1
|
Wu H, Yu M, Zhang S, You M, Xiong A, Feng B, Niu J, Yuan G, Yue B, Pei J. Mg-based implants with a sandwiched composite coating simultaneously facilitate antibacterial and osteogenic properties. J Mater Chem B 2024; 12:2015-2027. [PMID: 38304935 DOI: 10.1039/d3tb02744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Insufficient antibacterial effects and over-fast degradation are the main limitations of magnesium (Mg)-based orthopedic implants. In this study, a sandwiched composite coating containing a triclosan (TCS)-loaded poly(lactic acid) (PLA) layer inside and brushite (DCPD) layer outside was prepared on the surface of the Mg-Nd-Zn-Zr (denoted as JDBM) implant. In vitro degradation tests revealed a remarkable improvement in the corrosion resistance and moderate degradation rate. The drug release profile demonstrated a controllable and sustained TCS release for at least two weeks in vitro. The antibacterial rates of the implant were all over 99.8% for S. aureus, S. epidermidis, and E. coli, demonstrating superior antibacterial effects. Additionally, this coated JDBM implant exhibited no cytotoxicity but improved cell adhesion and proliferation, indicating excellent cytocompatibility. In vivo assays were conducted by implant-related femur osteomyelitis and osseointegration models in rats. Few bacteria were attached to the implant surface and the surrounding bone tissue. Furthermore, the coated JDBM implant exhibited more new bone formation than other groups due to the synergistic biological effects of released TCS and Mg2+, revealing excellent osteogenic ability. In summary, the JDBM implant with the sandwiched composite coating could significantly enhance the antibacterial activities and osteogenic properties simultaneously by the controllable release of TCS and Mg2+, presenting great potential for clinical transformation.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mengjiao Yu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyu You
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Boxuan Feng
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Liu S, Yu Q, Guo R, Chen K, Xia J, Guo Z, He L, Wu Q, Liu L, Li Y, Zhang B, Lu L, Sheng X, Zhu J, Zhao L, Qi H, Liu K, Yin L. A Biodegradable, Adhesive, and Stretchable Hydrogel and Potential Applications for Allergic Rhinitis and Epistaxis. Adv Healthc Mater 2023; 12:e2302059. [PMID: 37610041 DOI: 10.1002/adhm.202302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Bioadhesive hydrogels have attracted considerable attention as innovative materials in medical interventions and human-machine interface engineering. Despite significant advances in their application, it remains critical to develop adhesive hydrogels that meet the requirements for biocompatibility, biodegradability, long-term strong adhesion, and efficient drug delivery vehicles in moist conditions. A biocompatible, biodegradable, soft, and stretchable hydrogel made from a combination of a biopolymer (unmodified natural gelatin) and stretchable biodegradable poly(ethylene glycol) diacrylate is proposed to achieve durable and tough adhesion and explore its use for convenient and effective intranasal hemostasis and drug administration. Desirable hemostasis efficacy and enhanced therapeutic outcomes for allergic rhinitis are accomplished. Biodegradation enables the spontaneous removal of materials without causing secondary damage and minimizes medical waste. Preliminary trials on human subjects provide an essential foundation for practical applications. This work elucidates material strategies for biodegradable adhesive hydrogels, which are critical to achieving robust material interfaces and advanced drug delivery platforms for novel clinical treatments.
Collapse
Affiliation(s)
- Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiao Xia
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenhu Guo
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu He
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Qian Wu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lan Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunxuan Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Bozhen Zhang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Jiahua Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lingyun Zhao
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Hui Qi
- Laboratory of Musculoskeletal Regenerative Medicine, Beijing Institute of Traumatology and Orthopaedics, Beijing, 100035, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Balogh-Weiser D, Molnár A, Tóth GD, Koplányi G, Szemes J, Decsi B, Katona G, Salamah M, Ender F, Kovács A, Berkó S, Budai-Szűcs M, Balogh GT. Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique. Pharmaceutics 2023; 15:pharmaceutics15041174. [PMID: 37111659 PMCID: PMC10143802 DOI: 10.3390/pharmaceutics15041174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The application of enzyme-based therapies has received significant attention in modern drug development. Lipases are one of the most versatile enzymes that can be used as therapeutic agents in basic skin care and medical treatment related to excessive sebum production, acne, and inflammation. The traditional formulations available for skin treatment, such as creams, ointments or gels, are widely applied; however, their use is not always accompanied by good drug penetration properties, stability, or patient adherence. Nanoformulated drugs offer the possibility of combining enzymatic and small molecule formulations, making them a new and exciting alternative in this field. In this study polymeric nanofibrous matrices made of polyvinylpyrrolidone and polylactic acid were developed, entrapping lipases from Candida rugosa and Rizomucor miehei and antibiotic compound nadifloxacin. The effect of the type of polymers and lipases were investigated, and the nanofiber formation process was optimized to provide a promising alternative in topical treatment. Our experiments have shown that entrapment by electrospinning induced two orders of magnitude increase in the specific enzyme activity of lipases. Permeability investigations indicated that all lipase-loaded nanofibrous masks were capable of delivering nadifloxacin to the human epidermis, confirming the viability of electrospinning as a formulation method for topical skin medications.
Collapse
Affiliation(s)
- Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Alexandra Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gergő D Tóth
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gábor Koplányi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - József Szemes
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Balázs Decsi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Maryana Salamah
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Istitute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ferenc Ender
- Department of Electron Devices, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- SpinSplit LLC, Vend u. 17, H-1025 Budapest, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - György T Balogh
- Istitute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
4
|
Meng Y, Gantier M, Nguyen TH, Nicolai T, Nicol E. Poly(ethylene oxide)/Gelatin-Based Biphasic Photocrosslinkable Hydrogels of Tunable Morphology for Hepatic Progenitor Cell Encapsulation. Biomacromolecules 2023; 24:789-796. [PMID: 36655630 DOI: 10.1021/acs.biomac.2c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macroporous hydrogels have great potential for biomedical applications. Liquid or gel-like pores were created in a photopolymerizable hydrogel by forming water-in-water emulsions upon mixing aqueous solutions of gelatin and a poly(ethylene oxide) (PEO)-based triblock copolymer. The copolymer constituted the continuous matrix, which dominated the mechanical properties of the hydrogel once photopolymerized. The gelatin constituted the dispersed phase, which created macropores in the hydrogel. The microstructures of the porous hydrogel were determined by the volume fraction of the gelatin phase. When volume fractions were close to 50 v%, free-standing hydrogels with interpenetrated morphology can be obtained thanks to the addition of a small amount of xanthan. The hydrogels displayed Young's moduli ranging from 5 to 30 kPa. They have been found to be non-swellable and non-degradable in physiological conditions. Preliminary viability tests with hepatic progenitor cells embedded in monophasic PEO-based hydrogels showed rapid mortality of the cells, whereas encouraging viability was observed in PEO-based triblock copolymer/gelatin macroporous hydrogels. The latter has the potential to be used in cell therapy.
