1
|
Schulzen A, Andreadis II, Bergström CAS, Quodbach J. Development and characterization of solid lipid-based formulations (sLBFs) of ritonavir utilizing a lipolysis and permeation assay. Eur J Pharm Sci 2024; 196:106732. [PMID: 38408708 DOI: 10.1016/j.ejps.2024.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
As a high number of active pharmaceutical ingredients (APIs) under development belong to BCS classes II and IV, the need for improving bioavailability is critical. A powerful approach is the use of lipid-based formulations (LBFs) that usually consist of a combination of liquid lipids, cosolvents, and surfactants. In this study, ritonavir loaded solid LBFs (sLBFs) were prepared using solid lipid excipients to investigate whether sLBFs are also capable of improving solubility and permeability. Additionally, the influence of polymeric precipitation inhibitors (PVP-VA and HPMC-AS) on lipolysis triggered supersaturation and precipitation was investigated. One step intestinal digestion and bicompartmental permeation studies using an artificial lecithin-in-dodecane (LiDo) membrane were performed for each formulation. All formulations presented significantly higher solubility (5 to >20-fold higher) during lipolysis and permeation studies compared to pure ritonavir. In the combined lipolysis-permeation studies, the formulated ritonavir concentration increased 15-fold in the donor compartment and the flux increased up to 71 % as compared to non-formulated ritonavir. The formulation with the highest surfactant concentration showed significantly higher ritonavir solubility compared to the formulation with the highest amount of lipids. However, the precipitation rates were comparable. The addition of precipitation inhibitors did not influence the lipolytic process and showed no significant benefit over the initial formulations with regards to precipitation. While all tested sLBFs increased the permeation rate, no statistically significant difference was noted between the formulations regardless of composition. To conclude, the different release profiles of the formulations were not correlated to the resulting flux through a permeation membrane, further supporting the importance of making use of combined lipolysis-permeation assays when exploring LBFs.
Collapse
Affiliation(s)
- Arne Schulzen
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, DE-40225, Düsseldorf, Germany
| | - Ioannis I Andreadis
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; Laboratory of Pharmaceutical Technology, Department of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, DE-40225, Düsseldorf, Germany; Department of Pharmacy, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
2
|
Andreadis II, Schulzen A, Quodbach J, Bergström CAS. Exploring the use of modified in vitro digestion assays for the evaluation of ritonavir loaded solid lipid-based formulations. Eur J Pharm Sci 2023; 189:106524. [PMID: 37433412 DOI: 10.1016/j.ejps.2023.106524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/13/2023]
Abstract
Solid lipid-based formulations (sLBFs) have the potential to increase the oral bioavailability of drugs with poor solubility in water, while counteracting some of the disadvantages of liquid LBFs. The most common experimental set-up to study the performance of LBFs in vitro is the lipolysis assay, during which the LBFs are digested by lipases in an environment mimicking the human small intestine. However, this assay has failed in many cases to correctly predict the performance of LBFs in vivo, highlighting the need for new and improved in vitro assays to evaluate LBFs at the preclinical stage. In this study, the suitability of three different in vitro digestion assays for the evaluation of sLBFs was assessed; the classic one-step intestinal digestion assay, a two-step gastrointestinal digestion assay and a bicompartmental assay permitting the simultaneous monitoring of digestion and permeation of the active pharmaceutical ingredient (API) across an artificial membrane (Lecithin in Dodecane - LiDo). Three sLBFs (M1-M3) with varied composition and ritonavir as model drug were prepared and examined. When comparing the ability of these formulations to keep the drug solubilized in the aqueous phase, all three assays show that M1 performs better, while M3 presents poor performance. However, the classic in vitro intestinal digestion assay fails to provide a clear ranking of the three formulations, something that is more evident when using the two modified and more physiologically relevant assays. Also, the two modified assays provide additional information about the performance of the formulations including the performance in the gastric environment and intestinal flux of the drug. These modified in vitro digestion assays are valuable tools for the development and evaluation of sLBFs to make better informed decisions of which formulations to pursue for in vivo studies.
