1
|
Rama E, Mohapatra SR, Sugimura Y, Suzuki T, Siebert S, Barmin R, Hermann J, Baier J, Rix A, Lemainque T, Koletnik S, Elshafei AS, Pallares RM, Dadfar SM, Tolba RH, Schulz V, Jankowski J, Apel C, Akhyari P, Jockenhoevel S, Kiessling F. In vitro and in vivo evaluation of biohybrid tissue-engineered vascular grafts with transformative 1H/ 19F MRI traceable scaffolds. Biomaterials 2024; 311:122669. [PMID: 38906013 DOI: 10.1016/j.biomaterials.2024.122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Biohybrid tissue-engineered vascular grafts (TEVGs) promise long-term durability due to their ability to adapt to hosts' needs. However, the latter calls for sensitive non-invasive imaging approaches to longitudinally monitor their functionality, integrity, and positioning. Here, we present an imaging approach comprising the labeling of non-degradable and degradable TEVGs' components for their in vitro and in vivo monitoring by hybrid 1H/19F MRI. TEVGs (inner diameter 1.5 mm) consisted of biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers passively incorporating superparamagnetic iron oxide nanoparticles (SPIONs), non-degradable polyvinylidene fluoride scaffolds labeled with highly fluorinated thermoplastic polyurethane (19F-TPU) fibers, a smooth muscle cells containing fibrin blend, and endothelial cells. 1H/19F MRI of TEVGs in bioreactors, and after subcutaneous and infrarenal implantation in rats, revealed that PLGA degradation could be faithfully monitored by the decreasing SPIONs signal. The 19F signal of 19F-TPU remained constant over weeks. PLGA degradation was compensated by cells' collagen and α-smooth-muscle-actin deposition. Interestingly, only TEVGs implanted on the abdominal aorta contained elastin. XTT and histology proved that our imaging markers did not influence extracellular matrix deposition and host immune reaction. This concept of non-invasive longitudinal assessment of cardiovascular implants using 1H/19F MRI might be applicable to various biohybrid tissue-engineered implants, facilitating their clinical translation.
Collapse
Affiliation(s)
- Elena Rama
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Saurav Ranjan Mohapatra
- Department of Biohybrid & Medical Textiles, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, Medical Faculty and RWTH University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tomoyuki Suzuki
- Department of Cardiac Surgery, Medical Faculty and RWTH University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefan Siebert
- Department of Biohybrid & Medical Textiles, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Roman Barmin
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Juliane Hermann
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Jasmin Baier
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Teresa Lemainque
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany; Department of Diagnostic and Interventional Radiology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Susanne Koletnik
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Asmaa Said Elshafei
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Roger Molto Pallares
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Seyed Mohammadali Dadfar
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany; Ardena Oss, 5349 AB Oss, the Netherlands
| | - René H Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Volkmar Schulz
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, the Netherlands
| | - Christian Apel
- Department of Biohybrid & Medical Textiles, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty and RWTH University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles, AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Kakaei N, Amirian R, Azadi M, Mohammadi G, Izadi Z. Perfluorocarbons: A perspective of theranostic applications and challenges. Front Bioeng Biotechnol 2023; 11:1115254. [PMID: 37600314 PMCID: PMC10436007 DOI: 10.3389/fbioe.2023.1115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023] Open
Abstract
Perfluorocarbon (PFC) are biocompatible compounds, chemically and biologically inert, and lacks toxicity as oxygen carriers. PFCs nanoemulsions and nanoparticles (NPs) are highly used in diagnostic imaging and enable novel imaging technology in clinical imaging modalities to notice and image pathological and physiological alterations. Therapeutics with PFCs such as the innovative approach to preventing thrombus formation, PFC nanodroplets utilized in ultrasonic medication delivery in arthritis, or PFC-based NPs such as Perfluortributylamine (PFTBA), Pentafluorophenyl (PFP), Perfluorohexan (PFH), Perfluorooctyl bromide (PFOB), and others, recently become renowned for oxygenating tumors and enhancing the effects of anticancer treatments as oxygen carriers for tumor hypoxia. In this review, we will discuss the recent advancements that have been made in PFC's applications in theranostic (therapeutics and diagnostics) as well as assess the benefits and drawbacks of these applications.
Collapse
Affiliation(s)
- Nasrin Kakaei
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azadi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Huang J, Wang H, Huang L, Zhou Y. Phospholipid-mimicking block, graft, and block-graft copolymers for phase-transition microbubbles as ultrasound contrast agents. Front Pharmacol 2022; 13:968835. [PMCID: PMC9606805 DOI: 10.3389/fphar.2022.968835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lipid and polymer microbubbles (MBs) are widely used as ultrasound contrast agents in clinical diagnosis, and possess great potential in ultrasound-mediated therapy due to their drug loading function. However, overcoming the limitations of stability and echo enhancement of MBs are still a considerable challenge.Methods: A series novel block, graft and block-graft copolymers was proposed and prepared in this work, and these copolymers were used as shells to encapsulate perfluoropentane as ultrasound contrast agents. First, block, graft and block-graft copolymers with different topological structures were prepared. Then, these copolymers were prepared into block copolymer phase-transition MBs, graft copolymer phase-transition MBs, and block-graft copolymer phase-transition MBs, respectively. Finally, the dexamethasone was used for drug-loaded phase-transition microbubbles model to explore the potential of theranostic microbubbles.Results: Finally, these three resulting copolymer MBs with average size of 4–5 μm exhibited well enhancement of ultrasound imaging under the influence of different frequencies and mechanical index, and they exhibited a longer contrast-enhanced ultrasound imaging time and higher resistance to mechanical index compared with SonoVue in vitro and in vivo. In vitro drug release results also showed that these copolymer MBs could encapsulate dexamethasone drugs, and the drug release could be enhanced by ultrasonic triggering. These copolymer MBs were therapeutic MBs for targeted triggering drug release.Conclusion: Therefore, the feasibility of block, graft, and block-graft copolymers as ultrasonic contrast agents was verified, and their ultrasonic enhancement performance in vitro and in vivo was compared. The ultrasound contrast agents developed in this work have excellent development potential in comprehensive diagnosis and treatment.
Collapse
Affiliation(s)
- Jianbo Huang
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wang
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hong Wang,
| | - Lei Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yuqing Zhou
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022; 14:382. [PMID: 35214114 PMCID: PMC8874484 DOI: 10.3390/pharmaceutics14020382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize, especially from studies over the last decade, the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them. A critical evaluation for future opportunities would be speculated.
Collapse
Affiliation(s)
- Joice Maria Joseph
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | | | | | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Karbalaei S, Goldsmith CR. Recent advances in the preclinical development of responsive MRI contrast agents capable of detecting hydrogen peroxide. J Inorg Biochem 2022; 230:111763. [DOI: 10.1016/j.jinorgbio.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
|
6
|
Tian F, Wang S, Shi K, Zhong X, Gu Y, Fan Y, Zhang Y, Yang M. Dual-Depletion of Intratumoral Lactate and ATP with Radicals Generation for Cascade Metabolic-Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102595. [PMID: 34716681 PMCID: PMC8693033 DOI: 10.1002/advs.202102595] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/30/2021] [Indexed: 05/02/2023]
Abstract
Increasing evidence has demonstrated that lactate and adenosine triphosphate (ATP) both play important roles in regulating abnormal metabolism in the tumor microenvironment. Herein, an O2 self-supplying catalytic nanoagent, based on tannic acid (TA)-Fe(III) coordination complexes-coated perfluorooctyl bromide (PFOB) nanodroplets with lactate oxidases (LOX) loading (PFOB@TA-Fe(III)-LOX, PTFL), is designed for cascade metabolic-chemodynamic therapy (CDT) by dual-depletion of lactate and ATP with hydroxyl • OH radicals generation. Benefiting from the catalytic property of loaded LOX and O2 self-supplying of PFOB nanodroplets, PTFL nanoparticles (NPs) efficiently deplete tumoral lactate for down-regulation of vascular endothelial growth factor expression and supplement the insufficient endogenous H2 O2 . Simultaneously, TA-Fe(III) complexes release Fe(III) ions and TA in response to intracellular up-regulated ATP in tumor cells followed by TA-mediated Fe(III)/Fe(II) conversion, leading to the depletion of energy source ATP and the generation of cytotoxic • OH radicals from H2 O2 . Moreover, TA-Fe(III) complexes provide photoacoustic contrast as imaging guidance to enhance therapeutic accuracy. As a result, PTFL NPs efficiently accumulate in tumors for suppression of tumor growth and show evidence of anti-angiogenesis and anti-metastasis effects. This multifunctional nanoagent may provide new insight for targeting abnormal tumor metabolism with the combination of CDT to achieve a synergistic therapeutic effect.