Collapse
Affiliation(s)
- Yuwen Meng
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Malika Gantier
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France.,Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, NantesF-44000, France
| | - Tuan Huy Nguyen
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France
| | - Taco Nicolai
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Erwan Nicol
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| |
Collapse
|
5
|
Hosseinzadeh S, Shams F, Fattahi R, Nuoroozi G, rostami E, Shahghasempour L, Salehi-Nik N, Bohlouli M, Khojasteh A, Ghasemi N, Peiravi H. Surface Coating of Polyurethane Films with Gelatin, Aspirin and Heparin to Increase the Hemocompatibility of Artificial Vascular Grafts. Adv Pharm Bull 2023; 13:123-133. [PMID: 36721809 PMCID: PMC9871267 DOI: 10.34172/apb.2023.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
Purpose: A hemocompatible substrate can offer a wonderful facility for nitric oxide (NO) production by vascular endothelial cells in reaction to the inflammation following injuries. NO inhibits platelet aggregation this is especially critical in small-diameter vessels. Methods: The substrate films were made of polyurethane (PU) in a casting process and after plasma treatments, their surface was chemically decorated with polyethylene glycol (PEG) 2000, gelatin, gelatin-aspirin, gelatin-heparin and gelatin-aspirin-heparin. The concentrations of these ingredients were optimized in order to achieve the biocompatible values and the resulting modifications were characterized by water contact angle and Fourier transform infra-red (FTIR) assays. The values of NO production and platelet adhesion were then examined. Results: The water contact angle of the modified surface was reduced to 26±4∘ and the newly developed hydrophilic chemical groups were confirmed by FTIR. The respective concentrations of 0.05 mg/ml and 100 mg/mL were found to be the IC50 values for aspirin and heparin. However, after the surface modification with aspirin, the bioactivity of the substrate increased in compared to the other experimental groups. In addition, there was a synergistic effect between these reagents for NO synthesis. While, heparin inhibited platelet adhesion more than aspirin. Conclusion: Because of the highly hydrophilic nature of heparin, this reagent was hydrolyzed faster than aspirin and therefore its influence on platelet aggregation and cell growth was greater. Taken together, the results give the biocompatible concentrations of both biomolecules that are required for endothelial cell proliferation, NO synthesis and platelet adhesion.
Collapse
Affiliation(s)
- Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Simzar Hosseinzadeh and Nasim Salehi-Nik, ,
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz rostami
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - lida Shahghasempour
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Nasim Salehi-Nik
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Simzar Hosseinzadeh and Nasim Salehi-Nik, ,
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Ghasemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habibollah Peiravi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Yu J, Xia Y, Zhang H, Pu X, Gong T, Zhang Z, Deng L. A semi-interpenetrating network-based microneedle for rapid local anesthesia. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Serpico L, Dello Iacono S, De Stefano L, De Martino S, Battisti M, Dardano P, Pedatella S, De Nisco M. pH-sensitive release of antioxidant Se-glycoconjugates through a flexible polymeric patch. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Kaczmarek B, Mazur O, Miłek O, Michalska-Sionkowska M, Osyczka AM, Kleszczyński K. Development of tannic acid-enriched materials modified by poly(ethylene glycol) for potential applications as wound dressing. Prog Biomater 2020; 9:115-123. [PMID: 32951173 PMCID: PMC7544793 DOI: 10.1007/s40204-020-00136-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
The interests in the biomedical impact of tannic acid (TA) targeting production of various types of biomaterials, such as digital microfluids, chemical sensors, wound dressings, or bioimplants constantly increase. Despite the significant disadvantage of materials obtained from natural-based compounds and their low stability and fragility, therefore, there is an imperative need to improve materials properties by addition of stabilizing formulas. In this study, we performed assessments of thin films over TA proposed as a cross-linker to be used in combination with polymeric matrix based on chitosan (CTS), i.e. CTS/TA at 80:20 or CTS/TA at 50:50 and poly(ethylene glycol) (PEG) at the concentration of 10% or 20%. We evaluated their mechanical parameters as well as the cytotoxicity assay for human bone marrow mesenchymal stem cells, human melanotic melanoma (MNT-1), and human osteosarcoma (Saos-2). The results revealed significant differences in dose-dependent of PEG regarding the maximum tensile strength (σmax) or impact on the metabolic activity of tissue culture plastic. We observed that PEG improved mechanical parameters prominently, decreased the hemolysis rate, and did not affect cell viability negatively. Enclosed data, confirmed also by our previous reports, will undoubtedly pave the path for the future application of tannic acid-based biomaterials to treat wound healing.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Olha Mazur
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Oliwia Miłek
- Department of Biology and Cell Imaging, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Anna M Osyczka
- Department of Biology and Cell Imaging, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149, Münster, Germany.
| |
Collapse
|
9
|
Zięba M, Chaber P, Duale K, Martinka Maksymiak M, Basczok M, Kowalczuk M, Adamus G. Polymeric Carriers for Delivery Systems in the Treatment of Chronic Periodontal Disease. Polymers (Basel) 2020; 12:E1574. [PMID: 32679893 PMCID: PMC7407295 DOI: 10.3390/polym12071574] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontitis (PD) is a chronic inflammatory disease of periodontal tissues caused by pathogenic microorganisms and characterized by disruption of the tooth-supporting structures. Conventional drug administration pathways in periodontal disease treatment have many drawbacks such as poor biodistribution, low selectivity of the therapeutic effect, burst release of the drug, and damage to healthy cells. To overcome this limitation, controlled drug delivery systems have been developed as a potential method to address oral infectious disease ailments. The use of drug delivery devices proves to be an excellent auxiliary method in improving the quality and effectiveness in periodontitis treatment, which includes inaccessible periodontal pockets. This review explores the current state of knowledge regarding the applications of various polymer-based delivery systems such as hydrogels, liposomes, micro-, and nanoparticles in the treatment of chronic periodontal disease. Furthermore, to present a more comprehensive understanding of the difficulties concerning the treatment of PD, a brief description of the mechanism and development of the disease is outlined.
Collapse
Affiliation(s)
- Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Khadar Duale
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Maciej Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 6 Uniwersytetu Poznańskiego St., 61-614 Poznań, Poland;
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland; (P.C.); (K.D.); (M.M.M.); (M.K.)
| |
Collapse
|
10
|
Verma M, Chu JN, Salama JAF, Faiz MT, Eweje F, Gwynne D, Lopes A, Hess K, Soares V, Steiger C, McManus R, Koeppen R, Hua T, Hayward A, Collins J, Tamang SM, Ishida K, Miller JB, Katz S, Slocum AH, Sulkowski MS, Thomas DL, Langer R, Traverso G. Development of a long-acting direct-acting antiviral system for hepatitis C virus treatment in swine. Proc Natl Acad Sci U S A 2020; 117:11987-11994. [PMID: 32424082 PMCID: PMC7275718 DOI: 10.1073/pnas.2004746117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of cirrhosis worldwide and kills more Americans than 59 other infections, including HIV and tuberculosis, combined. While direct-acting antiviral (DAA) treatments are effective, limited uptake of therapy, particularly in high-risk groups, remains a substantial barrier to eliminating HCV. We developed a long-acting DAA system (LA-DAAS) capable of prolonged dosing and explored its cost-effectiveness. We designed a retrievable coil-shaped LA-DAAS compatible with nasogastric tube administration and the capacity to encapsulate and release gram levels of drugs while resident in the stomach. We formulated DAAs in drug-polymer pills and studied the release kinetics for 1 mo in vitro and in vivo in a swine model. The LA-DAAS was equipped with ethanol and temperature sensors linked via Bluetooth to a phone application to provide patient engagement. We then performed a cost-effectiveness analysis comparing LA-DAAS to DAA alone in various patient groups, including people who inject drugs. Tunable release kinetics of DAAs was enabled for 1 mo with drug-polymer pills in vitro, and the LA-DAAS safely and successfully provided at least month-long release of sofosbuvir in vivo. Temperature and alcohol sensors could interface with external sources for at least 1 mo. The LA-DAAS was cost-effective compared to DAA therapy alone in all groups considered (base case incremental cost-effectiveness ratio $39,800). We believe that the LA-DAA system can provide a cost-effective and patient-centric method for HCV treatment, including in high-risk populations who are currently undertreated.
