1
|
Lebar B, Orehova M, Japelj B, Šprager E, Podlipec R, Knaflič T, Urbančič I, Knez B, Zidar M, Cerar J, Mravljak J, Žula A, Arčon D, Plavec J, Pajk S. A multifaceted approach to understanding protein-buffer interactions in biopharmaceuticals. Eur J Pharm Biopharm 2025; 206:114582. [PMID: 39571949 DOI: 10.1016/j.ejpb.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
The excipient selection process plays a crucial role in biopharmaceutical formulation development to ensure the long-term stability of the drug product. Though there are numerous options approved by regulatory authorities, only a subset is commonly utilized. Previous research has proposed various stabilization mechanisms, including protein-excipient interactions. However, identifying these interactions remains challenging due to their weak and transient nature. In this study, we present a comprehensive approach to identify such interactions. Using the 1HT2 CPMG (Carr-Purcel-Meiboom-Gill) filter experiment we identified interactions of rituximab with certain buffers and amino acids, shedding light on its Fc fragment instability that manifested during the enzymatic cleavage of the antibody. Moreover, chemometric analyses of 2D NMR fingerprints revealed interactions of selected excipients with antibody fragments. Furthermore, molecular dynamics simulations revealed potential interacting hotspots without NMR spectra assignment. Our results highlight the importance of an orthogonal methods approach to uncovering these critical interactions, advancing our understanding of excipient stabilization mechanisms and rational formulation design in biopharmaceutics.
Collapse
Affiliation(s)
- Blaž Lebar
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Maria Orehova
- National Institute of Chemistry, Slovenian NMR Centre, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
| | - Boštjan Japelj
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Ernest Šprager
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Rok Podlipec
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Tilen Knaflič
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Urbančič
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Benjamin Knez
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Mitja Zidar
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Jure Cerar
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Janez Mravljak
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Aleš Žula
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Denis Arčon
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- National Institute of Chemistry, Slovenian NMR Centre, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Arakawa T, Tomioka Y, Akuta T, Shiraki K. The contrasting roles of co-solvents in protein formulations and food products. Biophys Chem 2024; 312:107282. [PMID: 38944944 DOI: 10.1016/j.bpc.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Protein aggregation is a major hurdle in developing biopharmaceuticals, in particular protein formulation area, but plays a pivotal role in food products. Co-solvents are used to suppress protein aggregation in pharmaceutical proteins. On the contrary, aggregation is encouraged in the process of food product making. Thus, it is expected that co-solvents play a contrasting role in biopharmaceutical formulation and food products. Here, we show several examples that utilize co-solvents, e.g., salting-out salts, sugars, polyols and divalent cations in promoting protein-protein interactions. The mechanisms of co-solvent effects on protein aggregation and solubility have been studied on aqueous protein solution and applied to develop pharmaceutical formulation based on the acquired scientific knowledge. On the contrary, co-solvents have been used in food industries based on empirical basis. Here, we will review the mechanisms of co-solvent effects on protein-protein interactions that can be applied to both pharmaceutical and food industries and hope to convey knowledge acquired through research on co-solvent interactions in aqueous protein solution and formulation to those involved in food science and provide those involved in protein solution research with the observations on aggregation behavior of food proteins.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130, USA.
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd, 3333-26, Aza-Asayama, Kamitezuna Tahahagi, Ibaraki 318-0004, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd, 3333-26, Aza-Asayama, Kamitezuna Tahahagi, Ibaraki 318-0004, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
3
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
4
|
Saurabh S, Kalonia C, Li Z, Hollowell P, Waigh T, Li P, Webster J, Seddon JM, Lu JR, Bresme F. Understanding the Stabilizing Effect of Histidine on mAb Aggregation: A Molecular Dynamics Study. Mol Pharm 2022; 19:3288-3303. [PMID: 35946408 PMCID: PMC9449975 DOI: 10.1021/acs.molpharmaceut.2c00453] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Histidine, a widely used buffer in monoclonal antibody
(mAb) formulations,
is known to reduce antibody aggregation. While experimental studies
suggest a nonelectrostatic, nonstructural (relating to secondary structure
preservation) origin of the phenomenon, the underlying microscopic
mechanism behind the histidine action is still unknown. Understanding
this mechanism will help evaluate and predict the stabilizing effect
of this buffer under different experimental conditions and for different
mAbs. We have used all-atom molecular dynamics simulations and contact-based
free energy calculations to investigate molecular-level interactions
between the histidine buffer and mAbs, which lead to the observed
stability of therapeutic formulations in the presence of histidine.