Collapse
Affiliation(s)
- Feng Tian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| | - Shiyao Wang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| | - Keda Shi
- Department of Lung TransplantThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang Province310027China
| | - Xingjian Zhong
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| | - Yutian Gu
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| | - Yadi Fan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| | - Yu Zhang
- Department of Mechanical and Automotive EngineeringRoyal Melbourne Institute of Technology UniversityMelbourneVictoria3000Australia
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| |
Collapse
|
7
|
Walsh AP, Gordon HN, Peter K, Wang X. Ultrasonic particles: An approach for targeted gene delivery. Adv Drug Deliv Rev 2021; 179:113998. [PMID: 34662671 PMCID: PMC8518240 DOI: 10.1016/j.addr.2021.113998] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Gene therapy has been widely investigated for the treatment of genetic, acquired, and infectious diseases. Pioneering work utilized viral vectors; however, these are suspected of causing serious adverse events, resulting in the termination of several clinical trials. Non-viral vectors, such as lipid nanoparticles, have attracted significant interest, mainly due to their successful use in vaccines in the current COVID-19 pandemic. Although they allow safe delivery, they come with the disadvantage of off-target delivery. The application of ultrasound to ultrasound-sensitive particles allows for a direct, site-specific transfer of genetic materials into the organ/site of interest. This process, termed ultrasound-targeted gene delivery (UTGD), also increases cell membrane permeability and enhances gene uptake. This review focuses on the advances in ultrasound and the development of ultrasonic particles for UTGD across a range of diseases. Furthermore, we discuss the limitations and future perspectives of UTGD.
Collapse
Affiliation(s)
- Aidan P.G. Walsh
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Henry N. Gordon
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Biochemistry and Pharmacology, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Medicine, Monash University, Melbourne, VIC, Australia,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia,Corresponding author at: Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
8
|
Abstract
Magnetic resonance imaging (MRI) is one of the most powerful imaging tools today, capable of displaying superior soft-tissue contrast. This review discusses developments in the field of 19 F MRI multimodal probes in combination with optical fluorescence imaging (OFI), 1 H MRI, chemical exchange saturation transfer (CEST) MRI, ultrasonography (USG), X-ray computed tomography (CT), single photon emission tomography (SPECT), positron emission tomography (PET), and photoacoustic imaging (PAI). In each case, multimodal 19 F MRI probes compensate for the deficiency of individual techniques and offer improved sensitivity or accuracy of detection over unimodal counterparts. Strategies for designing 19 F MRI multimodal probes are described with respect to their structure, physicochemical properties, biocompatibility, and the quality of images.
Collapse
Affiliation(s)
- Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego, 4, 44-100, Gliwice, Poland
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego, 4, 44-100, Gliwice, Poland
| |
Collapse
|
9
|
Song X, Loskutova K, Chen H, Shen G, Grishenkov D. Deriving acoustic properties for perfluoropentane droplets with viscoelastic cellulose nanofiber shell via numerical simulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:1750. [PMID: 34598597 DOI: 10.1121/10.0006046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Perfluoropentane droplets with cellulose nanofibers (CNF) shells have demonstrated better stability and easier surface modification as ultrasound contrast agents and drug delivery vehicles. This paper presents a theoretical model assuming a four-phase state "inverse antibubble," with the core filled with gas perfluoropentane surrounded by liquid perfluoropentane. A continuous, incompressible, and viscoelastic stabilizing layer separates the core from the surrounding water. A parametric study is performed to predict the frequency-dependent attenuation coefficient, the speed of sound, and the resonance frequency of the droplets which have a mean diameter of 2.47 ± 0.95 μm. Results reveal that the CNF-stabilized perfluoropentane droplets can be modeled in a Rayleigh-Plesset like equation. We conclude that the shell strongly influences the acoustic behavior of the droplets and the resonance frequency largely depends on the initial gas cavity radius. More specifically, the peak attenuation coefficient and peak-to-peak speed of sound decrease with increasing shear modulus, shear viscosity, and shell thickness, while they increase with increasing gas cavity radius and concentration. The resonance frequency increases as shear modulus and shell thickness increase, while it decreases as shear viscosity and gas cavity radius increase. It is worth mentioning that droplet concentration has no effect on the resonance frequency.
Collapse
Affiliation(s)
- Xue Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ksenia Loskutova
- Department of Biomedical Engineering and Health System, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Hongjian Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Guofeng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health System, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| |
Collapse
|
10
|
Zeng Z, Liu JB, Peng CZ. Phase-changeable nanoparticle-mediated energy conversion promotes highly efficient high-intensity focused ultrasound ablation. Curr Med Chem 2021; 29:1369-1378. [PMID: 34238143 DOI: 10.2174/0929867328666210708085110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
This review describes how phase-changeable nanoparticles enable highly efficient high-intensity focused ultrasound ablation (HIFU). HIFU is effective in the clinical treatment of solid malignant tumors. However, it has intrinsic disadvantages for treating some deep lesions, such as damage to surrounding normal tissues. When phase-changeable nanoparticles are used in HIFU treatment, they could serve as good synergistic agents because they are transported in the blood and permeated and accumulated effectively in tissues. HIFU's thermal effects can trigger nanoparticles to undergo a special phase transition, thus enhancing HIFU ablation efficiency. Nanoparticles can also carry anticancer agents and release them in the targeted area to achieve chemo-synergistic therapy response. Although the formation of nanoparticles is complicated and HIFU applications are still in an early stage, the potential for their use in synergy with HIFU treatment shows promising results.
Collapse
Affiliation(s)
- Zeng Zeng
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, United States
| | - Cheng-Zhong Peng
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Ghorbani Kharaji Z, Bayareh M, Kalantar V. A review on acoustic field-driven micromixers. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A review on acoustic field-driven micromixers is given. This is supplemented by the governing equations, governing non-dimensional parameters, numerical simulation approaches, and fabrication techniques. Acoustically induced vibration is a kind of external energy input employed in active micromixers to improve the mixing performance. An air bubble energized by an acoustic field acts as an external energy source and induces friction forces at the interface between an air bubble and liquid, leading to the formation of circulatory flows. The current review (with 200 references) evaluates different characteristics of microfluidic devices working based on acoustic field shaking.
Collapse
Affiliation(s)
| | - Morteza Bayareh
- Department of Mechanical Engineering , Shahrekord University , Shahrekord , Iran
| | - Vali Kalantar
- Department of Mechanical Engineering , Yazd University , Yazd , Iran
| |
Collapse
|
12
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
13
|
Hoogendijk E, Swider E, Staal AHJ, White PB, van Riessen NK, Glaßer G, Lieberwirth I, Musyanovych A, Serra CA, Srinivas M, Koshkina O. Continuous-Flow Production of Perfluorocarbon-Loaded Polymeric Nanoparticles: From the Bench to Clinic. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49335-49345. [PMID: 33086007 PMCID: PMC7645868 DOI: 10.1021/acsami.0c12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 05/05/2023]
Abstract
Perfluorocarbon-loaded nanoparticles are powerful theranostic agents, which are used in the therapy of cancer and stroke and as imaging agents for ultrasound and 19F magnetic resonance imaging (MRI). Scaling up the production of perfluorocarbon-loaded nanoparticles is essential for clinical translation. However, it represents a major challenge as perfluorocarbons are hydrophobic and lipophobic. We developed a method for continuous-flow production of perfluorocarbon-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a modular microfluidic system, with sufficient yields for clinical use. We combined two slit interdigital micromixers with a sonication flow cell to achieve efficient mixing of three phases: liquid perfluorocarbon, PLGA in organic solvent, and aqueous surfactant solution. The production rate was at least 30 times higher than with the conventional formulation. The characteristics of nanoparticles can be adjusted by changing the flow rates and type of solvent, resulting in a high PFC loading of 20-60 wt % and radii below 200 nm. The nanoparticles are nontoxic, suitable for 19F MRI and ultrasound imaging, and can dissolve oxygen. In vivo 19F MRI with perfluoro-15-crown-5 ether-loaded nanoparticles showed similar biodistribution as nanoparticles made with the conventional method and a fast clearance from the organs. Overall, we developed a continuous, modular method for scaled-up production of perfluorocarbon-loaded nanoparticles that can be potentially adapted for the production of other multiphase systems. Thus, it will facilitate the clinical translation of theranostic agents in the future.