Collapse
Affiliation(s)
- Ioannis I Andreadis
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; Laboratory of Pharmaceutical Technology, Department of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Arne Schulzen
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, DE-40225, Düsseldorf, Germany
| | - Julian Quodbach
- Department of Pharmaceutics, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
3
|
Hassan DH, Shohdy JN, El-Setouhy DA, El-Nabarawi M, Naguib MJ. Compritol-Based Nanostrucutured Lipid Carriers (NLCs) for Augmentation of Zolmitriptan Bioavailability via the Transdermal Route: In Vitro Optimization, Ex Vivo Permeation, In Vivo Pharmacokinetic Study. Pharmaceutics 2022; 14:pharmaceutics14071484. [PMID: 35890379 PMCID: PMC9315618 DOI: 10.3390/pharmaceutics14071484] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/14/2023] Open
Abstract
Migraine is a severe neurovascular disease manifested mainly as unilateral throbbing headaches. Triptans are agonists for serotonin receptors. Zolmitriptan (ZMP) is a biopharmaceutics classification system (BCS) class III medication with an absolute oral bioavailability of less than 40%. As a result, our research intended to increase ZMP bioavailability by developing transdermal nanostructured lipid carriers (NLCs). NLCs were prepared utilizing a combination of hot melt emulsification and high-speed stirring in a 32 full factorial design. The studied variables were liquid lipid type (X1) and surfactant type (X2). The developed NLCs were evaluated in terms of particle size (Y1, nm), polydispersity index (Y2, PDI), zeta potential (Y3, mV), entrapment efficacy (Y4, %) and amount released after 6 h (Q6h, Y5, %). At 1% Mygliol as liquid lipid component and 1% Span 20 as surfactant, the optimized formula (NLC9) showed a minimum particle size (138 ± 7.07 nm), minimum polydispersity index (0.39 ± 0.001), acceptable zeta potential (−22.1 ± 0.80), maximum entrapment efficiency (73 ± 0.10%) and maximum amount released after 6 h (83.22 ± 0.10%). The optimized formula was then incorporated into gel preparation (HPMC) to improve the system stability and ease of application. Then, the pharmacokinetic study was conducted on rabbits in a cross-over design. The calculated parameters showed a higher area under the curve (AUC0–24, AUC0–∞ (ng·h/mL)) of the developed ZMP-NLCs loaded gel, with a 1.76-fold increase in bioavailability in comparison to the orally administered marketed product (Zomig®). A histopathological examination revealed the safety of the developed nanoparticles. The declared results highlight the potential of utilizing the proposed NLCs for the transdermal delivery of ZMP to improve the drug bioavailability.
Collapse
Affiliation(s)
- Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Oct. 6, Giza 12566, Egypt;
| | - Joseph N. Shohdy
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Oct. 6, Giza 12566, Egypt;
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
| | - Marianne J. Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
- Correspondence:
| |
Collapse
|
4
|
Zöller K, To D, Knoll P, Bernkop-Schnürch A. Digestion of lipid excipients and lipid-based nanocarriers by pancreatic lipase and pancreatin. Eur J Pharm Biopharm 2022; 176:32-42. [PMID: 35584719 DOI: 10.1016/j.ejpb.2022.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
The digestion behaviour of lipid-based nanocarriers (LNC) has a great impact on their oral drug delivery properties. In this study, various excipients including surfactants, glycerides and waxes, as well as various drug-delivery systems, namely self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were examined via the pH-stat lipolysis model. Lipolysis experiments with lipase and pancreatin revealed the highest release of fatty acids for medium chain glycerides, followed by long chain glycerides and surfactants. Waxes appeared to be poor substrates with a maximum digestion of up to 10% within 60 min. Within the group of surfactants, the enzymatic cleavage decreased in the following order: glycerol monostearate > polyoxyethylene (20) sorbitan monostearate > PEG-35 castor oil > sorbitan monostearate. After digestion experiments of the excipients, SEDDS, SLN and NLC with sizes between 30 and 300 nm were prepared. The size of almost all formulations was increasing during lipolysis and levelled off after approximately 15 min except for the SLN and NLC consisting of cetyl palmitate. SEDDS exceeded 6000 nm after some minutes and were almost completely hydrolysed by pancreatin. No significant difference was observed between comparable SLN and NLC but surfactant choice and selection of the lipid component had an impact on digestion. SLN and NLC with cetyl palmitate were only digested by 5% whereas particles with glyceryl distearate were decomposed by 40-80% within 60 min. Additionally, the digestion of the same SLN or NLC, only differing in the surfactant, was higher for SLN/NLC containing polyoxyethylene (20) sorbitan monostearate than PEG-35 castor oil. This observation might be explained by the higher PEG content of PEG-35 castor oil causing a more pronounced steric hindrance for the access of lipase. Generally, digestion experiments performed with pancreatin resulted in a higher digestion compared to lipase. According to these results, the digestion behaviour of LNC depends on both, the type of nanocarrier and on the excipients used for them.