We reformulate the Spatial Aggregation Propensity index by including
the buffer–protein interactions. The buffer adsorption on the
protein surface leads to lower exposure of the hydrophobic regions
to water. Our analysis indicates that the mechanism behind the stabilizing
action of histidine is connected to the shielding of the solvent-exposed
hydrophobic regions on the protein surface by the buffer molecules.
Collapse
Affiliation(s)
- Suman Saurabh
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, London W12 0BZ, United Kingdom
| | - Cavan Kalonia
- Dosage Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg 20878, Maryland, United States
| | - Zongyi Li
- Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, U.K
| | - Peter Hollowell
- Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, U.K
| | - Thomas Waigh
- Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, U.K.,Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Peixun Li
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - John Webster
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - John M Seddon
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, London W12 0BZ, United Kingdom
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, U.K
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, London W12 0BZ, United Kingdom
| |
Collapse
|
5
|
Hartl J, Peschel A, Johannsmann D, Garidel P. Characterizing protein-protein-interaction in high-concentration monoclonal antibody systems with the quartz crystal microbalance. Phys Chem Chem Phys 2018; 19:32698-32707. [PMID: 29199300 DOI: 10.1039/c7cp05711c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Making use of a quartz crystal microbalance (QCM), concentrated solutions of therapeutic antibodies were studied with respect to their behavior under shear excitation with frequencies in the MHz range. At high protein concentration and neutral pH, viscoelastic behavior was found in the sense that the storage modulus, G', was nonzero. Fits of the frequency dependence of G'(ω) and G''(ω) (G'' being the loss modulus) using the Maxwell-model produced good agreement with the experimental data. The fit parameters were the relaxation time, τ, and the shear modulus at the inverse relaxation time, G* (at the "cross-over frequency" ωC = 1/τ). The influence of two different pharmaceutical excipients (histidine and citrate) was studied at variable concentrations of the antibody and variable pH. In cases, where viscoelasticity was observed, G* was in the range of a few kPa, consistent with entropy-driven interactions. τ was small at low pH, where the antibody carries a positive charge. τ increased with increasing pH. The relaxation time τ was found to be correlated with other parameters quantifying protein-protein interactions, namely the steady shear viscosity (η), the second osmotic virial coefficient as determined with both self-interaction chromatography (B22,SIC) and static light scattering (B22,SLS), and the diffusion interaction parameter as determined with dynamic light scattering (kD). While B22 and kD describe protein-protein interactions in diluted samples, the QCM can be applied to concentrated solutions, thereby being sensitive to higher-order protein-protein interactions.