Collapse
Affiliation(s)
- Esmee Hoogendijk
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Edyta Swider
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Alexander H. J. Staal
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, 6525
AJ Nijmegen, The Netherlands
| | - N. Koen van Riessen
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Gunnar Glaßer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Christophe A. Serra
- Université de Strasbourg,
CNRS, Institut Charles Sadron, 23 rue du Loess, F-67000 Strasbourg, France
| | - Mangala Srinivas
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Olga Koshkina
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
14
|
Kim Y, Ding H, Zheng Y. Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. NANO LETTERS 2020; 20:7020-7027. [PMID: 32667815 PMCID: PMC7572762 DOI: 10.1021/acs.nanolett.0c01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Molecular binding in surface-based biosensing is inherently governed by diffusional transport of molecules in solution to surface-immobilized counterparts. Optothermally generated surface microbubbles can quickly accumulate solutes at the bubble-liquid-substrate interface due to high-velocity fluid flows. Despite its potential as a concentrator, however, the incorporation of bubbles into protein-based sensing is limited by high temperatures. Here, we report a biphasic liquid system, capable of generating microbubbles at a low optical power/temperature by formulating PFP as a volatile, water-immiscible component in the aqueous host. We further exploited zwitterionic surface modification to prevent unwanted printing during bubble generation. In a single protein-protein interaction model, surface binding of dispersed proteins to capture proteins was enhanced by 1 order of magnitude within 1 min by bubbles, compared to that from static incubation for 30 min. Our proof-of-concept study exploiting fluid formulation and optothermal add-on paves an effective way toward improving the performances of sensors and spectroscopies.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
15
|
Zeng Q, Qiao L, Cheng L, Li C, Cao Z, Chen Z, Wang Y, Liu J. Perfluorohexane-Loaded Polymeric Nanovesicles with Oxygen Supply for Enhanced Sonodynamic Therapy. ACS Biomater Sci Eng 2020; 6:2956-2969. [PMID: 33463260 DOI: 10.1021/acsbiomaterials.0c00407] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiang Zeng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lijuan Qiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lili Cheng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chao Li
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhong Cao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhiyi Chen
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
| | - Yi Wang
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
- Laboratory of Ultrasound Molecular Imaging, Department of Ultrasound Medicine, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, PR China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
16
|
Calderó G, Rodríguez-Abreu C, González A, Monge M, García-Celma MJ, Solans C. Biomedical perfluorohexane-loaded nanocapsules prepared by low-energy emulsification and selective solvent diffusion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110838. [PMID: 32279820 DOI: 10.1016/j.msec.2020.110838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/19/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Perfluorohexane-loaded nanocapsules are interesting materials for many biomedical applications such as oxygen delivery systems or contrast agents. However, their formulation into stable colloidal systems is challenging because of their hydro- and lipophobicity, high density and high vapour pressure. In this study, perfluorohexane-loaded polymeric nanocapsules are prepared for the first time by low-energy emulsification and selective solvent diffusion. The colloidal stability of the perfluorohexane nano-emulsion templates has been improved by the incorporation of an apolar low-density oil (isopropyl myristate) in the dispersed phase, thus addressing droplet coarsening and migration phenomena. The perfluorohexane-loaded nanocapsules prepared from the nano-emulsions show sizes smaller than the corresponding emulsion templates (below 150 nm by dynamic light scattering) and exhibit good stability under storage conditions. Hyperspectral enhanced dark field microscopy revealed a layered core/shell structure and allowed also to confirm the encapsulation of perfluorohexane which was quantified by elemental microanalysis. Although isopropyl myristate has an unfavourable biocompatibility profile, cell viability is enhanced when perfluorohexane is present in the nanocapsules, which is attributed to its high oxygen transport capacity.
Collapse
Affiliation(s)
- Gabriela Calderó
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain.
| | - Carlos Rodríguez-Abreu
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Albert González
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Marta Monge
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Univ. de Barcelona, Unitat Associada d'I+D al CSIC- Av Joan XXIII, s/n, 08028 Barcelona, Spain
| | - Mª José García-Celma
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Univ. de Barcelona, Unitat Associada d'I+D al CSIC- Av Joan XXIII, s/n, 08028 Barcelona, Spain; Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Conxita Solans
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona, 18-26, Barcelona, Spain; CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| |
Collapse
|
17
|
Light-activated oxygen self-supplied starving therapy in near-infrared (NIR) window and adjuvant hyperthermia-induced tumor ablation with an augmented sensitivity. Biomaterials 2020; 234:119771. [DOI: 10.1016/j.biomaterials.2020.119771] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
|
18
|
Safley SA, Graham ML, Weegman BP, Einstein SA, Barber GF, Janecek JJ, Mutch LA, Singh A, Ramachandran S, Garwood M, Sambanis A, Papas KK, Hering BJ, Weber CJ. Noninvasive Fluorine-19 Magnetic Resonance Relaxometry Measurement of the Partial Pressure of Oxygen in Acellular Perfluorochemical-loaded Alginate Microcapsules Implanted in the Peritoneal Cavity of Nonhuman Primates. Transplantation 2020; 104:259-269. [PMID: 31385927 PMCID: PMC6994361 DOI: 10.1097/tp.0000000000002896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND We have utilized a noninvasive technique for measuring the partial pressure of oxygen (pO2) in alginate microcapsules implanted intraperitoneally in healthy nonhuman primates (NHPs). Average pO2 is important for determining if a transplant site and capsules with certain passive diffusion characteristics can support the islet viability, metabolic activity, and dose necessary to reverse diabetes. METHODS Perfluoro-15-crown-5-ether alginate capsules were infused intraperitoneally into 3 healthy NHPs. Peritoneal pO2 levels were measured on days 0 and 7 using fluorine-19 magnetic resonance relaxometry and a fiber-optic probe. Fluorine-19 MRI was used to determine the locations of capsules within the peritoneal space on days 0 and 7. Gross and histologic evaluations of the capsules were used to assess their biocompatibility postmortem. RESULTS At day 0 immediately after infusion of capsules equilibrated to room air, capsules were concentrated near the infusion site, and the pO2 measurement using magnetic resonance relaxometry was 147 ± 9 mm Hg. On day 7 after capsules were dispersed throughout the peritoneal cavity, the pO2 level was 61 ± 11 mm Hg. Measurements using the fiber-optic oxygen sensor were 132 ± 7.5 mm Hg (day 0) and 89 ± 6.1 mm Hg (day 7). Perfluoro-15-crown-5-ether capsules retrieved on day 7 were intact and free-floating without host cell attachment, although the numbers of peritoneal CD20 B cells, CD4 and CD8 T cells, and CD14 macrophages increased consistent with a mild foreign body reaction. CONCLUSIONS The peritoneal pO2 of normal NHPs is relatively low and we predict would decrease further when encapsulated islets are transplanted intraperitoneally.