Collapse
Affiliation(s)
- Katrin Zöller
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Dennis To
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
USTA DYILMAZ, TIMUR B, TEKSIN ZS. Formulation development, optimization by Box- Behnken design, characterization, in vitro, ex-vivo, and in vivo evaluation of bosentan-loaded self-nanoemulsifying drug delivery system: A novel alternative dosage form for pulmonary arterial hypertension treatment. Eur J Pharm Sci 2022; 174:106159. [DOI: 10.1016/j.ejps.2022.106159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/01/2022]
|
6
|
Jackman MJ, Davies NM, Bak A, Puri S. Landscape for oral delivery of peptides. ORAL DELIVERY OF THERAPEUTIC PEPTIDES AND PROTEINS 2022:1-50. [DOI: 10.1016/b978-0-12-821061-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Kamoun J, Krichen F, Koubaa I, Zouari N, Bougatef A, Abousalham A, Aloulou A. In vitro lipolysis and physicochemical characterization of unconventional star anise oil towards the development of new lipid-based drug delivery systems. Heliyon 2021; 7:e06717. [PMID: 33898835 PMCID: PMC8056425 DOI: 10.1016/j.heliyon.2021.e06717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022] Open
Abstract
Lipid-based drug delivery systems are widely used for enhancing the bioavailability of poorly water-soluble drugs. However, following oral intake, lipid excipients often undergo gastrointestinal lipolysis, which drastically affects drugs solubility and bioavailability. That's why developing new lipid excipients which are resistant to digestion would be of great interest. We studied here the potential role of the unconventional Chinese star anise whole seedpod oil (CSAO) as an alternative multifunctional lipid excipient. Pancreatic lipase-mediated digestion of the extracted crude oil emulsion was assessed in vitro. Pancreatic lipase, being a strict sn-1,3-regioselective lipase, showed a high (16-fold) olive oil to CSAO activity ratio, which could be attributed to fatty acids composition and triglycerides intramolecular structure. For the sake of comparison, the non-regioselective lipase Novozyme® 435 exhibited higher activity than pancreatic lipase on CSAO emulsion, perhaps due to its ability to release fatty acids from the internal sn-2 position of TAGs. Apart counteracting lipolysis, CSAO oil also showed additional biopharmaceutical benefits including moderate antioxidant and antihypertensive activities. Altogether, these findings highlight for the first time the potential use of star anise unconventional whole seedpod oil as a multifunctional lipid excipient for the development of new lipid formulations.
Collapse
Affiliation(s)
- Jannet Kamoun
- University of Sfax, National Engineering School of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Sfax 3038, Tunisia.,Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Fatma Krichen
- University of Sfax, National Engineering School of Sfax, Laboratory of Plant Improvement and Valorization of Agro-resources, Sfax 3038, Tunisia
| | - Imed Koubaa
- University of Sfax, Faculty of Science of Sfax, Laboratory of Organic Chemistry, Sfax 3038, Tunisia
| | - Nacim Zouari
- University of Gabes, Higher Institute of Applied Biology of Medenine, Medenine 4119, Tunisia
| | - Ali Bougatef
- University of Sfax, National Engineering School of Sfax, Laboratory of Plant Improvement and Valorization of Agro-resources, Sfax 3038, Tunisia
| | - Abdelkarim Abousalham
- Univ Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Ahmed Aloulou
- University of Sfax, National Engineering School of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Sfax 3038, Tunisia
| |
Collapse
|
8
|
Singh D, Sharma M, Tiwary AK, Bedi N. Evaluation of Bio-Mechanistic Behavior of Liquid Self-Microemulsifying Drug Delivery System in Biorelevant Media. Assay Drug Dev Technol 2020; 19:85-96. [PMID: 33270492 DOI: 10.1089/adt.2020.1023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of the study is to mechanistically investigate the drug loci, structural integrity, chemical interactions, and absorption behavior of the liquid self-microemulsifying drug delivery system (SMEDDS). The loci of drug molecules in self-forming microemulsions in biorelevant media (fasted state simulated gastric fluid and fed state simulated intestinal fluid) were investigated by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Chemical interactions were observed through attenuated total reflectance spectroscopy (ATR). The structural integrity of self-forming microemulsions in biorelevant media was determined by small angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET). Morphological features of self-forming microemulsion were determined by confocal laser scanning microscopy. In vitro, lipid digestion behavior was evaluated for particle size, zeta potential, free fatty acids (FFA), and drug released through standard protocols. In-house characterizations were determined through standard methodologies. 1H and 13C NMR revealed that drug loci were found in a majority in the oily core region in the self-forming microemulsion. The ATR signifies that no inherent chemical was observed in the liquid SMEDDS and drug-loaded self-microemulsions in the biorelevant media. Structural integrity was well maintained during the dispersive and digestive phases in the gastrointestinal lumen during lipolysis in biorelevant conditions, as revealed by SAXS and FRET. An in vitro digestion study in biorelevant conditions depicts no fluctuations in size and zeta potential with a predominant release of FFA and drug, and was to be revealed physiologically acceptable for clinical applications.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Manisha Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Ashok K Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
9
|
O'Dwyer PJ, Box KJ, Koehl NJ, Bennett-Lenane H, Reppas C, Holm R, Kuentz M, Griffin BT. Novel Biphasic Lipolysis Method To Predict in Vivo Performance of Lipid-Based Formulations. Mol Pharm 2020; 17:3342-3352. [PMID: 32787274 DOI: 10.1021/acs.molpharmaceut.0c00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The absence of an intestinal absorption sink is a significant weakness of standard in vitro lipolysis methods, potentially leading to poor prediction of in vivo performance and an overestimation of drug precipitation. In addition, the majority of the described lipolysis methods only attempt to simulate intestinal conditions, thus overlooking any supersaturation or precipitation of ionizable drugs as they transition from the acidic gastric environment to the more neutral conditions of the intestine. The aim of this study was to develop a novel lipolysis method incorporating a two-stage gastric-to-intestinal transition and an absorptive compartment to reliably predict in vivo performance of lipid-based formulations (LBFs). Drug absorption was mimicked by in situ quantification of drug partitioning into a decanol layer. The method was used to characterize LBFs from four studies described in the literature, involving three model drugs (i.e., nilotinib, fenofibrate, and danazol) where in vivo bioavailability data have previously been reported. The results from the novel biphasic lipolysis method were compared to those of the standard pH-stat method in terms of reliability for predicting the in vivo performance. For three of the studies, the novel biphasic lipolysis method more reliably predicted the in vivo bioavailability compared to the standard pH-stat method. In contrast, the standard pH-stat method was found to produce more predictive results for one study involving a series of LBFs composed of the soybean oil, glyceryl monolinoleate (Maisine CC), Kolliphor EL, and ethanol. This result was surprising and could reflect that increasing concentrations of ethanol (as a cosolvent) in the formulations may have resulted in greater partitioning of the drug into the decanol absorptive compartment. In addition to the improved predictivity for most of the investigated systems, this biphasic lipolysis method also uses in situ analysis and avoids time- and resource-intensive sample analysis steps, thereby facilitating a higher throughput capacity and biorelevant approach for characterization of LBFs.
Collapse
Affiliation(s)
- Patrick J O'Dwyer
- Pion Inc. (UK) Ltd., Forest Row RH18 5DW, East Sussex, U.K.,Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 157 72, Greece.,School of Pharmacy, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Karl J Box
- Pion Inc. (UK) Ltd., Forest Row RH18 5DW, East Sussex, U.K
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, College Road, Cork T12 YN60, Ireland
| | | | - Christos Reppas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Zografou 157 72, Greece
| | - Rene Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, Beerse 2340, Belgium.,Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Martin Kuentz
- School of Life Sciences, Institute of Pharma Technology, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, Cork T12 YN60, Ireland
| |
Collapse
|
10
|
Brayden D, Hill T, Fairlie D, Maher S, Mrsny R. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020; 157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
In its 33 years, ADDR has published regularly on the po5tential of oral delivery of biologics especially peptides and proteins. In the intervening period, analysis of the preclinical and clinical trial failures of many purported platform technologies has led to reflection on the true status of the field and reigning in of expectations. Oral formulations of semaglutide, octreotide, and salmon calcitonin have completed Phase III trials, with oral semaglutide being approved by the FDA in 2019. The progress made with oral peptide formulations based on traditional permeation enhancers is against a background of low and variable oral bioavailability values of ~1%, leading to a current perception that only potent peptides with a viable cost of synthesis can be realistically considered. Desirable features of candidates should include a large therapeutic index, some stability in the GI tract, a long elimination half-life, and a relatively low clearance rate. Administration in nanoparticle formats have largely disappointed, with few prototypes reaching clinical trials: insufficient particle loading, lack of controlled release, low epithelial particle uptake, and lack of scalable synthesis being the main reasons for discontinuation. Disruptive technologies based on engineered devices promise improvements, but scale-up and toxicology aspects are issues to address. In parallel, medicinal chemists are synthesizing stable hydrophobic macrocyclic candidate peptides of lower molecular weight and with potential for greater oral bioavailability than linear peptides, but perhaps without the same requirement for elaborate drug delivery systems. In summary, while there have been advances in understanding the limitations of peptides for oral delivery, low membrane permeability, metabolism, and high clearance rates continue to hamper progress.
Collapse
|
11
|
Enhanced Intestinal Absorption of Insulin by Capryol 90, a Novel Absorption Enhancer in Rats: Implications in Oral Insulin Delivery. Pharmaceutics 2020; 12:pharmaceutics12050462. [PMID: 32443624 PMCID: PMC7284608 DOI: 10.3390/pharmaceutics12050462] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023] Open
Abstract
Labrasol® is a self-emulsifying excipient that contains saturated polyglycolysed C6-C14 glycerides and this additive is known to improve the intestinal absorption of poorly absorbed drugs after oral administration. However, the effects of formulations similar to Labrasol® on the intestinal absorption of poorly absorbed drugs have not been characterized. In this study, we used insulin as a model peptide drug and examined the absorption-enhancing effects of Labrasol® and its related formulations for insulin absorption in rats. The co-administration of Labrasol-related formulations with insulin reduced the blood glucose levels. Among these formulations, Capryol 90 was the most effective additive. Notably, the effect of Capryol 90 was greater at pH 3.0 than at pH 7.0. Additionally, almost no mucosal damage was observed in the presence of these formulations, as these formulations did not affect the activity of lactate dehydrogenase (LDH) and the amount of protein released from the small intestine. In mechanistic studies, Capryol 90 improved the stability of insulin and suppressed the association with insulin under acidic conditions. The loosening of the tight junctions (TJs) could be the underlying mechanism by which Capryol 90 improved intestinal insulin absorption via a paracellular route. These findings suggest that Capryol 90 is an effective absorption enhancer for improving the intestinal absorption of insulin, without inducing serious damage to the intestinal epithelium.
Collapse
|
12
|
Salhi A, Amara S, Mansuelle P, Puppo R, Lebrun R, Gontero B, Aloulou A, Carrière F. Characterization of all the lipolytic activities in pancreatin and comparison with porcine and human pancreatic juices. Biochimie 2020; 169:106-120. [DOI: 10.1016/j.biochi.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
|
13
|
Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: Ex vivo and in vivo rat studies. J Control Release 2019; 310:115-126. [PMID: 31401199 DOI: 10.1016/j.jconrel.2019.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023]
Abstract
Labrasol® ALF (Labrasol®), is a non-ionic surfactant excipient primarily used as a solubilising agent. It was investigated here as an intestinal permeation enhancer in isolated rat colonic mucosae in Ussing chamber and in rat in situ intestinal instillations. Labrasol® comprises mono-, di- and triglycerides and mono- and di- fatty acid esters of polyethylene glycol (PEG)-8 and free PEG-8, with caprylic (C8)- and capric acid (C10) as the main fatty acids. Source components of Labrasol® as well as Labrasol® modified with either C8 or C10 as the sole fatty acid components were also tested to determine which element of Labrasol® was responsible for its permeability-enhancing properties. Labrasol® (4, 8 mg/mL) enhanced the transport of the paracellular markers, [14C] mannitol, FITC-dextran 4000, and FITC-insulin across colonic mucosae. The enhancement was non-damaging, transient, and molecular weight-dependent. The PEG ester fraction of Labrasol® also had enhancing properties. When insulin was administered with Labrasol® in instillations, it had a relative bioavailability of 7% in jejunum and 12% in colon. C8- and C10 versions of Labrasol® and the PEG ester fraction also induced similar bioavailability values in jejunal instillations: 6, 5 and 7% respectively. Inhibition of lipases in instillations did not reduce the efficacy of Labrasol®, suggesting that its mechanism as a PE is not simply due to liberated medium chain fatty acids. Labrasol® acts as an efficacious intestinal permeation enhancer and has potential for use in oral formulations of macromolecules and BCS Class III molecules.
Collapse
|
14
|
Rangaraj N, Shah S, A J M, Pailla SR, Cheruvu HS, D S, Sampathi S. Quality by Design Approach for the Development of Self-Emulsifying Systems for Oral Delivery of Febuxostat: Pharmacokinetic and Pharmacodynamic Evaluation. AAPS PharmSciTech 2019; 20:267. [PMID: 31346822 DOI: 10.1208/s12249-019-1476-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
The goal of the present investigation is to formulate febuxostat (FXT) self-nanoemulsifying delivery systems (liquid SNEDDS, solid SNEDDS, and pellet) to ameliorate the solubility and bioavailability. To determine the self-nanoemulsifying region, ternary plot was constructed utilizing Capmul MCM C8 NF® as an oil phase, Labrasol® as principal surfactant, and Transcutol HP® being the co-surfactant. Liquid SNEDDS (L-SNEDDS) were characterized by evaluating droplet size, zeta potential, % transmission, and for thermodynamic stability. In vitro dissolution study of FXT loaded L-SNEDDS (batch F7) showed increased dissolution (about 48.54 ± 0.43% in 0.1 N HCl while 86.44 ± 0.16% in phosphate buffer pH 7.4 within 30 min) compared to plain drug (19.65 ± 2.95% in 0.1 N HCl while about 17.61 ± 2.63% in phosphate buffer pH 7.4 within 30 min). Single pass intestinal permeability studies revealed fourfold increase in the intestinal permeability of F7 compared to plain drug. So, for commercial aspects, F7 was further transformed into solid SNEDDS (S-SNEDDS) as readily nanoemulsifying powder form (SNEP) as well as pellets prepared by application of extruder spheronizer. The developed formulation was found superior to pure FXT with enhanced oral bioavailability and anti-gout activity (with reduced uric acid levels), signifying a lipidic system being an efficacious substitute for gout treatment.
Collapse
|
15
|
Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137:104967. [PMID: 31252052 DOI: 10.1016/j.ejps.2019.104967] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Poorly water-soluble drugs continue to be a problematic, yet important class of pharmaceutical compounds for treatment of a wide range of diseases. Their prevalence in discovery is still high, and their development is usually limited by our lack of a complete understanding of how the complex chemical, physiological and biochemical processes that occur between administration and absorption individually and together impact on bioavailability. This review defines the challenge presented by these drugs, outlines contemporary strategies to solve this challenge, and consequent in silico and in vitro evaluation of the delivery technologies for poorly water-soluble drugs. The next steps and unmet needs are proposed to present a roadmap for future studies for the field to consider enabling progress in delivery of poorly water-soluble compounds.
Collapse
|
16
|
Successful development of oral SEDDS: screening of excipients from the industrial point of view. Adv Drug Deliv Rev 2019; 142:128-140. [PMID: 30414496 DOI: 10.1016/j.addr.2018.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
Oral administration is the most accepted and favored route as various side effects such as fear, pain and risk of infections can be avoided resulting in a comparatively high patient compliance. However, from the industrial point of view the development of oral delivery systems is still challenging as various drugs are poorly soluble as well as slightly permeable leading to low bioavailability. As self-emulsifying drug delivery systems are able to incorporate both hydrophobic and hydrophilic drugs, these carrier systems have received more and more attention within the last years. Based on the broad range of currently available excipients, this review provides a kind of guideline for the selection of excipients useful to improve bioavailability of the drug on the one hand. As the regulatory status of potential excipients are highly important to introduce the formulation on the market, the review is focused on the other hand on excipients listed in the IIG database of the FDA by taking their corresponding maximum concentration into account. Furthermore, the issue of oral sensation and taste masking is discussed useful for the development of intraoral SEDDS.
Collapse
|
17
|
Scheuble N, Schaffner J, Schumacher M, Windhab EJ, Liu D, Parker H, Steingoetter A, Fischer P. Tailoring Emulsions for Controlled Lipid Release: Establishing in vitro-in Vivo Correlation for Digestion of Lipids. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17571-17581. [PMID: 29708724 DOI: 10.1021/acsami.8b02637] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of oil-in-water emulsions for controlled lipid release is of interest to the pharmaceutical industry in the development of poorly water soluble drugs and also has gained major interest in the treatment of obesity. In this study, we focus on the relevant in vitro parameters reflecting gastric and intestinal digestion steps to reach a reliable in vitro-in vivo correlation for lipid delivery systems. We found that (i) gastric lipolysis determines early lipid release and sensing. This was mainly influenced by the emulsion stabilization mechanism. (ii) Gastric mucin influences the structure of charge-stabilized emulsion systems in the stomach, leading to destabilization or gel formation, which is supported by in vivo magnetic resonance imaging in healthy volunteers. (iii) The precursor structures of these emulsions modulate intestinal lipolysis kinetics in vitro, which is reflected in plasma triglyceride and cholecystokinin concentrations in vivo.
Collapse
Affiliation(s)
- Nathalie Scheuble
- Institute of Food Nutrition and Health , ETH Zurich , 8092 Zurich , Switzerland
| | - Joschka Schaffner
- Institute of Food Nutrition and Health , ETH Zurich , 8092 Zurich , Switzerland
| | - Manuel Schumacher
- Institute of Food Nutrition and Health , ETH Zurich , 8092 Zurich , Switzerland
| | - Erich J Windhab
- Institute of Food Nutrition and Health , ETH Zurich , 8092 Zurich , Switzerland
| | - Dian Liu
- Institute for Biomedical Engineering , University Zurich and ETH Zurich , 8092 Zurich , Switzerland
| | - Helen Parker
- Division of Gastroenterology and Hepatology , University Hospital Zurich , 8091 Zurich , Switzerland
| | - Andreas Steingoetter
- Institute for Biomedical Engineering , University Zurich and ETH Zurich , 8092 Zurich , Switzerland
- Division of Gastroenterology and Hepatology , University Hospital Zurich , 8091 Zurich , Switzerland
| | - Peter Fischer
- Institute of Food Nutrition and Health , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
18
|
Dumont C, Bourgeois S, Fessi H, Jannin V. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int J Pharm 2018; 541:117-135. [DOI: 10.1016/j.ijpharm.2018.02.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022]
|
19
|
Chamieh J, Merdassi H, Rossi JC, Jannin V, Demarne F, Cottet H. Size characterization of lipid-based self-emulsifying pharmaceutical excipients during lipolysis using Taylor dispersion analysis with fluorescence detection. Int J Pharm 2018; 537:94-101. [DOI: 10.1016/j.ijpharm.2017.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022]
|
20
|
Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Development of semisolid self-microemulsifying drug delivery systems (SMEDDSs) filled in hard capsules for oral delivery of aciclovir. Int J Pharm 2017; 528:372-380. [PMID: 28619449 DOI: 10.1016/j.ijpharm.2017.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 12/18/2022]
Abstract
The study aimed to develop semisolid self-microemulsifying drug delivery systems (SMEDDSs) as carriers for oral delivery of aciclovir in hard hydroxypropylmethyl cellulose (HPMC) capsules. Six self-dispersing systems (SD1-SD6) were prepared by loading aciclovir into the semisolid formulations consisting of medium chain length triglycerides (lipid), macrogolglycerol hydroxystearate (surfactant), polyglyceryl-3-dioleate (cosurfactant), glycerol (hydrophilic cosolvent), and macrogol 8000 (viscosity modifier). Their characterization was performed in order to identify the semisolid system with rheological behaviour suitable for filling in hard HPMC capsules and fast dispersibility in acidic and alkaline aqueous media with formation of oil-in-water microemulsions. The optimal SMEDDS was loaded with aciclovir at two levels (2% and 33.33%) and morphology and aqueous dispersibility of the obtained systems were examined by applying light microscopy and photon correlation spectroscopy (PCS), respectively. The assessment of diffusivity of aciclovir from the SMEDDSs by using an enhancer cell model, showed that it was increased at a higher drug loading. Differential scanning calorimetry (DSC) analysis indicated that the SMEDDSs were semisolids at temperatures up to 50°C and physically stable and compatible with HPMC capsules for 3 months storage at 25°C and 4°C. The results of in vitro release study revealed that the designed solid dosage form based on the semisolid SMEDDS loaded with the therapeutic dose of 200mg, may control partitioning of the solubilized drug from in situ formed oil-in-water microemulsion carrier into the sorrounding aqueous media, and hence decrease the risk for precipitation of the drug.
Collapse
|
22
|
Chamieh J, Jannin V, Demarne F, