausnitz MR, Stinchcomb AL. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs. J Pharm Sci 2010; 99:3072-80. [PMID: 20166200 DOI: 10.1002/jps.22083] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Controlled-release delivery of 6-beta-naltrexol (NTXOL), the major active metabolite of naltrexone, via a transdermal patch is desirable for treatment of alcoholism. Unfortunately, NTXOL does not diffuse across skin at a therapeutic rate. Therefore, the focus of this study was to evaluate microneedle (MN) skin permeation enhancement of NTXOL's hydrochloride salt in hairless guinea pigs. Specifically, these studies were designed to determine the lifetime of MN-created aqueous pore pathways. MN pore lifetime was estimated by pharmacokinetic evaluation, transepidermal water loss (TEWL) and visualization of MN-treated skin pore diameters using light microscopy. A 3.6-fold enhancement in steady-state plasma concentration was observed in vivo with MN treated skin with NTXOL.HCl, as compared to NTXOL base. TEWL measurements and microscopic evaluation of stained MN-treated guinea pig skin indicated the presence of pores, suggesting a feasible nonlipid bilayer pathway for enhanced transdermal delivery. Overall, MN-assisted transdermal delivery appears viable for at least 48 h after MN-application.
Collapse
Affiliation(s)
- Stan L Banks
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0082, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Krishnan G, Edwards J, Chen Y, Benson HAE. Enhanced skin permeation of naltrexone by pulsed electromagnetic fields in human skin in vitro. J Pharm Sci 2010; 99:2724-31. [PMID: 20014281 DOI: 10.1002/jps.22024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of the present study was to evaluate the skin permeation of naltrexone (NTX) under the influence of a pulsed electromagnetic field (PEMF). The permeation of NTX across human epidermis and a silicone membrane in vitro was monitored during and after application of the PEMF and compared to passive application. Enhancement ratios of NTX human epidermis permeation by PEMF over passive diffusion, calculated based on the AUC of cumulative NTX permeation to the receptor compartment verses time for 0-4 h, 4-8 h, and over the entire experiment (0-8 h) were 6.52, 5.25, and 5.66, respectively. Observation of the curve indicated an initial enhancement of NTX permeation compared to passive delivery whilst the PEMF was active (0-4 h). This was followed by a secondary phase after termination of PEMF energy (4-8 h) in which there was a steady increase in NTX permeation. No significant enhancement of NTX penetration across silicone membrane occurred with PEMF application in comparison to passively applied NTX. In a preliminary experiment PEMF enhanced the penetration of 10 nm gold nanoparticles through the stratum corneum as visualized by multiphoton microscopy. This suggests that the channels through which the nanoparticles move must be larger than the 10 nm diameter of these rigid particles.
Collapse
Affiliation(s)
- Gayathri Krishnan
- Curtin Health Innovation Research Institute, School of Pharmacy, Curtin University, Perth, WA, Australia
| | | | | | | |
Collapse
|
27
|
Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 2010; 1:109-31. [PMID: 21132122 PMCID: PMC2995530 DOI: 10.4155/tde.10.16] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs.
Collapse
Affiliation(s)
- Kalpana S Paudel
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Mikolaj Milewski
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Courtney L Swadley
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Nicole K Brogden
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Priyanka Ghosh
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| | - Audra L Stinchcomb
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0200, USA
| |
Collapse
|
28
|
Vehicle composition influence on the microneedle-enhanced transdermal flux of naltrexone hydrochloride. Pharm Res 2010; 28:124-34. [PMID: 20577787 DOI: 10.1007/s11095-010-0191-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 06/09/2010] [Indexed: 12/31/2022]
Abstract
PURPOSE Transdermal delivery of drugs is often limited by formidable barrier properties of stratum corneum (SC). Microneedles (MN) enable creation of transient microchannels in the SC and bypass this barrier. Many reports have focused on the great effectiveness of MN in improving percutaneous flux values of a variety of drugs over a large molecular size spectrum. The objective of the present study is to evaluate the influence of formulation on MN-enhanced transdermal transport of naltrexone hydrochloride (NTX HCl). METHODS A series of in vitro experiments employing binary mixtures of propylene glycol (PG) and water as vehicle were used with either MN-treated or untreated skin. A simple model taking into account two parallel flux values through intact skin and microchannels was used to analyze data. RESULTS Transdermal permeation of NTX HCl from different donor solutions indicated that PG-rich formulations greatly limited MN-enhanced transport but had a much smaller effect on transport through intact skin. CONCLUSIONS Diffusion through the microchannel pathway seems to be donor viscosity-related and follows the relationship predicted by the Stokes-Einstein equation as shown by linear dependence of flux on diffusivity of NTX in donor solutions.