Collapse
Affiliation(s)
- Malvika Verma
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jacqueline N Chu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - John A F Salama
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mohammed T Faiz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Feyisope Eweje
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Declan Gwynne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Aaron Lopes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kaitlyn Hess
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Vance Soares
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christoph Steiger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rebecca McManus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ryan Koeppen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tiffany Hua
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alison Hayward
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joy Collins
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Siddartha M Tamang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Keiko Ishida
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jonathan B Miller
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Stephanie Katz
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Alexander H Slocum
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mark S Sulkowski
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - David L Thomas
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Robert Langer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
11
|
Simão AR, Fragal VH, Lima AMDO, Pellá MCG, Garcia FP, Nakamura CV, Tambourgi EB, Rubira AF. pH-responsive hybrid hydrogels: Chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. Int J Biol Macromol 2020; 148:302-315. [DOI: 10.1016/j.ijbiomac.2020.01.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
|
12
|
Preem L, Bock F, Hinnu M, Putrinš M, Sagor K, Tenson T, Meos A, Østergaard J, Kogermann K. Monitoring of Antimicrobial Drug Chloramphenicol Release from Electrospun Nano- and Microfiber Mats Using UV Imaging and Bacterial Bioreporters. Pharmaceutics 2019; 11:E487. [PMID: 31546922 PMCID: PMC6781501 DOI: 10.3390/pharmaceutics11090487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022] Open
Abstract
New strategies are continuously sought for the treatment of skin and wound infections due to increased problems with non-healing wounds. Electrospun nanofiber mats with antibacterial agents as drug delivery systems provide opportunities for the eradication of bacterial infections as well as wound healing. Antibacterial activities of such mats are directly linked with their drug release behavior. Traditional pharmacopoeial drug release testing settings are not always suitable for analyzing the release behavior of fiber mats intended for the local drug delivery. We tested and compared different drug release model systems for the previously characterized electrospun chloramphenicol (CAM)-loaded nanofiber (polycaprolactone (PCL)) and microfiber (PCL in combination with polyethylene oxide) mats with different drug release profiles. Drug release into buffer solution and hydrogel was investigated and drug concentration was determined using either high-performance liquid chromatography, ultraviolet-visible spectrophotometry, or ultraviolet (UV) imaging. The CAM release and its antibacterial effects in disc diffusion assay were assessed by bacterial bioreporters. All tested model systems enabled to study the drug release from electrospun mats. It was found that the release into buffer solution showed larger differences in the drug release rate between differently designed mats compared to the hydrogel release tests. The UV imaging method provided an insight into the interactions with an agarose hydrogel mimicking wound tissue, thus giving us information about early drug release from the mat. Bacterial bioreporters showed clear correlations between the drug release into gel and antibacterial activity of the electrospun CAM-loaded mats.
Collapse
Affiliation(s)
- Liis Preem
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Frederik Bock
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Mariliis Hinnu
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Marta Putrinš
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Kadi Sagor
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, Faculty of Natural Sciences, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Andres Meos
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
13
|
Su EJ, Jeeawoody S, Herr AE. Protein diffusion from microwells with contrasting hydrogel domains. APL Bioeng 2019; 3:026101. [PMID: 31069338 PMCID: PMC6481738 DOI: 10.1063/1.5078650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding and controlling molecular transport in hydrogel materials is important for biomedical tools, including engineered tissues and drug delivery, as well as life sciences tools for single-cell analysis. Here, we scrutinize the ability of microwells-micromolded in hydrogel slabs-to compartmentalize lysate from single cells. We consider both (i) microwells that are "open" to a large fluid (i.e., liquid) reservoir and (ii) microwells that are "closed," having been capped with either a slab of high-density polyacrylamide gel or an impermeable glass slide. We use numerical modeling to gain insight into the sensitivity of time-dependent protein concentration distributions on hydrogel partition and protein diffusion coefficients and open and closed microwell configurations. We are primarily concerned with diffusion-driven protein loss from the microwell cavity. Even for closed microwells, confocal fluorescence microscopy reports that a fluid (i.e., liquid) film forms between the hydrogel slabs (median thickness of 1.7 μm). Proteins diffuse from the microwells and into the fluid (i.e., liquid) layer, yet concentration distributions are sensitive to the lid layer partition coefficients and the protein diffusion coefficient. The application of a glass lid or a dense hydrogel retains protein in the microwell, increasing the protein solute concentration in the microwell by ∼7-fold for the first 15 s. Using triggered release of Protein G from microparticles, we validate our simulations by characterizing protein diffusion in a microwell capped with a high-density polyacrylamide gel lid (p > 0.05, Kolmogorov-Smirnov test). Here, we establish and validate a numerical model useful for understanding protein transport in and losses from a hydrogel microwell across a range of boundary conditions.
Collapse
|
14
|
Boles LR, Bumgardner JD, Fujiwara T, Haggard WO, Guerra FD, Jennings JA. Characterization of trimethyl chitosan/polyethylene glycol derivatized chitosan blend as an injectable and degradable antimicrobial delivery system. Int J Biol Macromol 2019; 133:372-381. [PMID: 30986460 DOI: 10.1016/j.ijbiomac.2019.04.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/19/2019] [Accepted: 04/11/2019] [Indexed: 01/19/2023]
Abstract
Advanced local delivery systems are needed as adjunctive treatments for severe injuries with high infection rates, such as open fractures. Chitosan systems have been investigated as antimicrobial local delivery systems for orthopaedic infection but possess mismatches between elution and degradation properties. Derivatives of chitosan were chosen that have enhanced swelling ratios or tailorable degradation properties. A combination of trimethyl chitosan and poly(ethylene glycol) diacrylate chitosan was developed as an injectable local delivery system. Research objectives were elution of antimicrobials for 7 days, degradation as open fractures heal, and cytocompatibility. The derivative combination eluted increased active concentrations of vancomycin and amikacin compared to the non-derivatized chitosan paste, 6 vs. 5 days and 5 vs. 4 days, respectively. The derivative combination degraded slower than non-derivatized paste in an enzymatic degradation study, 14 vs. 3 days, which increased antimicrobial delivery duration. Cytocompatibility of the combination with fibroblast and pre-osteoblast cells exceeds the cell viability standard set in ISO 10993-5. Combination paste requires an increased ejection force of 9.40 N (vs. 0.64 N), but this force was within an acceptable injection force threshold, 80 N. These preliminary results indicate combination paste should be further developed into a clinically useful adjunctive local delivery system for infection prevention.