Collapse
Affiliation(s)
| | - Melanie L. Graham
- Preclinical Research Center, Department of Surgery, University of Minnesota, St. Paul, MN
| | - Bradley P. Weegman
- Sylvatica Biotech, Inc., Charleston, SC
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | - Samuel A. Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Jody J. Janecek
- Preclinical Research Center, Department of Surgery, University of Minnesota, St. Paul, MN
| | - Lucas A. Mutch
- Preclinical Research Center, Department of Surgery, University of Minnesota, St. Paul, MN
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN
| | | | | | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | |
Collapse
|
19
|
Jayapaul J, Schröder L. Nanoparticle-Based Contrast Agents for 129Xe HyperCEST NMR and MRI Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9498173. [PMID: 31819739 PMCID: PMC6893250 DOI: 10.1155/2019/9498173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Spin hyperpolarization techniques have enabled important advancements in preclinical and clinical MRI applications to overcome the intrinsic low sensitivity of nuclear magnetic resonance. Functionalized xenon biosensors represent one of these approaches. They combine two amplification strategies, namely, spin exchange optical pumping (SEOP) and chemical exchange saturation transfer (CEST). The latter one requires host structures that reversibly bind the hyperpolarized noble gas. Different nanoparticle approaches have been implemented and have enabled molecular MRI with 129Xe at unprecedented sensitivity. This review gives an overview of the Xe biosensor concept, particularly how different nanoparticles address various critical aspects of gas binding and exchange, spectral dispersion for multiplexing, and targeted reporter delivery. As this concept is emerging into preclinical applications, comprehensive sensor design will be indispensable in translating the outstanding sensitivity potential into biomedical molecular imaging applications.
Collapse
Affiliation(s)
- Jabadurai Jayapaul
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
20
|
Imaging Rheumatoid Arthritis in Mice Using Combined Near Infrared and 19F Magnetic Resonance Modalities. Sci Rep 2019; 9:14314. [PMID: 31586092 PMCID: PMC6778085 DOI: 10.1038/s41598-019-50043-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes pain and tissue destruction in people worldwide. An accurate diagnosis is paramount in order to develop an effective treatment plan. This study demonstrates that combining near infrared (NIR) imaging and 19F MRI with the injection of labelled nanoparticles provides high diagnostic specificity for RA. The nanoparticles were made from poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (NP) or PLGA-PEG-Folate (Folate-NP), loaded with perfluorooctyl bromide (PFOB) and indocyanine green (ICG) and evaluated in vitro and in a collagen-induced arthritic (CIA) mouse model. The different particles had a similar size and a spherical shape according to dynamic light scattering (DLS) and transmission electron microscopy (TEM). Based on flow cytometry and 19F MRI analysis, Folate-NP yielded a higher uptake than NP in activated macrophages in vitro. The potential RA-targeting ability of the particles was studied in CIA mice using NIR and 19F MRI analysis. Both NP and Folate-NP accumulated in the RA tissues, where they were visible in NIR and 19F MRI for up to 24 hours. The presence of folate as a targeting ligand significantly improved the NIR signal from inflamed tissue at the early time point (2 hours), but not at later time points. Overall, these results suggest that our nanoparticles can be applied for combined NIR and 19F MRI imaging for improved RA diagnosis.
Collapse
|
21
|
Mielke S, Abuillan W, Veschgini M, Liu X, Konovalov O, Krafft MP, Tanaka M. Influence of Perfluorohexane‐Enriched Atmosphere on Viscoelasticity and Structural Order of Self‐Assembled Semifluorinated Alkanes at the Air‐Water Interface. Chemphyschem 2019; 20:1698-1705. [DOI: 10.1002/cphc.201900316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 05/10/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Salomé Mielke
- Physical Chemistry of Biosystems, Institute of Physical ChemistryHeidelberg University D-69120 Heidelberg Germany
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical ChemistryHeidelberg University D-69120 Heidelberg Germany
- Institute of Industrial ScienceThe University of Tokyo 153-0041 Tokyo Japan
| | - Mariam Veschgini
- Physical Chemistry of Biosystems, Institute of Physical ChemistryHeidelberg University D-69120 Heidelberg Germany
| | - Xianhe Liu
- Institut Charles Sadron (CNRS UPR 22)University of Strasbourg 23 rue du Loess F-67034 Strasbourg Cedex France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility (ESRF) Grenoble Cedex 9 38053 France
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS UPR 22)University of Strasbourg 23 rue du Loess F-67034 Strasbourg Cedex France
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical ChemistryHeidelberg University D-69120 Heidelberg Germany
- Center for Integrative Medicine and Physics Institute for Advanced StudyKyoto University 606-8501 Kyoto Japan
| |
Collapse
|
22
|
Yarmoska SK, Yoon H, Emelianov SY. Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1489-1499. [PMID: 30975536 PMCID: PMC6491255 DOI: 10.1016/j.ultrasmedbio.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 05/20/2023]
Abstract
Perfluorocarbon nanodroplets (PFCnDs) are phase-change contrast agents that have the potential to enable extravascular contrast-enhanced ultrasound and photoacoustic (US/PA) imaging. Producing consistently small, monodisperse PFCnDs remains a challenge without resorting to technically challenging methods. We investigated the impact of variable shell composition on PFCnD size and US/PA image properties. Our results suggest that increasing the molar percentage of PEGylated lipid reduces the size and size variance of PFCnDs. Furthermore, our imaging studies revealed that nanodroplets with more PEGylated lipids produce increased US/PA signal compared with those with the standard formulation. Finally, we highlight the ability of this approach to facilitate US/PA imaging in a murine model of breast cancer. These data indicate that, through a facile synthesis process, it is possible to produce monodisperse, small-sized PFCnDs. Novel in their simplicity, these methods may promote the use of PFCnDs among a broader user base to study a variety of extravascular phenomena.
Collapse
Affiliation(s)
- Steven K Yarmoska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Heechul Yoon
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stanislav Y Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
23
|
Koshkina O, Lajoinie G, Bombelli FB, Swider E, Cruz LJ, White PB, Schweins R, Dolen Y, van Dinther EAW, van Riessen NK, Rogers SE, Fokkink R, Voets IK, van Eck ERH, Heerschap A, Versluis M, de Korte CL, Figdor CG, de Vries IJM, Srinivas M. Multicore Liquid Perfluorocarbon-Loaded Multimodal Nanoparticles for Stable Ultrasound and 19F MRI Applied to In Vivo Cell Tracking. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1806485. [PMID: 32132881 PMCID: PMC7056356 DOI: 10.1002/adfm.201806485] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 05/22/2023]
Abstract
Ultrasound is the most commonly used clinical imaging modality. However, in applications requiring cell-labeling, the large size and short active lifetime of ultrasound contrast agents limit their longitudinal use. Here, 100 nm radius, clinically applicable, polymeric nanoparticles containing a liquid perfluorocarbon, which enhance ultrasound contrast during repeated ultrasound imaging over the course of at least 48 h, are described. The perfluorocarbon enables monitoring the nanoparticles with quantitative 19F magnetic resonance imaging, making these particles effective multimodal imaging agents. Unlike typical core-shell perfluorocarbon-based ultrasound contrast agents, these nanoparticles have an atypical fractal internal structure. The nonvaporizing highly hydrophobic perfluorocarbon forms multiple cores within the polymeric matrix and is, surprisingly, hydrated with water, as determined from small-angle neutron scattering and nuclear magnetic resonance spectroscopy. Finally, the nanoparticles are used to image therapeutic dendritic cells with ultrasound in vivo, as well as with 19F MRI and fluorescence imaging, demonstrating their potential for long-term in vivo multimodal imaging.
Collapse
Affiliation(s)
- Olga Koshkina
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands; Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Centre and MESA+ Institute for, Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and BioNano Materials, (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering, "Giulio Natta,", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Edyta Swider
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Ralf Schweins
- Institut Laue - Langevin, DS/LSS, 71 Avenue des Martyrs, CS 20 156, 38042 Grenoble CEDEX 9, France
| | - Yusuf Dolen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Eric A W van Dinther
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - N Koen van Riessen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Sarah E Rogers
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX, UK
| | - Remco Fokkink
- Department of Agrotechnology and Food Sciences, Physical Chemistry and Soft Matter, Wageningen University, 6708 WE, Wageningen, Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, De Rondom 70, 5612 AP, Eindhoven, The Netherlands
| | - Ernst R H van Eck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Centre and MESA+ Institute for, Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Chris L de Korte
- Physics of Fluids Group, Technical Medical (TechMed) Centre and MESA+ Institute for, Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands; Department of Radiology and Nuclear Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Fluorinated MRI contrast agents and their versatile applications in the biomedical field. Future Med Chem 2019; 11:1157-1175. [DOI: 10.4155/fmc-2018-0463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MRI has been recognized as one of the most applied medical imaging techniques in clinical practice. However, the presence of background signal coming from water protons in surrounding tissues makes sometimes the visualization of local contrast agents difficult. To remedy this, fluorine has been introduced as a reliable perspective, thanks to its magnetic properties being relatively close to those of protons. In this review, we aim to give an overall description of fluorine incorporation in contrast agents for MRI. The different kinds of fluorinated probes such as perfluorocarbons, fluorinated dendrimers, polymers and paramagnetic probes will be described, as will their imaging applications such as chemical exchange saturation transfer (CEST) imaging, physico-chemical changes detection, drug delivery, cell tracking and inflammation or tumors detection.