Collapse
|
29
|
Milewski M, Yerramreddy TR, Ghosh P, Crooks PA, Stinchcomb AL. In vitro permeation of a pegylated naltrexone prodrug across microneedle-treated skin. J Control Release 2010; 146:37-44. [PMID: 20678989 DOI: 10.1016/j.jconrel.2010.05.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/18/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Microneedles (MN) are a useful tool for increasing skin permeability to xenobiotics. Previous research showed marked improvement in the percutaneous flux of naltrexone (NTX) hydrochloride by the use of MN skin pretreatment alone; however, for better therapeutic effect, further enhancement is desired. The goal of this in vitro study was to combine microneedle skin pretreatment with the use of a highly water-soluble PEGylated naltrexone prodrug (polyethyleneglycol-NTX, PEG-NTX) to investigate its transdermal transport at varying concentrations. Solubility and stability of the prodrug were investigated. In vitro diffusion experiments employing MN-treated minipig skin were used to evaluate the performance of the PEGylated prodrug. The results revealed substantial deviation from ideal behavior, with the flux through MN-treated skin having a nonlinear relationship to the prodrug concentration in the donor solution. While in the lower concentration range tested the prodrug flux increase was proportional to the concentration increase, at high concentrations it showed no such dependence. Accounting for the decrease in the effective prodrug diffusivity accompanying the increase in viscosity, as predicted by the Stokes-Einstein equation, provided a rationale for the observed flux values. Increasing the viscosity of the donor solution is hypothesized to afford a curvilinear permeation profile for the PEGylated NTX prodrug.
Collapse
Affiliation(s)
- Mikolaj Milewski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA
| | | | | | | | | |
Collapse
|
30
|
Yerramreddy TR, Milewski M, Penthala NR, Stinchcomb AL, Crooks PA. Novel 3-O-pegylated carboxylate and 3-O-pegylated carbamate prodrugs of naltrexone for microneedle-enhanced transdermal delivery. Bioorg Med Chem Lett 2010; 20:3280-3. [PMID: 20451376 PMCID: PMC3726000 DOI: 10.1016/j.bmcl.2010.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/12/2010] [Indexed: 11/27/2022]
Abstract
A small library of novel 3-O-pegylated carboxylate prodrugs (4a-4b) and 3-O-pegylated carbamate prodrugs (9a-9b) of naltrexone were synthesized. The goal behind the design of these prodrugs was to investigate their potential for microneedle-enhanced transdermal delivery. All the synthesized 3-O-pegylated carboxylate prodrugs (4a-4b) and 3-O-pegylated carbamate prodrugs (9a-9b) of naltrexone were found to have adequate stability in a transdermal formulation and improved apparent solubility compared to naltrexone. Viscosity effects were postulated to be responsible for the observed non-linearity in the flux-concentration profile of these prodrugs.
Collapse
Affiliation(s)
| | - Mikolaj Milewski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Audra L. Stinchcomb
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Peter A. Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
31
|
|
32
|
Strasinger CL, Scheff NN, Wu J, Hinds BJ, Stinchcomb AL. Carbon Nanotube Membranes for use in the Transdermal Treatment of Nicotine Addiction and Opioid Withdrawal Symptoms. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2009; 3:31-39. [PMID: 20582253 PMCID: PMC2892397 DOI: 10.4137/sart.s1050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transdermal systems are attractive methods of drug administration specifically when treating patients for drug addiction. Current systems however are deficient in therapies that allow variable flux values of drug, such as nicotine for smoking cessation or complex dosing regimens using clonidine when treating opioid withdrawal symptoms. Through the use of functionalized carbon nanotube (CNT) membranes, drug delivery to the skin can be controlled by applying a small electrical bias to create a programmable drug delivery system. Clearly, a transdermal patch system that can be tailored to an individual’s needs will increase patient compliance as well as provide much more efficient therapy. The purpose of this paper is to discuss the applicability of using carbon nanotube membranes in transdermal systems for treatment of drug abuse.
Collapse
|
33
|
Barbero AM, Frasch HF. Pig and guinea pig skin as surrogates for human in vitro penetration studies: A quantitative review. Toxicol In Vitro 2009; 23:1-13. [DOI: 10.1016/j.tiv.2008.10.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/16/2008] [Accepted: 10/16/2008] [Indexed: 11/17/2022]
|
34
|
Coulman SA, Anstey A, Gateley C, Morrissey A, McLoughlin P, Allender C, Birchall JC. Microneedle mediated delivery of nanoparticles into human skin. Int J Pharm 2009; 366:190-200. [DOI: 10.1016/j.ijpharm.2008.08.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/26/2008] [Accepted: 08/28/2008] [Indexed: 11/29/2022]
|