Collapse
Affiliation(s)
- Logan R Boles
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States of America
| | - Joel D Bumgardner
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States of America
| | - Tomoko Fujiwara
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States of America
| | - Warren O Haggard
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States of America
| | - Fernanda D Guerra
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States of America
| | - Jessica A Jennings
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States of America.
| |
Collapse
|
15
|
Posritong S, Flores Chavez R, Chu TMG, Bruzzaniti A. A Pyk2 inhibitor incorporated into a PEGDA-gelatin hydrogel promotes osteoblast activity and mineral deposition. ACTA ACUST UNITED AC 2019; 14:025015. [PMID: 30658347 DOI: 10.1088/1748-605x/aafffa] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pyk2 is a non-receptor tyrosine kinase that belongs to the family of focal adhesion kinases. Studies from our laboratory and others demonstrated that mice lacking the Pyk2 gene (Ptk2B) have high bone mass, which was due to increased osteoblast activity, as well as decreased osteoclast activity. It was previously reported that a chemical inhibitor that targets both Pyk2 and its homolog FAK, led to increased bone formation in ovariectomized rats. In the current study, we developed a hydrogel containing poly(ethylene glycol) diacrylate (PEGDA) and gelatin which was curable by visible-light and was suitable for the delivery of small molecules, including a Pyk2-targeted chemical inhibitor. We characterized several critical properties of the hydrogel, including viscosity, gelation time, swelling, degradation, and drug release behavior. We found that a hydrogel composed of PEGDA1000 plus 10% gelatin (P1000:G10) exhibited Bingham fluid behavior that can resist free flowing before in situ polymerization, making it suitable for use as an injectable carrier in open wound applications. The P1000:G10 hydrogel was cytocompatible and displayed a more delayed drug release behavior than other hydrogels we tested. Importantly, the Pyk2-inhibitor-hydrogel retained its inhibitory activity against the Pyk2 tyrosine kinase, and promoted osteoblast activity and mineral deposition in vitro. Overall, our findings suggest that a Pyk2-inhibitor based hydrogel may be suitable for the treatment of craniofacial and appendicular skeletal defects and targeted bone regeneration.
Collapse
Affiliation(s)
- Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN 46202, United States of America
| | | | | | | |
Collapse
|
16
|
Pan Y, Wang J, Cai P, Xiao H. Dual-responsive IPN hydrogel based on sugarcane bagasse cellulose as drug carrier. Int J Biol Macromol 2018; 118:132-140. [DOI: 10.1016/j.ijbiomac.2018.06.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
17
|
Cohen DJ, Hyzy SL, Haque S, Olson LC, Boyan BD, Saul JM, Schwartz Z. Effects of Tunable Keratin Hydrogel Erosion on Recombinant Human Bone Morphogenetic Protein 2 Release, Bioactivity, and Bone Induction. Tissue Eng Part A 2018; 24:1616-1630. [PMID: 29905087 DOI: 10.1089/ten.tea.2017.0471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Recombinant human bone morphogenetic protein 2 (rhBMP-2) delivery from collagen sponges for bone formation is an important clinical example of growth factors in tissue engineering. Side effects from rhBMP-2 burst release and rapid collagen resorption have led to investigation of alternative carriers. Here, keratin carriers with tunable erosion rates were formulated by varying disulfide crosslinking via ratios of oxidatively (keratose) to reductively (kerateine) extracted keratin. In vitro rhBMP-2 bioactivity increased with kerateine content, reaching levels greater than with collagen. Heterotopic bone formation in a mouse model depended on the keratin formulation, highlighting the importance of the growth factor carrier.
Collapse
Affiliation(s)
- David Joshua Cohen
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Sharon L Hyzy
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Salma Haque
- 2 Department of Chemical, Paper and Biomedical Engineering, College of Engineering and Computing, Miami University , Oxford, Ohio
| | - Lucas C Olson
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Barbara D Boyan
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
- 3 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia
| | - Justin M Saul
- 2 Department of Chemical, Paper and Biomedical Engineering, College of Engineering and Computing, Miami University , Oxford, Ohio
| | - Zvi Schwartz
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
- 4 Department of Periodontics, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
18
|
Vuksanović JM, Kijevčanin ML, Radović IR. Poly(ethylene glycol) diacrylate as a novel chaotropic compound for design of aqueous biphasic systems. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Shera SS, Sahu S, Banik RM. Preparation of Drug Eluting Natural Composite Scaffold Using Response Surface Methodology and Artificial Neural Network Approach. Tissue Eng Regen Med 2018; 15:131-143. [PMID: 30603541 PMCID: PMC6171686 DOI: 10.1007/s13770-017-0100-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 11/28/2022] Open
Abstract
Silk fibroin/xanthan composite was investigated as a suitable biomedical material for controlled drug delivery, and blending ratios of silk fibroin and xanthan were optimized by response surface methodology (RSM) and artificial neural network (ANN) approach. A non-linear ANN model was developed to predict the effect of blending ratios, percentage swelling and porosity of composite material on cumulative percentage release. The efficiency of RSM was assessed against ANN and it was found that ANN is better in optimizing and modeling studies for the fabrication of the composite material. In-vitro release studies of the loaded drug chloramphenicol showed that the optimum composite scaffold was able to minimize burst release of drug and was followed by controlled release for 5 days. Mechanistic study of release revealed that the drug release process is diffusion controlled. Moreover, during tissue engineering application, investigation of release pattern of incorporated bioactive agent is beneficial to predict, control and monitor cellular response of growing tissues. This work also presented a novel insight into usage of various drug release model to predict material properties. Based on the goodness of fit of the model, Korsmeyer-Peppas was found to agree well with experimental drug release profile, which indicated that the fabricated material has swellable nature. The chloramphenicol (CHL) loaded scaffold showed better efficacy against gram positive and gram negative bacteria. CHL loaded SFX55 (50:50) scaffold shows promising biocomposite for drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Shailendra Singh Shera
- Bioprocess Technology Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Lanka, Varanasi, Uttar Pradesh 221005 India
| | - Shraddha Sahu
- Bioprocess Technology Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Lanka, Varanasi, Uttar Pradesh 221005 India
| | - Rathindra Mohan Banik
- Bioprocess Technology Laboratory, School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Lanka, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
20
|
Follmann HDM, Oliveira ON, Lazarin-Bidóia D, Nakamura CV, Huang X, Asefa T, Silva R. Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. NANOSCALE 2018; 10:1704-1715. [PMID: 29308497 DOI: 10.1039/c7nr08464a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we show the synthesis of novel hybrid organic-inorganic aerogel materials with one-dimensionally aligned pores and demonstrate their use as sustained and prolonged release systems for a hydrophobic drug. The materials are synthesized by trapping mesoporous silica nanoparticles within a hyperbranched polymer network made from poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA). The synthetic method involves dispersing mesoporous silica nanoparticles in a polymer solution, then freeze-drying the solution, and finally subjecting the resulting materials to high temperature to activate a solid-state condensation reaction between PVA and PAA. Before trapping the mesoporous silica nanoparticles within the hyperbranched polymeric network, their pores are decorated with hydrophobic groups so that they can serve as good host materials for hydrophobic drugs. The potential application of the hybrid aerogels as drug carriers is demonstrated using the hydrophobic, anti-inflammatory agent dexamethasone (DEX) as a model drug. Due to their hydrophobic pores, the hybrid aerogels show excellent drug loading capacity for DEX, with an encapsulation efficiency higher than 75%. Furthermore, the release pattern of the payloads of DEX encapsulated in the aerogels is highly tailorable (i.e., it can be made faster or slower, as needed) simply by varying the PVA-to-PAA weight ratio in the precursors, and thus the 3-dimensional (3-D) structures of the cross-linked polymers in them. The materials also show sustained drug release, for over 50 days or more. In addition, the aerogels are biocompatible, as demonstrated with Vero cells, and greatly promote the cell proliferation of L929 fibroblasts. Also, the nanoparticles functionalized with quaternary groups and dispersed within the aerogels display bactericidal activity against E. coli, S. aureus, B. subtilis, and P. aeruginosa. These new hybrid aerogels can, thus, be highly appealing biomaterials for sustained and prolonged drug release, such as wound dressing systems.