Collapse
Affiliation(s)
- Josef Hartl
- Boehringer Ingelheim Pharma GmbH and Co. KG, Protein Science, Birkendorfer Str. 65, 88397 Biberach/Riss, Germany
| | | | | | | |
Collapse
|
6
|
Rotational diffusion of magnetic nanoparticles in protein solutions. J Colloid Interface Sci 2017; 506:393-402. [DOI: 10.1016/j.jcis.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
|
7
|
Liquid-liquid phase separation of a monoclonal antibody at low ionic strength: Influence of anion charge and concentration. Biophys Chem 2017; 220:7-19. [DOI: 10.1016/j.bpc.2016.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/15/2022]
|
8
|
Ghazvini S, Kalonia C, Volkin DB, Dhar P. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb. J Pharm Sci 2016; 105:1643-1656. [DOI: 10.1016/j.xphs.2016.02.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/04/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023]
|
9
|
Casaz P, Boucher E, Wollacott R, Pierce BG, Rivera R, Sedic M, Ozturk S, Thomas WD, Wang Y. Resolving self-association of a therapeutic antibody by formulation optimization and molecular approaches. MAbs 2015; 6:1533-9. [PMID: 25484044 DOI: 10.4161/19420862.2014.975658] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A common challenge encountered during development of high concentration monoclonal antibody formulations is preventing self-association. Depending on the antibody and its formulation, self-association can be seen as aggregation, precipitation, opalescence or phase separation. Here we report on an unusual manifestation of self-association, formation of a semi-solid gel or "gelation." Therapeutic monoclonal antibody C4 was isolated from human B cells based on its strong potency in neutralizing bacterial toxin in animal models. The purified antibody possessed the unusual property of forming a firm, opaque white gel when it was formulated at concentrations >30 mg/mL and the temperature was <6°C. Gel formation was reversible with temperature. Gelation was affected by salt concentration or pH, suggesting an electrostatic interaction between IgG monomers. A comparison of the C4 amino acid sequences to consensus germline sequences revealed differences in framework regions. A C4 variant in which the framework sequence was restored to the consensus germline sequence did not gel at 100 mg/mL at temperatures as low as 1°C. Additional genetic analysis was used to predict the key residue(s) involved in the gelation. Strikingly, a single substitution in the native antibody, replacing heavy chain glutamate 23 with lysine (E23K), was sufficient to prevent gelation. These results indicate that the framework region is involved in intermolecular interactions. The temperature dependence of gelation may be related to conformational changes near glutamate 23 or the regions it interacts with. Molecular engineering of the framework can be an effective approach to resolve the solubility issues of therapeutic antibodies.
Collapse
Affiliation(s)
- Paul Casaz
- a MassBiologics of the University of Massachusetts Medical School ; Boston , MA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, Curtis R. Specific Ion and Buffer Effects on Protein–Protein Interactions of a Monoclonal Antibody. Mol Pharm 2014; 12:179-93. [DOI: 10.1021/mp500533c] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- D. Roberts
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - R. Keeling
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - M. Tracka
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - C. F. van der Walle
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - S. Uddin
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - J. Warwicker
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - R. Curtis
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| |
Collapse
|
11
|
Inoue N, Takai E, Arakawa T, Shiraki K. Arginine and lysine reduce the high viscosity of serum albumin solutions for pharmaceutical injection. J Biosci Bioeng 2014; 117:539-43. [DOI: 10.1016/j.jbiosc.2013.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 11/27/2022]
|
12
|
Esue O, Xie AX, Kamerzell TJ, Patapoff TW. Thermodynamic and structural characterization of an antibody gel. MAbs 2013; 5:323-34. [PMID: 23425660 DOI: 10.4161/mabs.23183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although extensively studied, protein-protein interactions remain highly elusive and are of increasing interest in drug development. We show the assembly of a monoclonal antibody, using multivalent carboxylate ions, into highly-ordered structures. While the presence and function of similar structures in vivo are not known, the results may present a possible unexplored area of antibody structure-function relationships. Using a variety of tools (e.g., mechanical rheology, electron microscopy, isothermal calorimetry, Fourier transform infrared spectroscopy), we characterized the physical, biochemical, and thermodynamic properties of these structures and found that citrate may interact directly with the amino acid residue histidine, after which the individual protein units assemble into a filamentous network gel exhibiting high elasticity and interfilament interactions. Citrate interacts exothermically with the monoclonal antibody with an association constant that is highly dependent on solution pH and temperature. Secondary structure analysis also reveals involvement of hydrophobic and aromatic residues.
Collapse
Affiliation(s)
- Osigwe Esue
- Pharmaceutical Development, Genentech, South San Francisco, CA, USA.
| | | | | | | |
Collapse
|
13
|
Schweizer D, Schönhammer K, Jahn M, Göpferich A. Protein-polyanion interactions for the controlled release of monoclonal antibodies. Biomacromolecules 2012; 14:75-83. [PMID: 23157419 DOI: 10.1021/bm301352x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate ionic interactions between alginate and a monoclonal antibody (mAb1) and to utilize those interactions for the sustained release of mAb1. The existence of ionic interactions between alginate and mAb1 was strongly reflected by their rheological behavior. A 3-4 times increase in storage modulus (G') was observed by addition of 30 mg/mL mAb1 to a 20 mg/mL alginate solution. This increase was strongly dependent on pH and ionic strength. In vitro release studies revealed a marked pH-dependence of release rates and the reversibility of alginate-mAb1 complexation under physiological conditions. Two alginate-mAb1 sustained release formulations were developed by an internal gelation technique using CaCO(3) and CaHPO(4) as calcium sources for physical cross-linking. The CaCO(3) formulation provided a stable pH-environment, optimally suited for pH-sensitive proteins. CaHPO(4) led to a lower pH and stronger alginate-mAb1 interactions. The CaHPO(4) cross-linked alginate released mAb1 over a period of 10-15 days. The long release period and changes in viscoelastic properties of alginate, when being mixed with mAb1, indicate the incorporation of mAb1 molecules into a mixed network with alginate. The results of this study demonstrate that ionic interactions between polyanions and mAb1 are present and that they can be exploited for sustained release delivery of mAb1.
Collapse
Affiliation(s)
- Daniel Schweizer
- Biologics Process R&D, Technical R&D, Novartis Pharma AG, Basel, Switzerland
| | | | | | | |
Collapse
|
14
|
Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 2011; 63:1118-59. [PMID: 21855584 DOI: 10.1016/j.addr.2011.07.006] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to demonstrate the critical importance of understanding protein-excipient interactions as a key step in the rational design of formulations to stabilize and deliver protein-based therapeutic drugs and vaccines. Biophysical methods used to examine various molecular interactions between solutes and protein molecules are discussed with an emphasis on applications to pharmaceutical excipients in terms of their effects on protein stability. Key mechanisms of protein-excipient interactions such as electrostatic and cation-pi interactions, preferential hydration, dispersive forces, and hydrogen bonding are presented in the context of different physical states of the formulation such as frozen liquids, solutions, gels, freeze-dried solids and interfacial phenomenon. An overview of the different classes of pharmaceutical excipients used to formulate and stabilize protein therapeutic drugs is also presented along with the rationale for use in different dosage forms including practical pharmaceutical considerations. The utility of high throughput analytical methodologies to examine protein-excipient interactions is presented in terms of expanding formulation design space and accelerating experimental timelines.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
15
|
Hari SB, Lau H, Razinkov VI, Chen S, Latypov RF. Acid-Induced Aggregation of Human Monoclonal IgG1 and IgG2: Molecular Mechanism and the Effect of Solution Composition. Biochemistry 2010; 49:9328-38. [DOI: 10.1021/bi100841u] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sanjay B. Hari
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hollis Lau
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
| | - Vladimir I. Razinkov
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
| | - Shuang Chen
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ramil F. Latypov
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
| |
Collapse
|
16
|
Chen S, Lau H, Brodsky Y, Kleemann GR, Latypov RF. The use of native cation-exchange chromatography to study aggregation and phase separation of monoclonal antibodies. Protein Sci 2010; 19:1191-204. [PMID: 20512972 DOI: 10.1002/pro.396] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study introduces a novel analytical approach for studying aggregation and phase separation of monoclonal antibodies (mAbs). The approach is based on using analytical scale cation-exchange chromatography (CEX) for measuring the loss of soluble monomer in the case of individual and mixed protein solutions. Native CEX outperforms traditional size-exclusion chromatography in separating complex protein mixtures, offering an easy way to assess mAb aggregation propensity. Different IgG1 and IgG2 molecules were tested individually and in mixtures consisting of up to four protein molecules. Antibody aggregation was induced by four different stress factors: high temperature, low pH, addition of fatty acids, and rigorous agitation. The extent of aggregation was determined from the amount of monomeric protein remaining in solution after stress. Consequently, it was possible to address the role of specific mAb regions in antibody aggregation by co-incubating Fab and Fc fragments with their respective full-length molecules. Our results revealed that the relative contribution of Fab and Fc regions in mAb aggregation is strongly dependent on pH and the stress factor applied. In addition, the CEX-based approach was used to study reversible protein precipitation due to phase separation, which demonstrated its use for a broader range of protein-protein association phenomena. In all cases, the role of Fab and Fc was clearly dissected, providing important information for engineering more stable mAb-based therapeutics.
Collapse
Affiliation(s)
- Shuang Chen
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, USA
| | | | | | | | | |
Collapse
|