Collapse
|
25
|
Zhang Y, Bo S, Feng T, Qin X, Wan Y, Jiang S, Li C, Lin J, Wang T, Zhou X, Jiang ZX, Huang P. A Versatile Theranostic Nanoemulsion for Architecture-Dependent Multimodal Imaging and Dually Augmented Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806444. [PMID: 30907469 DOI: 10.1002/adma.201806444] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/03/2019] [Indexed: 05/23/2023]
Abstract
To design a clinically translatable nanomedicine for photodynamic theranostics, the ingredients should be carefully considered. A high content of nanocarriers may cause extra toxicity in metabolism, and multiple theranostic agents would complicate the preparation process. These issues would be of less concern if the nanocarrier itself has most of the theranostic functions. In this work, a poly(ethylene glycol)-boron dipyrromethene amphiphile (PEG-F54 -BODIPY) with 54 fluorine-19 (19 F) is synthesized and employed to emulsify perfluorohexane (PFH) into a theranostic nanoemulsion (PFH@PEG-F54 -BODIPY). The as-prepared PFH@PEG-F54 -BODIPY can perform architecture-dependent fluorescence/photoacoustic/19 F magnetic resonance multimodal imaging, providing more information about the in vivo structure evolution of nanomedicine. Importantly, this nanoemulsion significantly enhances the therapeutic effect of BODIPY through both the high oxygen dissolving capability and less self-quenching of BODIPY molecules. More interestingly, PFH@PEG-F54 -BODIPY shows high level of tumor accumulation and long tumor retention time, allowing a repeated light irradiation after a single-dose intravenous injection. The "all-in-one" photodynamic theranostic nanoemulsion has simple composition, remarkable theranostic efficacy, and novel treatment pattern, and thus presents an intriguing avenue to developing clinically translatable theranostic agents.
Collapse
Affiliation(s)
- Yifan Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shaowei Bo
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Tao Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xialing Qin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yilin Wan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shanshan Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Chunxiao Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
26
|
Estabrook DA, Ennis AF, Day RA, Sletten EM. Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles. Chem Sci 2019; 10:3994-4003. [PMID: 31015940 PMCID: PMC6457192 DOI: 10.1039/c8sc05735d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Emulsions are dynamic materials that have been extensively employed within pharmaceutical, food and cosmetic industries. However, their use beyond conventional applications has been hindered by difficulties in surface functionalization, and an inability to selectively control physicochemical properties. Here, we employ custom poly(2-oxazoline) block copolymers to overcome these limitations. We demonstrate that poly(2-oxazoline) copolymers can effectively stabilize nanoscale droplets of hydrocarbon and perfluorocarbon in water. The controlled living polymerization of poly(2-oxazoline)s allows for the incorporation of chemical handles into the surfactants such that covalent modification of the emulsion surface can be performed. Through post-emulsion modification of these new surfactants, we are able to access nanoemulsions with modified surface chemistries, yet consistent sizes. By decoupling size and surface charge, we explore structure-activity relationships involving the cellular uptake of nanoemulsions in both macrophage and non-macrophage cell lines. We conclude that the cellular uptake and cytotoxicity of poly(2-oxazoline)-stabilized droplets can be systematically tuned via chemical modification of emulsion surfaces.
Collapse
Affiliation(s)
- Daniel A Estabrook
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Amanda F Ennis
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Rachael A Day
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry , University of California , 607 Charles E. Young, Dr. E. , Los Angeles , CA 90095 , USA .
| |
Collapse
|
27
|
Martin AL, Homenick CM, Xiang Y, Gillies E, Matsuura N. Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4603-4612. [PMID: 30757902 DOI: 10.1021/acs.langmuir.8b04051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorocarbon nanodroplets, ∼100 to ∼400 nm in diameter, are of immense interest in a variety of medical applications including the imaging and therapy of cancer and inflammatory diseases. However, fluorocarbon molecules are both hydrophobic and lipophobic; therefore, it is challenging to synthesize fluorocarbon nanodroplets with the optimal stability and surface properties without the use of highly specialized surfactants. Here, we hypothesize that we can decouple the control of fluorocarbon nanodroplet size and stability from its surface properties. We use a simple, two-step procedure where standard, easily available anionic fluorosurfactants are used to first stabilize the fluorocarbon nanodroplets, followed by electrostatically attaching functionalized polyelectrolytes to the nanodroplet surfaces to independently control their surface properties. Herein, we demonstrate that PEGylated polyelectrolyte coatings can effectively alter the fluorocarbon nanodroplet surface properties to reduce coalescence and its uptake into phagocytic cells in comparison with non-PEGylated polyelectrolyte coatings and uncoated nanodroplets, as measured by flow cytometry and fluorescence microscopy. In this study, perfluorooctyl bromide (PFOB) was used as a representative fluorocarbon material, and PEGylated PFOB nanodroplets with diameters between 250 and 290 nm, depending on the poly(ethylene glycol) block length, were prepared. The PEGylated PFOB nanodroplets had superior size stability in comparison with uncoated and non-PEGylated polyelectrolyte nanodroplets in saline and within macrophage cells. Of significance, non-PEGylated nanodroplets were rapidly internalized by macrophage cells, whereas PEGylated nanodroplets were predominantly colocalized on the cell membrane. This suggests that the PEGylated-polyelectrolyte coating on the charged PFOB nanodroplets may afford adjustable shielding from cells of the reticuloendothelial system. This report shows that using the same fluorosurfactant as a base layer, modularly assembled PFOB nanodroplets tailored for a variety of end applications can be created by selecting different polyelectrolyte coatings depending on their unique requirements for stability and interaction with phagocytic cells.
Collapse
Affiliation(s)
- Amanda L Martin
- Physical Sciences , Sunnybrook Research Institute , Toronto , Ontario M4N 3M5 , Canada
| | - Christa M Homenick
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | | - Elizabeth Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | |
Collapse
|
28
|
Hu H, Yan X, Wang H, Tanaka J, Wang M, You W, Li Z. Perfluorocarbon-based O 2 nanocarrier for efficient photodynamic therapy. J Mater Chem B 2019; 7:1116-1123. [PMID: 32254779 DOI: 10.1039/c8tb01844h] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tumor hypoxia is considered as one of the major factors that limit the efficiency of photodynamic therapy (PDT), in which oxygen (O2) is needed to generate singlet oxygen (1O2) for cell destruction. Inspired by the excellent O2 carrying ability of perfluorocarbon molecules in artificial blood, we prepared a series of polymer micelles with a perfluorocarbon core to carry both photo-sensitizer and O2 to the tumor site, aiming to improve PDT efficiency. We found that the accelerated generation of 1O2 correlated with the increased perfluorocarbon amount in solution. In vitro cell study further showed that the new perfluorocarbon formulation not only improved the production of 1O2, leading to enhanced photodynamic therapy efficiency, but also significantly reduced cell toxicity when compared with the one without these perfluoro units. This work provides a new option for improving PDT efficiency with the new perfluorocarbon-incorporated nanoplatform.
Collapse
Affiliation(s)
- Huamin Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
30
|
He K, Ran H, Su Z, Wang Z, Li M, Hao L. Perfluorohexane-encapsulated fullerene nanospheres for dual-modality US/CT imaging and synergistic high-intensity focused ultrasound ablation. Int J Nanomedicine 2019; 14:519-529. [PMID: 30666111 PMCID: PMC6333388 DOI: 10.2147/ijn.s184579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose The objective of this study was to develop a multifunctional contrast agent for bioimaging and synergistic high-intensity focused ultrasound (HIFU) therapy to achieve theranostic. Materials and methods A novel type of perfluorohexane-encapsulated fullerene (PFH-C60) nanosphere was successfully developed via a vacuum ultrasonic emulsification and centrifugation method and subsequently used in ultrasound/computed tomography (CT) dual-modality and HIFU ablation of dissected bovine livers. In addition, transmission electron microscopic examination was employed to detect structural changes in the target tissue for HIFU ablation. Results The use of composite nanospheres effectively enhanced ultrasound and CT imaging. Moreover, the HIFU ablation of dissected bovine livers was also significantly enhanced. Conclusion Composite nanospheres demonstrate potential theranostic application as a multifunctional contrast agent for dual-modality biological imaging and highly efficient synergistic imaging-guided HIFU ablation.
Collapse
Affiliation(s)
- Kunyan He
- Ultrasound Department, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, People's Republic of China
| | - Haitao Ran
- Ultrasound Department, The second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China.,The Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, People's Republic of China,
| | - Zhongzhen Su
- Ultrasound Department, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, People's Republic of China
| | - Zhigang Wang
- Ultrasound Department, The second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China.,The Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, People's Republic of China,
| | - Maoping Li
- Ultrasound Department, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Lan Hao
- The Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, People's Republic of China,
| |
Collapse
|
31
|
Thin-Shelled PEGylated Perfluorooctyl Bromide Nanocapsules for Tumor-Targeted Ultrasound Contrast Agent. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1725323. [PMID: 30515065 PMCID: PMC6236697 DOI: 10.1155/2018/1725323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022]
Abstract
Shell thickness determines the acoustic response of polymer-based perfluorooctyl bromide (PFOB) nanocapsule ultrasound contrast agents. PEGylation provides stealth property and arms for targeting moieties. We investigated a modulation in the polymer formulation of carboxy-terminated poly(d,l-lactide-co-glycolide) (PLGA) and poly(d,l-lactide-co-glycolide)-block-polyethylene glycol (PLGA-b-PEG) to produce thin-shelled PFOB nanocapsules while keeping its echogenicity, stealth property, and active targeting potential. Polymer formulation contains 40% PLGA-PEG that yields the PEGylated PFOB nanocapsules of approximately 150 nm size with average thickness-to-radius ratio down to 0.15, which adequately hindered phagocytosis. Functionalization with antibody enables in vitro tumor-specific targeting. Despite the acoustic response improvement, the in vivo tumor accumulation was inadequate to generate an observable acoustic response to the ultrasound power at the clinical level. The use of PLGA and PLGA-PEG polymer blend allows the production of thin-shelled PFOB nanocapsules with echogenicity improvement while maintaining its potential for specific targeting.
Collapse
|
32
|
Corbin BA, Basal LA, White SA, Shen Y, Haacke EM, Fishbein KW, Allen MJ. Screening of ligands for redox-active europium using magnetic resonance imaging. Bioorg Med Chem 2018; 26:5274-5279. [PMID: 29653832 DOI: 10.1016/j.bmc.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
We report a screening procedure to predict ligand coordination to EuII and EuIII using magnetic resonance imaging in which bright images indicate complexation and dark images indicate no complexation. Here, paramagnetic GdIII is used as a surrogate for EuIII in the screening procedure to enable detection with magnetic resonance imaging. The screening procedure was tested using a set of eight ligands with known coordination to EuII and EuIII, and results were found to be consistent with expected binding. Validation of the screening procedure with known coordination chemistry enables use with new ligands in the future.
Collapse
Affiliation(s)
- Brooke A Corbin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States
| | - Lina A Basal
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States
| | - Susan A White
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States
| | - Yimin Shen
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Kenneth W Fishbein
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States.
| |
Collapse
|
33
|
Li M, Luo H, Zhang W, He K, Chen Y, Liu J, Chen J, Wang D, Hao L, Ran H, Zheng Y, Wang Z, Li P. Phase-shift, targeted nanoparticles for ultrasound molecular imaging by low intensity focused ultrasound irradiation. Int J Nanomedicine 2018; 13:3907-3920. [PMID: 30013344 PMCID: PMC6038875 DOI: 10.2147/ijn.s166200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Ultrasound (US) molecular imaging provides a non-invasive way to visualize tumor tissues at molecular and cell levels and could improve diagnosis. One problem of using US molecular imaging is microbubbles challenges, including instability, short circulation time, and poor loading capacity and penetrability. It is urgent to design new acoustic contrast agents and new imaging methods to facilitate tumor-targeted imaging. In this study, phase-shift poly lactic-co-glycolic acid (PLGA) nanoparticles modified with folate as an efficient US molecular probe were designed and the long–term targeted imaging was achieved by low-intensity focused US (LIFU) irradiation. Methods A new 5-step method and purification procedure was carried out to obtain uniform folic acid polyethylene glycol PLGA (PLGA-PEG-FA), the structure of which was confirmed by 1H nuclear magnetic resonance spectroscopy and thin-layer chromatography. Perflenapent (PFP) was wrapped in PLGA-PEG-FA by a double emulsion solvent evaporation method to obtain PFP/PLGA-PEG-FA nanoparticles. The targeted ability of the resulting nanoparticles was tested in vivo and in vitro. LIFU irradiation can irritate nanoparticle phase-shift to enhance tumor imaging both in vivo and in vitro. Results PLGA-PEG-FA was a light yellow powder with a final purity of at least 98%, the structure of which was confirmed by 1H nuclear magnetic resonance spectroscopy and thin-layer chromatography. Highly dispersed PFP/PLGA-PEG-FA nanoparticles with spherical morphology have an average diameter of 280.9±33.5 nm, PFP load efficiency of 59.4%±7.1%, and shells, thickness of 28±8.63 nm. The nanoparticles can specifically bind to cells expressing high folate receptor both in vivo and in vitro. Ultrasonic imaging was significantly enhanced in vitro and in vivo by LIFU irradiation. The retention time was significantly prolonged in vivo. Conclusion Phase-shift PFP/PLGA-PEG-FA nanoparticles induced by LIFU can significantly enhance ultrasonic imaging, specifically targeting tumors expressing folate receptor. As a potential targeting acoustic molecular probe, PFP/PLGA-PEG-FA nanoparticles can be used to achieve targeted localization imaging.
Collapse
Affiliation(s)
- Maoping Li
- Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.,Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Hua Luo
- Chongqing Protein way Biotechnology Co., Ltd., Chongqing 400039, China
| | - Weiyang Zhang
- Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Kunyan He
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 519000, China
| | - Yong Chen
- Chongqing Protein way Biotechnology Co., Ltd., Chongqing 400039, China
| | - Jianxin Liu
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Junchen Chen
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Lan Hao
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Haitao Ran
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Yuanyi Zheng
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| | - Pan Li
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China, ;
| |
Collapse
|
34
|
Li X, Sui Z, Li X, Xu W, Guo Q, Sun J, Jing F. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int J Nanomedicine 2018; 13:3053-3067. [PMID: 29872293 PMCID: PMC5975599 DOI: 10.2147/ijn.s164905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perfluorooctylbromide nanoparticles (PFOB NPs) are a type of multifunctional nanotechnology that has been studied for various medical applications. Commercial ultrasound contrast agents (UCAs) suffer from the following limitations: short half-lives in vivo, high background signal and restricted distribution in the vascular circulation due to their micrometer dimensions. PFOB NPs are new potential UCAs that persist for long periods in the circulatory system, possess a relatively stable echogenic response without increasing the background signal and exhibit lower acoustic attenuation than commercial UCAs. Furthermore, PFOB NPs may also serve as drug delivery vehicles in which drugs are dissolved in the outer lipid or polymer layer for subsequent delivery to target sites in site-targeted therapy. The use of PFOB NPs as carriers has the potential advantage of selectively delivering payloads to the target site while improving visualization of the site using ultrasound (US) imaging. Unfortunately, the application of PFOB NPs to the field of ultrasonography has been limited because of the low intensity of US reflection. Numerous researchers have realized the potential use of PFOB NPs as UCAs and thus have developed alternative approaches to apply PFOB NPs in ultrasonography. In this article, we review the latest approaches for using PFOB NPs to enhance US imaging in vivo. In addition, this article emphasizes the application of PFOB NPs as promising drug delivery carriers for cancer and atherosclerosis treatments, as PFOB NPs can transport different drug payloads for various applications with good efficacy. We also note the challenges and future study directions for the application of PFOB NPs as both a delivery system for therapeutic agents and a diagnostic agent for ultrasonography.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Zhongguo Sui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jialin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Fanbo Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
35
|
Song R, Peng C, Xu X, Wang J, Yu M, Hou Y, Zou R, Yao S. Controllable Formation of Monodisperse Polymer Microbubbles as Ultrasound Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14312-14320. [PMID: 29637761 DOI: 10.1021/acsami.7b17258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Microbubbles have been widely used as ultrasound contrast agents in clinical diagnosis and hold great potential for ultrasound-mediated therapy. However, polydispersed population and short half-life time (<10 min) of the microbubbles still limit their applications in imaging and therapy. To tackle these problems, we develop a microfluidic flow-focusing approach to produce monodisperse microbubbles stabilized by Poly(lactic-co-glycolic acid) (PLGA) as the polymer shell. The size of PLGA microbubbles can be tightly controlled from ∼600 nm to ∼7 μm with a coefficient of variation less than 4% in size distribution for ensuring highly homogeneous echogenic behavior of PLGA polymer microbubbles in ultrasound fields. Both in vitro and in vivo experiments showed that the monodisperse PLGA microbubbles had excellent echogenicity and elongated sonographic duration time (>3 times) for ultrasound imaging in comparison with the commercial lipid microbubbles.
Collapse
Affiliation(s)
| | - Chuan Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Ultrasound , Sun Yat-sen University Cancer Center , 510060 Guangzhou , China
| | | | - Jianwei Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Ultrasound , Sun Yat-sen University Cancer Center , 510060 Guangzhou , China
| | | | | | - Ruhai Zou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Department of Ultrasound , Sun Yat-sen University Cancer Center , 510060 Guangzhou , China
| | | |
Collapse
|
36
|
Zullino S, Argenziano M, Stura I, Guiot C, Cavalli R. From Micro- to Nano-Multifunctional Theranostic Platform: Effective Ultrasound Imaging Is Not Just a Matter of Scale. Mol Imaging 2018; 17:1536012118778216. [PMID: 30213222 PMCID: PMC6144578 DOI: 10.1177/1536012118778216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022] Open
Abstract
Ultrasound Contrast Agents (UCAs) consisting of gas-filled-coated Microbubbles (MBs) with diameters between 1 and 10 µm have been used for a number of decades in diagnostic imaging. In recent years, submicron contrast agents have proven to be a viable alternative to MBs for ultrasound (US)-based applications for their capability to extravasate and accumulate in the tumor tissue via the enhanced permeability and retention effect. After a short overview of the more recent approaches to ultrasound-mediated imaging and therapeutics at the nanoscale, phase-change contrast agents (PCCAs), which can be phase-transitioned into highly echogenic MBs by means of US, are here presented. The phenomenon of acoustic droplet vaporization (ADV) to produce bubbles is widely investigated for both imaging and therapeutic applications to develop promising theranostic platforms.
Collapse
Affiliation(s)
- Sara Zullino
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Ilaria Stura
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Caterina Guiot
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Swider E, Staal AHJ, Koen van Riessen N, Jacobs L, White PB, Fokkink R, Janssen GJ, van Dinther E, Figdor CG, de Vries IJ, Koshkina O, Srinivas M. Design of triphasic poly(lactic-co-glycolic acid) nanoparticles containing a perfluorocarbon phase for biomedical applications. RSC Adv 2018; 8:6460-6470. [PMID: 35540375 PMCID: PMC9078287 DOI: 10.1039/c7ra13062g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are very widely used, particularly for drug delivery, including commercial clinical formulations. Adding perfluorocarbon (PFC) enables in vivo imaging and quantification of the PLGA particles through 19F NMR, MRS or MRI. PFCs are both hydrophobic and lipophobic at the same time. This property makes their encapsulation in particles challenging, as it requires the addition of a third immiscible phase during the emulsification process. Here we explore how different parameters affect the miniemulsion formation of particles loaded with perfluoro-15-crown-5-ether (PFCE). By changing the concentration of surfactant and type of solvent, we were able to control the radius of synthesized particles, between 85–200 nm. We assessed stability and release from the particles at different pH values, showing that hydrophobic agents are released from the particles by diffusion rather than degradation. With cell experiments, we show that primary human dendritic cells take up the particles without any apparent effect, including on cell migration. In summary, the control of synthesis conditions leads to particles with sufficient PFCE encapsulation, which are suitable for drug loading and cell labeling, and do not affect cell viability or functionality. Finally, these nanoparticles can be produced at GMP-grade for clinical use. The influence of different synthesis parameters on the characteristics of polymeric particles with a third perfluorocarbon phase.![]()
Collapse
|
38
|
Basal LA, Bailey MD, Romero J, Ali MM, Kurenbekova L, Yustein J, Pautler RG, Allen MJ. Fluorinated Eu II-based multimodal contrast agent for temperature- and redox-responsive magnetic resonance imaging. Chem Sci 2017; 8:8345-8350. [PMID: 29780447 PMCID: PMC5933353 DOI: 10.1039/c7sc03142d] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
Magnetic resonance imaging (MRI) using redox-active, EuII-containing complexes is one of the most promising techniques for noninvasively imaging hypoxia in vivo. In this technique, positive (T1-weighted) contrast enhancement persists in areas of relatively low oxidizing ability, such as hypoxic tissue. Herein, we describe a fluorinated, EuII-containing complex in which the redox-active metal is caged by intramolecular interactions. The position of the fluorine atoms enables temperature-responsive contrast enhancement in the reduced form of the contrast agent and detection of the oxidized contrast agent via MRI in vivo. Positive contrast is observed in 1H-MRI with Eu in the +2 oxidation state, and chemical exchange saturation transfer and 19F-MRI signal are observed with Eu in the +3 oxidation state. Contrast enhancement is controlled by the redox state of Eu, and modulated by the fluorous interactions that cage a bound water molecule reduce relaxivity in a temperature-dependent fashion. Together, these advancements constitute the first report of in vivo, redox-responsive imaging using 19F-MRI.
Collapse
Affiliation(s)
- Lina A Basal
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , USA .
| | - Matthew D Bailey
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , USA .
| | - Jonathan Romero
- Department of Molecular Physiology and Biophysics , Baylor College of Medicine , One Baylor Plaza , Houston , Texas 77030 , USA .
| | - Meser M Ali
- Department of Neurosurgery , Henry Ford Hospital , 1 Ford Place , Detroit , Michigan 48202 , USA
| | - Lyazat Kurenbekova
- Integrative Molecular and Biomedical Sciences , Baylor College of Medicine , Houston , TX 77030 , USA
| | - Jason Yustein
- Integrative Molecular and Biomedical Sciences , Baylor College of Medicine , Houston , TX 77030 , USA
- Department of Pediatrics , Texas Children's Cancer and Hematology Centers , Baylor College of Medicine , Houston , TX 77030 , USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics , Baylor College of Medicine , One Baylor Plaza , Houston , Texas 77030 , USA .
| | - Matthew J Allen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , USA .
| |
Collapse
|
39
|
Xu X, Song R, He M, Peng C, Yu M, Hou Y, Qiu H, Zou R, Yao S. Microfluidic production of nanoscale perfluorocarbon droplets as liquid contrast agents for ultrasound imaging. LAB ON A CHIP 2017; 17:3504-3513. [PMID: 28933795 DOI: 10.1039/c7lc00056a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid perfluorocarbon (PFC) nanodroplets may have a better chance to extravasate through inter-endothelial gaps (400-800 nm) into tumor interstitium for extravascular imaging, which holds promise as an innovative strategy for imaging-guided drug delivery, early diagnosis of cancer and minimally invasive treatment of cancer. Currently available emulsion technologies still face challenges in reducing droplet sizes from the microscale to the nanoscale. To control size and ensure monodispersity of PFC nanodroplets, we developed a flame-shaped glass capillary and polydimethylsiloxane (PDMS) hybrid device that creates a concentric flow of the dispersed phase enclosed by the focusing continuous phase at the cross-junction. Through adjustment of the pressure applied, a stable tip-streaming mode can be obtained for PFC nanodroplet generation. Using this device, we synthesized various kinds of PFC nanodroplets as small as 200 nm in diameter with polydispersity index (PDI) <0.04. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were carried out for the characterization of the PFC nanodroplets. Finally, ultrasound imaging was conducted to demonstrate that the liquid PFC nanodroplets can be used for enhancing the ultrasound contrast upon vaporization.
Collapse
Affiliation(s)
- Xiaonan Xu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Contrast agents were introduced early in the history of medical imaging. Iodine-based intravascular agents became the radiographic compounds of choice and refinements of their chemical structures led to the highly tolerated low-osmolarity agents in use today. Gadolinium became the most popular compound for MR imaging; however, recognition of nephrogenic systemic fibrosis and in vivo dechelation intensified research on their safety profile. Ultrasonography contrast media evolved from manual injections of air through agitated saline solutions to microbubbles with different gases. Research has concentrated on bubble stabilization and development of small but sufficiently echogenic particles.
Collapse
Affiliation(s)
- Carlos A Zamora
- Division of Neuroradiology, Department of Radiology, University of North Carolina School of Medicine, 3320 Old Infirmary, Campus Box 7510, Chapel Hill, NC 27599-7510, USA.
| | - Mauricio Castillo
- Department of Radiology, University of North Carolina School of Medicine, 3326 Old Infirmary, Campus Box 7510, Chapel Hill, NC 27599-7510, USA
| |
Collapse
|
41
|
Chen H, Chen L, Liang R, Wei J. Ultrasound and magnetic resonance molecular imaging of atherosclerotic neovasculature with perfluorocarbon magnetic nanocapsules targeted against vascular endothelial growth factor receptor 2 in rats. Mol Med Rep 2017; 16:5986-5996. [PMID: 28849045 PMCID: PMC5865790 DOI: 10.3892/mmr.2017.7314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/15/2017] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the feasibility of using ultrasonography (US) and magnetic resonance (MR) for bimodal molecular imaging of atherosclerotic neovasculature with liquid perfluorocarbon magnetic nanocapsules (NCs) targeted to vascular endothelial growth factor receptor 2 (VEGFR-2). By incorporating perfluorooctyl bromide (PFOB) and superparamagnetic iron oxide (SPIO) into polylactic acid, a SPIO-embedded PFOB NC was constructed; subsequently, a VEGFR-2-targeted NC (VTNC) containing dual detectable probes was created by covalently linking a VEGFR-2 antibody onto the surface of the SPIO-embedded PFOB NC. Target specificity was verified in vitro by incubating VTNC with VEGFR-2+ or VEGFR-2− endothelial cells. Rats with vulnerable plaques were assigned to receive either an injection of VTNC (Targeted group; n=8) or an injection of NC (Nontargeted group; n=8); control rats also received an injection of VTNC (Control group; n=8). US and MR imaging of the abdominal aorta were performed to detect VTNC by measuring of the ultrasonic grayscale intensity (GSI) and MR contrast-to-noise ratio (CNR) prior to and at successive time points following VTNC and NC injections. The percent positive area (PPA) of CD31+ (PPACD31+) or VEGFR-2+ (PPAVEGFR-2+) expression was quantified by immunohistochemical staining. CD31 was used to verify the existence of endothelial cells as it is widely expressed on the surface of endothelial cells whether activated or not. The results demonstrated that VTNC was able to highly and selectively detect VEGFR-2+ endothelial cells, and GSI, CNR, PPACD31+ and PPAVEGFR-2+ were significantly increased in the targeted group compared with the nontargeted and control groups. In the control group, no atherosclerotic plaques or angiogenesis was identified, thus no expression of PPACD31+ and PPAVEGFR-2 (data not shown). There were strong correlations among GSI, CNR, PPACD31+ and PPAVEGFR-2+. In conclusion, two-probe VTNC is feasible for bimodal US and MR molecular imaging of atherosclerotic neovasculature, which may offer complementary information for the more reliable prediction of plaque vulnerability.
Collapse
Affiliation(s)
- Hua Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian 350001, P.R. China
| | - Rongxi Liang
- Department of Ultrasonography, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jin Wei
- Department of Imaging, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
42
|
Xin Y, Qi Q, Mao Z, Zhan X. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations. Int J Pharm 2017; 528:47-54. [DOI: 10.1016/j.ijpharm.2017.05.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/16/2023]
|
43
|
Liang X, Fang L, Li X, Zhang X, Wang F. Activatable near infrared dye conjugated hyaluronic acid based nanoparticles as a targeted theranostic agent for enhanced fluorescence/CT/photoacoustic imaging guided photothermal therapy. Biomaterials 2017; 132:72-84. [DOI: 10.1016/j.biomaterials.2017.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
|
44
|
Houvenagel S, Picheth G, Dejean C, Brûlet A, Chennevière A, Couture O, Huang N, Moine L, Tsapis N. End-chain fluorination of polyesters favors perfluorooctyl bromide encapsulation into echogenic PEGylated nanocapsules. Polym Chem 2017. [DOI: 10.1039/c7py00400a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorination of polyesters favors the encapsulation efficiency of perfluorooctyl bromide into nanocapsules.
Collapse
Affiliation(s)
- Sophie Houvenagel
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Guilherme Picheth
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Camille Dejean
- BioCIS
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Annie Brûlet
- Laboratoire Léon Brillouin
- UMR12 CEA-CNRS
- CEA Saclay
- Gif sur Yvette
- France
| | | | - Olivier Couture
- Institut Langevin
- ESPCI Paris
- CNRS (UMR 7587)
- INSERM (U979)
- Paris
| | - Nicolas Huang
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Laurence Moine
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Nicolas Tsapis
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| |
Collapse
|
45
|
Kim HS, Lee DY. Photothermal therapy with gold nanoparticles as an anticancer medication. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0292-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Mountford PA, Borden MA. On the thermodynamics and kinetics of superheated fluorocarbon phase-change agents. Adv Colloid Interface Sci 2016; 237:15-27. [PMID: 27574721 DOI: 10.1016/j.cis.2016.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 11/24/2022]
Abstract
Superheated nanodrops are a new class of submicron-diameter liquid emulsion particles comprising perfluoropropane (C3F8), perfluorobutane (C4F10) and perfluoropentane (C5F12) that are being developed for ultrasound imaging and therapy. They can be formed by condensation of precursor lipid-coated, gas-filled microbubbles. Application of ultrasound or laser energy triggers the phase transformation back to a vapor bubble, and this process can be exploited for certain biomedical applications. The nanodrops are remarkably metastable in the liquid state under physiological conditions, even though they are highly superheated. In prior work, it was suggested that a high Laplace pressure in the lipid-coated nanodrop is responsible for its stability in the superheated state. Recent work by our group, however, points to the energy barrier for homogeneous nucleation as a more likely explanation. The purpose of this article is to review and discuss this mechanism in greater detail. We start with a brief description of basic fluorocarbon intermolecular forces. We then use the van der Waals equation of state to construct equilibrium phase diagrams and saturation curves. The effect of droplet Laplace pressure is superimposed onto these curves and compared to experimental data, where a poor correlation is observed. It is also shown that nanodrops with Laplace pressure are unstable to dissolution. The mechanism of homogeneous nucleation is then offered as an alternative explanation for the metastability of superheated nanodrops, with calculations that show good agreement with experimental data.
Collapse
|
47
|
Fu L, Ke HT. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics. Cancer Biol Med 2016; 13:313-324. [PMID: 27807499 PMCID: PMC5069833 DOI: 10.20892/j.issn.2095-3941.2016.0065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/13/2016] [Indexed: 01/10/2023] Open
Abstract
Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Lei Fu
- Center of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Heng-Te Ke
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
48
|
Modified polysaccharides as potential 19F magnetic resonance contrast agents. Carbohydr Res 2016; 428:72-8. [DOI: 10.1016/j.carres.2016.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 11/16/2022]
|
49
|
Zhang C, Moonshi SS, Peng H, Puttick S, Reid J, Bernardi S, Searles DJ, Whittaker AK. Ion-Responsive 19F MRI Contrast Agents for the Detection of Cancer Cells. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00216] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cheng Zhang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shehzahdi Shebbrin Moonshi
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Simon Puttick
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | - Andrew K. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
50
|
Salama IE, Paul A. Emulsions of fluorinated oils stabilised by fluorinated silica nanoparticles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|