Collapse
Affiliation(s)
- Heveline D M Follmann
- São Carlos Institute of Physics, University of São Paulo (USP) - PO Box 369, CEP 13566-590, São Carlos, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Collagen I derived recombinant protein microspheres as novel delivery vehicles for bone morphogenetic protein-2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519439 DOI: 10.1016/j.msec.2017.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a powerful osteoinductive protein; however, there is a need for the development of a safe and efficient BMP-2 release system for bone regeneration therapies. Recombinant extracellular matrix proteins are promising next generation biomaterials since the proteins are well-defined, reproducible and can be tailored for specific applications. In this study, we have developed a novel and versatile BMP-2 delivery system using microspheres from a recombinant protein based on human collagen I (RCP). In general, a two-phase release pattern was observed while the majority of BMP-2 was retained in the microspheres for at least two weeks. Among different parameters studied, the crosslinking and the size of the RCP microspheres changed the in vitro BMP-2 release kinetics significantly. Increasing the chemical crosslinking (hexamethylene diisocyanide) degree decreased the amount of initial burst release (24h) from 23% to 17%. Crosslinking by dehydrothermal treatment further decreased the burst release to 11%. Interestingly, the 50 and 72μm-sized spheres showed a significant decrease in the burst release compared to 207-μm sized spheres. Very importantly, using a reporter cell line, the released BMP-2 was shown to be bioactive. SPR data showed that N-terminal sequence of BMP-2 was important for the binding and retention of BMP-2 and suggested the presence of a specific binding epitope on RCP (KD: 1.2nM). This study demonstrated that the presented RCP microspheres are promising versatile BMP-2 delivery vehicles.
Collapse
|
22
|
Danish MK, Vozza G, Byrne HJ, Frias JM, Ryan SM. Formulation, Characterization and Stability Assessment of a Food-Derived Tripeptide, Leucine-Lysine-Proline Loaded Chitosan Nanoparticles. J Food Sci 2017; 82:2094-2104. [PMID: 28796309 DOI: 10.1111/1750-3841.13824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 01/19/2023]
Abstract
The chicken- or fish-derived tripeptide, leucine-lysine-proline (LKP), inhibits the angiotensin converting enzyme and may be used as an alternative treatment for prehypertension. However, it has low permeation across the small intestine. The formulation of LKP into a nanoparticle (NP) has the potential to address this issue. LKP-loaded NPs were produced using an ionotropic gelation technique, using chitosan (CL113). Following optimization of unloaded NPs, a mixture amount design was constructed using variable concentration of CL113 and tripolyphosphate at a fixed LKP concentration. Resultant particle sizes ranged from 120 to 271 nm, zeta potential values from 29 to 37 mV, and polydispersity values from 0.3 to 0.6. A ratio of 6:1 (CL113:TPP) produced the best encapsulation of approximately 65%. Accelerated studies of the loaded NPs indicated stability under normal storage conditions (room temperature). Cytotoxicity assessment showed no significant loss of cell viability and in vitro release studies indicated an initial burst followed by a slower and sustained release.
Collapse
Affiliation(s)
- Minna K Danish
- School of Food Science and Environmental Health, Dublin Inst. of Technology, Marlborough St., Dublin 1, Ireland.,FOCAS Research Inst., Dublin Inst. of Technology, Kevin St., Dublin 8, Ireland
| | - Giuliana Vozza
- School of Food Science and Environmental Health, Dublin Inst. of Technology, Marlborough St., Dublin 1, Ireland.,FOCAS Research Inst., Dublin Inst. of Technology, Kevin St., Dublin 8, Ireland
| | - Hugh J Byrne
- FOCAS Research Inst., Dublin Inst. of Technology, Kevin St., Dublin 8, Ireland
| | - Jesus M Frias
- School of Food Science and Environmental Health, Dublin Inst. of Technology, Marlborough St., Dublin 1, Ireland.,Environmental Sustainability and Health Institute, Dublin Inst. of Technology. Grangegorman, Dublin 7, Ireland
| | - Sinéad M Ryan
- School of Veterinary Medicine, Univ. College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 2017; 139:127-138. [PMID: 28601703 DOI: 10.1016/j.biomaterials.2017.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/16/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
Despite great potential, delivery remains as the most significant barrier to the widespread use of siRNA therapeutics. siRNA has delivery limitations due to susceptibility to RNase degradation, low cellular uptake, and poor tissue-specific localization. Here, we report the development of a hybrid nanoparticle (NP)/hydrogel system that overcomes these challenges. Hydrogels provide localized and sustained delivery via controlled release of entrapped siRNA/NP complexes while NPs protect and enable efficient cytosolic accumulation of siRNA. To demonstrate therapeutic efficacy, regenerative siRNA against WW domain-containing E3 ubiquitin protein ligase 1 (Wwp1) complexed with NP were entrapped within poly(ethylene glycol) (PEG)-based hydrogels and implanted at sites of murine mid-diaphyseal femur fractures. Results showed localization of hydrogels and controlled release of siRNA/NPs at fractures for 28 days, a timeframe over which fracture healing occurs. siRNA/NP sustained delivery from hydrogels resulted in significant Wwp1 silencing at fracture callus compared to untreated controls. Fractures treated with siRNA/NP hydrogels exhibited accelerated bone formation and significantly increased biomechanical strength. This NP/hydrogel siRNA delivery system has outstanding therapeutic promise to augment fracture healing. Owing to the structural similarities of siRNA, the development of the hydrogel platform for in vivo siRNA delivery has myriad therapeutic possibilities in orthopaedics and beyond.
Collapse
|
24
|
Seidenstuecker M, Ruehe J, Suedkamp NP, Serr A, Wittmer A, Bohner M, Bernstein A, Mayr HO. Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics. Acta Biomater 2017; 51:433-446. [PMID: 28104468 DOI: 10.1016/j.actbio.2017.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study was to produce a novel composite of microporous β-TCP filled with alginate and Vancomycin (VAN) to prolong the release behavior of the antibiotic for up to 28days. MATERIAL AND METHODS Using the flow chamber developed by the group, porous ceramics in a directional flow were filled with alginates of different composition containing 50mg/mL of antibiotics. After cross-linking the alginate with calcium ions, incubation took place in 10mL double-distilled water for 4weeks at 37°C. At defined times (1, 2, 3, 6, 9, 14, 20 and 28days), the liquid was completely exchanged and analyzed by capillary zone electrophoresis and microtiter trials. For statistical purposes, the mean and standard deviation were calculated and analyzed by ANOVA. RESULTS The release of VAN from alginate was carried out via an external calcium source over the entire period with concentrations above the minimal inhibitory concentration (MIC). The burst release measured 35.2±1.5%. The release of VAN from alginate with an internal calcium source could only be observed over 14days. The burst release here was 61.9±4.3%. The native alginate's burst release was 54.1±7.8%; that of the sterile alginate 40.5±6.4%. The microtiter experiments revealed efficacy over the entire study period for VAN. The MIC value was determined in the release experiments as well in a range of 0.5-2.0μg/mL against Staphylococcus aureus. STATEMENT OF SIGNIFICANCE Drug release systems based on β-TCP and hydrogels are well documented in literature. However, in all described systems the ceramic, as granule or powder, is inserted into a hydrogel. In our work, we do the opposite, a hydrogel which acts as reservoir for antibiotics is placed into a porous biodegradable ceramic. Eventually, this system should be applied as treatment of bone infections. Contrary to the "granule in hydrogel" composites it has the advantage of mechanical stability. Thus, it can take over functions of the bone during the healing process. For a quicker translation from our scientific research into clinical use, only FDA approved materials were used in this work.
Collapse
|
25
|
Barati D, Kader S, Pajoum Shariati SR, Moeinzadeh S, Sawyer RH, Jabbari E. Synthesis and Characterization of Photo-Cross-Linkable Keratin Hydrogels for Stem Cell Encapsulation. Biomacromolecules 2017; 18:398-412. [DOI: 10.1021/acs.biomac.6b01493] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Danial Barati
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Safaa Kader
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Roger H. Sawyer
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department
of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Biological
Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
26
|
Zorzetto L, Brambilla P, Marcello E, Bloise N, De Gregori M, Cobianchi L, Peloso A, Allegri M, Visai L, Petrini P. From micro- to nanostructured implantable device for local anesthetic delivery. Int J Nanomedicine 2016; 11:2695-709. [PMID: 27354799 PMCID: PMC4907738 DOI: 10.2147/ijn.s99028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies could involve specific binding between the drug and the material chosen for the device, and a multiscale approach to reach a tailored, prolonged drug release.
Collapse
Affiliation(s)
- Laura Zorzetto
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Paola Brambilla
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Elena Marcello
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
| | - Manuela De Gregori
- Pain Therapy Service, IRCCS Foundation Policlinico San Matteo Pavia, Pavia, Italy
| | - Lorenzo Cobianchi
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Andrea Peloso
- General Surgery Department, IRCCS Foundation Policlinico San Matteo, Pavia, Italy; Departments of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Allegri
- Department of Surgical Sciences, University of Parma, Parma, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy; Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Lab of Nanotechnology, Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials and Chemical Engineering 'G. Natta', Politecnico di Milano, Milan, Italy
| |
Collapse
|
27
|
Guerra AD, Cantu DA, Vecchi JT, Rose WE, Hematti P, Kao WJ. Mesenchymal Stromal/Stem Cell and Minocycline-Loaded Hydrogels Inhibit the Growth of Staphylococcus aureus that Evades Immunomodulation of Blood-Derived Leukocytes. AAPS JOURNAL 2015; 17:620-30. [PMID: 25716147 DOI: 10.1208/s12248-015-9728-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/28/2015] [Indexed: 01/03/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have demonstrated favorable wound healing properties in addition to their differentiation capacity. MSCs encapsulated in biomaterials such as gelatin and polyethylene glycol (PEG) composite hydrogels have displayed an immunophenotype change that leads to the release of cytokines and growth factors to accelerate wound healing. However, therapeutic potential of implanted MSC-loaded hydrogels may be limited by non-specific protein adsorption that facilitates adhesion of bacterial pathogens such as planktonic Staphylococcus aureus (SA) to the surface with subsequent biofilm formation resistant to immune cell recognition and antibiotic activity. In this study, we demonstrate that blood-derived primary leukocytes and bone marrow-derived MSCs cannot inhibit colony-forming abilities of planktonic or biofilm-associated SA. However, we show that hydrogels loaded with MSCs and minocycline significantly inhibit colony-forming abilities of planktonic SA while maintaining MSC viability and multipotency. Our results suggest that minocycline and MSC-loaded hydrogels may decrease the bioburden of SA at implant sites in wounds, and may improve the wound healing capabilities of MSC-loaded hydrogels.
Collapse
Affiliation(s)
- Alberto Daniel Guerra
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | | | | | | | | | | |
Collapse
|
28
|
Three-dimensional biomaterial degradation — Material choice, design and extrinsic factor considerations. Biotechnol Adv 2014; 32:984-99. [DOI: 10.1016/j.biotechadv.2014.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 11/20/2022]
|
29
|
Schesny MK, Monaghan M, Bindermann AH, Freund D, Seifert M, Eble JA, Vogel S, Gawaz MP, Hinderer S, Schenke-Layland K. Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels. Biomaterials 2014; 35:7180-7. [DOI: 10.1016/j.biomaterials.2014.04.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 11/29/2022]
|
30
|
Xu L, Sheybani N, Ren S, Bowlin GL, Yeudall WA, Yang H. Semi-interpenetrating network (sIPN) co-electrospun gelatin/insulin fiber formulation for transbuccal insulin delivery. Pharm Res 2014; 32:275-85. [PMID: 25030186 DOI: 10.1007/s11095-014-1461-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE This work was aimed at developing a semi-interpenetrating network (sIPN) co-electrospun gelatin/insulin fiber scaffold (GIF) formulation for transbuccal insulin delivery. METHODS Gelatin was electrospun into fibers and converted into an sIPN following eosin Y-initiated polymerization of polyethylene glycol diacrylate (PEG-DA). The cytocompatibility, degradation rate and mechanical properties were examined in the resulting sIPNs with various ratios of PEG-DA to eosin Y to find a suitable formulation for transbuccal drug delivery. Insulin was co-electrospun with gelatin into fibers and converted into an sIPN-GIF using this suitable formulation. The in vitro release kinetics of insulin was evaluated using ELISA. The bioactivity of released insulin was analyzed in 3T3-L1 preadipocytes using Western blotting and Oil Red O staining. The transbuccal permeability of released insulin was determined using an in vitro porcine oral mucosa model. RESULTS The sIPN-GF formulation of GF cross-linked by PEG-DA (1% w/v) with eosin Y (5% v/v) possessed no cytotoxic effect, a moderate degradation rate with degradation half-life of 49 min, and a significant enhancement in mechanical properties. This formulation was used to fabricate sIPN-GIF. Insulin release was extended up to 4 h by sIPN-GIF. The released insulin successfully triggered intracellular AKT phosphorylation and induced adipocyte differentiation in 3T3-L1 preadipocytes. The transbuccal permeability of released insulin was determined on the order of 10(-7) cm/s. CONCLUSIONS Insulin can be fabricated into an sIPN-GIF formulation following co-electrospinning and cross-linking without losing bioactivity. It proved the potential of this new formulation for transbuccal insulin delivery.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843067, Richmond, Virginia, 23284, USA,
| | | | | | | | | | | |
Collapse
|
31
|
Pradhan S, Chaudhury CS, Lipke EA. Dual-phase, surface tension-based fabrication method for generation of tumor millibeads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3817-3825. [PMID: 24617794 DOI: 10.1021/la500402m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Numerous methods have been developed for the fabrication of poly(ethylene glycol)-based hydrogel microstructures for drug-delivery and tissue-engineering applications. However, present methods focus on the fabrication of submicrometer scale hydrogel structures which have limited applications in creating larger tissue constructs, especially in recreating cancer tissue microenvironments. We aimed to establish a platform where cancer cells can be cultured in a three-dimensional (3D) environment, which closely replicates the native cancer microenvironment and facilitates efficient testing of anticancer drugs. This study demonstrated a novel surface tension-based fabrication technique for the generation of millimeter-scale hydrogel beads using a liquid-liquid dual phase system. The "hydrogel millibeads" obtained by this method were larger than previously reported, highly uniform in shape and size with better ease of size control and a high degree of consistency and reproducibility between batches. In addition, human breast cancer cells were encapsulated within these hydrogel constructs to generate "tumor millibeads", which were subsequently maintained in long-term 3D culture. Microscopic visualization using fluorescence imaging and microstructure analysis showed the morphology and uniform distribution of the cells within the 3D matrix and arrangement of cells with the surrounding scaffold material. Cell viability analysis revealed the creation of a core region of dead cells surrounded by healthy, viable cell layers at the periphery following long-term culture. These observations closely matched with those of native and in vivo tumors. Based on these results, this study established a rapidly reproducible surface tension-based fabrication technique for making spherical hydrogel millibeads and demonstrated the potential of this method in creating engineered 3D tumor tissues. It is envisioned that the developed hydrogel millibead system will facilitate the formation of physiologically relevant in vitro tumor models which will closely simulate the native tumor microenvironmental conditions and could enable future high-throughput testing of different anticancer drugs in preclinical trials.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical Engineering, Auburn University , Auburn, Alabama 36849, United States
| | | | | |
Collapse
|
32
|
Development and analysis of semi-interpenetrating polymer networks for brain injection in neurodegenerative disorders. Int J Artif Organs 2013; 36:762-74. [PMID: 24338651 DOI: 10.5301/ijao.5000282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2013] [Indexed: 01/15/2023]
Abstract
PURPOSE Our aim was to assess the use of injectable, biocompatible and resorbable, hydrogel-based tools for innovative therapies against brain-related neurodegenerative disorders like Alzheimer's (AD) and Parkinson's (PD) diseases. METHODS Two compositions of semi-interpenetrating polymer networks (semi-IPNs) based on collagen and poly(ethylene glycol) (PEG) were investigated. We examined their viscoelastic properties, flow behavior, functional injectability, as well as in vitro biocompatibility with SH-SY5Y human neuroblastoma cells and murine primary neurons. We also evaluated the in vivo biological performance after subcutaneous and brain injection in mice. RESULTS selected semi-IPNs showed a gel-like behavior and were injectable through a 30 G needle, with the maximum load ranging from 3.0 to 3.9 N. In vitro results showed that immortalized cells kept their proliferative potential and neurons maintained their viability after embedding in both materials, with better performances for the gel with the higher collagen content. For both semi-IPNs, after subcutaneous injection, the inflammatory response was negligible; after brain injection, the tissue did not show any signs of damage or degeneration. CONCLUSIONS The results suggest that the selected semi-IPNs not only represent a proper environment for cells, but also, once injected in vivo, do not induce damage/inflammation in the surrounding brain tissue. These findings represent a crucial starting point for the development of minimally invasive and injectable hydrogel-based tools for innovative drug/cell-based therapeutic strategies against AD, PD, or other severe brain-related neurodegenerative pathologies.</p>
Collapse
|
33
|
Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater 2013; 9:8802-14. [PMID: 23811217 DOI: 10.1016/j.actbio.2013.06.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/09/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are considered promising cellular therapeutics in the fields of tissue engineering and regenerative medicine. MSCs secrete high concentrations of immunomodulatory cytokines and growth factors, which exert paracrine effects on infiltrating immune and resident cells in the wound microenvironment that could favorably promote healing after acute injury. However, better spatial delivery and improved retention at the site of injury are two factors that could improve the clinical application of MSCs. In this study, we utilized thiol-ene Michael-type addition for rapid encapsulation of MSCs within a gelatin/poly(ethylene glycol) biomatrix. This biomatrix was also applied as a provisional dressing to full thickness wounds in Sprague-Dawley rats. The three-way interaction of MSCs, gelatin/poly(ethylene glycol) biomatrices, and host immune cells and adjacent resident cells in the wound microenvironment favorably modulated wound progression and host response. In this model we observed attenuated immune cell infiltration, lack of foreign giant cell (FBGC) formation, accelerated wound closure and re-epithelialization, as well as enhanced neovascularization and granulation tissue formation by 7 days. The MSC entrapped in the gelatin/poly(ethylene glycol) biomatrix localized cell presentation adjacent to the wound microenvironment and thus mediated the early resolution of inflammatory events and facilitated the proliferative phases in wound healing.
Collapse
|
34
|
Aduba DC, Hammer JA, Yuan Q, Andrew Yeudall W, Bowlin GL, Yang H. Semi-interpenetrating network (sIPN) gelatin nanofiber scaffolds for oral mucosal drug delivery. Acta Biomater 2013; 9:6576-84. [PMID: 23416578 DOI: 10.1016/j.actbio.2013.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 02/03/2013] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
The oral mucosa is a promising absorption site for drug administration because it is permeable, highly vascularized and allows for ease of administration. Nanofiber scaffolds for local or systemic drug delivery through the oral mucosa, however, have not been fully explored. In this work, we fabricated electrospun gelatin nanofiber scaffolds for oral mucosal drug delivery. To improve structural stability of the electrospun gelatin scaffolds and allow non-invasive incorporation of therapeutics into the scaffold, we employed photo-reactive polyethylene glycol diacrylate (PEG-DA575, 575 gmol(-1)) as a cross-linker to stabilize the scaffold by forming semi-interpenetrating network gelatin nanofiber scaffolds (sIPN NSs), during which cross-linker concentration was varied (1×, 2×, 4× and 8×). The results showed that electrospun gelatin nanofiber scaffolds after being cross-linked with PEG-DA575 (i.e. sIPN NS1×, 2×, 4× and 8×) retained fiber morphology and possessed improved structural stability. A series of structural parameters and properties of the cross-linked electrospun gelatin scaffolds were systematically characterized in terms of morphology, fiber diameter, mechanical properties, porosity, swelling and degradation. Mucin absorption onto sIPN NS4× was also confirmed, indicating this scaffold possessed greatest mucoadhesion properties among those tested. Slow release of nystatin, an anti-fungal reagent, from the sIPN gelatin nanofiber scaffold was demonstrated.
Collapse
|
35
|
Waldeck H, Kao WJ. Effect of the addition of a labile gelatin component on the degradation and solute release kinetics of a stable PEG hydrogel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1595-611. [PMID: 21801489 DOI: 10.1163/092050611x587547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Characterization of the degradation mechanisms and resulting products of biodegradable materials is critical in understanding the behavior of the material including solute transport and biological response. Previous mathematical analyses of a semi-interpenetrating network (sIPN) containing both labile gelatin and a stable cross-linked poly(ethylene glycol) (PEG) network found that diffusion-based models alone were unable to explain the release kinetics of solutes from the system. In this study, degradation of the sIPN and its effect on solute release and swelling kinetics were investigated. The kinetics of the primary mode of degradation, gelatin dissolution, was dependent on temperature, preparation methods, PEGdA and gelatin concentration, and the weight ratio between the gelatin and PEG. The gelatin dissolution rate positively correlated with both matrix swelling and the release kinetics of high-molecular-weight model compound, FITC-dextran. Coupled with previous in vitro studies, the kinetics of sIPN degradation provided insights into the time-dependent changes in cellular response including adhesion and protein expression. These results provide a facile guide in material formulation to control the delivery of high-molecular-weight compounds with concomitant modulation of cellular behavior.
Collapse
Affiliation(s)
- H Waldeck
- a Department of Biomedical Engineering , College of Engineering, University of Wisconsin-Madison , 777 Highland Avenue , Madison , WI , 53705 , USA
| | | |
Collapse
|
36
|
Xu K, Kleinbeck KR, Kao WJ. Multifunctional Biomaterial Matrix for Advanced Wound Healing. Adv Wound Care (New Rochelle) 2012; 1:75-80. [PMID: 24527284 DOI: 10.1089/wound.2011.0349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Modern wound dressings provide a moist healing environment and facilitate faster and higher quality of healing. A new semi-interpenetrating network (sIPN) biomaterial platform based on poly(ethylene glycol) (PEG) and gelatin was developed as a multi-functional matrix for wound care. THE PROBLEM Besides providing a moist environment and facilitating the healing process, advanced wound dressings may be designed to serve as delivery matrices for drugs and therapeutic cells. New and effective treatments should also comply with clinical settings and be easy to use. No single treatment exists today that can fulfill all these requirements; however, advancement in multifunctional biomaterial design and development holds promise to fill this technology gap. BASIC/CLINICAL SCIENCE ADVANCES PEG + gelatin sIPN provides an ideal platform for fundamental research in cell-cell and cell-biomaterial interaction that is important in wound healing. The in situ forming ability of sIPN facilitates its use in large and irregular wounds with complex contours and crevices. CLINICAL CARE RELEVANCE Although various commercially available wound dressings have been produced, a low-cost, easy-to-use, and biofunctionalizable biomaterial that provides a moist environment and facilitates healing is still a target of active tissue regeneration research. CONCLUSION Extensive preclinical data support the use of in situ polymerized sIPN in advanced wound care.
Collapse
Affiliation(s)
- Kedi Xu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrumental Science, Zhejiang University, People's Republic of China
| | - Kyle R. Kleinbeck
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin
| | - Weiyuan John Kao
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin—Madison, Madison, Wisconsin
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin
| |
Collapse
|
37
|
Altimari I, Spizzirri UG, Iemma F, Curcio M, Puoci F, Picci N. pH-sensitive drug delivery systems by radical polymerization of gelatin derivatives. J Appl Polym Sci 2012. [DOI: 10.1002/app.36234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Patel KD, El-Fiqi A, Lee HY, Singh RK, Kim DA, Lee HH, Kim HW. Chitosan–nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33830k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Yuan Q, Fu Y, Kao WJ, Janigro D, Yang H. Transbuccal Delivery of CNS Therapeutic Nanoparticles: Synthesis, Characterization, and In Vitro Permeation Studies. ACS Chem Neurosci 2011; 2:676-683. [PMID: 22184511 DOI: 10.1021/cn200078m] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This work utilized polyamidoamine (PAMAM) dendrimer G4.5 as the underlying carrier to construct CNS therapeutic nanoparticles and explored the buccal mucosa as an alternative absorption site for administration of the dendritic nanoparticles. Opioid peptide DPDPE was chosen as a model CNS drug. It was coupled to PAMAM dendrimer G4.5 with polyethylene glycol (PEG) or with PEG and transferrin receptor monoclonal antibody OX26 (i.e., PEG-G4.5-DPDPE and OX26-PEG-G4.5-DPDPE). The therapeutic dendritic nanoparticles labeled with 5-(aminoacetamido) fluorescein (AAF) were studied for transbuccal transport using a vertical Franz diffusion cell system mounted with porcine buccal mucosa. For comparison, AAF-labeled PAMAM dendrimers G3.5 and G4.5, and fluorescein isothiocynate (FITC)-labeled G3.0 and G4.0 were also tested for transbuccal delivery. The permeability of PEG-G4.5 (AAF)-DPDPE and OX26-PEG-G4.5(AAF)-DPDPE were on the order of 10(-7) - 10(-6) cm/s. Coadministration of bile salt sodium glycodeoxycholate (NaGDC) enhanced the permeability of dendritic nanoparticles by multiple folds. Similarly, a multifold increase of permeability of dendritic nanoparticles across the porcine buccal mucosal resulted from the application of mucoadhesive gelatin/PEG semi-interpenetrating network (sIPN). These results indicate that transbuccal delivery is a possible route for administration of CNS therapeutic nanoparticles.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | | | | | | | - Hu Yang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
40
|
Fu Y, Kao WJ. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. J Biomed Mater Res A 2011; 98:201-11. [PMID: 21548071 PMCID: PMC4529490 DOI: 10.1002/jbm.a.33106] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 11/10/2022]
Abstract
The incorporation of cells and sensitive compounds can be better facilitated without the presence of UV or other energy sources that are common in the formation of biomedical hydrogels such as poly(ethylene glycol) hydrogels. The formation of hydrogels by the step-growth polymerization of maleimide- and thiol-terminated poly(ethylene glycol) macromers via Michael-type addition is described. The effects of macromer concentration, pH, temperature, and the presence of biomolecule gelatin on gel formation were investigated. Reaction kinetics between maleimide and thiol functional groups were found to be rapid. Molecular weight increase over time was characterized via gel permeation chromatography during step-growth polymerization. Swelling and degradation results showed incorporating gelatin enhanced swelling and accelerated degradation. Increasing gelatin content resulted in the decreased storage modulus (G'). The in vitro release kinetics of fluorescein isothiocyanate (FITC)-labeled dextran from the resulting matrices demonstrated the potential in the development of novel in situ gel-forming drug delivery systems. Moreover, the resulting networks were minimally adhesive to primary human monocytes, fibroblasts, and keratinocytes thus providing an ideal platform for further biofunctionalizations to direct specific biological response.
Collapse
Affiliation(s)
- Yao Fu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Weiyuan John Kao
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
41
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1193] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|
42
|
Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 2010; 7:429-44. [PMID: 20331353 DOI: 10.1517/17425241003602259] [Citation(s) in RCA: 738] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD The advancement in material design and engineering has led to the rapid development of new materials with increasing complexity and functions. Both non-degradable and degradable polymers have found wide applications in the controlled delivery field. Studies on drug release kinetics provide important information into the function of material systems. To elucidate the detailed transport mechanism and the structure-function relationship of a material system, it is critical to bridge the gap between the macroscopic data and the transport behavior at the molecular level. AREAS COVERED IN THIS REVIEW The structure and function information of selected non-degradable and degradable polymers have been collected and summarized from literature published after the 1990s. The release kinetics of selected drug compounds from various material systems is discussed in case studies. Recent progress in the mathematical models based on different transport mechanisms is highlighted. WHAT THE READER WILL GAIN This article aims to provide an overview of structure-function relationships of selected non-degradable and degradable polymers as drug delivery matrices. TAKE HOME MESSAGE Understanding the structure-function relationship of the material system is key to the successful design of a delivery system for a particular application. Moreover, developing complex polymeric matrices requires more robust mathematical models to elucidate the solute transport mechanisms.
Collapse
Affiliation(s)
- Yao Fu
- University of Wisconsin-Madison, School of Pharmacy, 777 Highland Avenue, Madison, WI 53705, USA
| | | |
Collapse
|
43
|
Curcio M, Gianfranco Spizzirri U, Iemma F, Puoci F, Cirillo G, Parisi OI, Picci N. Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur J Pharm Biopharm 2010; 76:48-55. [PMID: 20580821 DOI: 10.1016/j.ejpb.2010.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 03/24/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
In this paper, a novel class of microspheric hydrogels was synthesized by grafting of N-isopropyacrylamide (NIPAAm) with gelatin. The possibility of inserting commercial gelatin in a crosslinked structure bearing thermo-sensitive moieties, by radical process, represents an interesting innovation that significantly improves the device performance, opening new applications in biomedical and pharmaceutical fields. This synthetic approach allows a modification of the polymeric network composition, producing hydrogels with suitable physico-chemical properties and a transition temperature higher than NIPAAm homopolymers. The incorporation of monomers into the network was confirmed by infrared spectroscopy, and the composition of the polymerization feed was found to strictly influence the network density and the shape of hydrogels. Thermal analyses showed negative thermo-responsive behaviour with shrinking/swelling transition values in the temperature range 34.6-34.8 degrees C, according to the amount of the hydrophilic portions in the network. In order to test the preformed materials as drug carriers, diclofenac sodium salt was loaded into the spherical microparticles. After the determination of the drug entrapment percent, drug release profiles in media at different temperature were analysed. By using semi-empirical equations, the release mechanism was extensively studied and the diffusional contribution was evaluated.
Collapse
Affiliation(s)
- Manuela Curcio
- Dipartimento di Scienze Farmaceutiche, Università della Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | |
Collapse
|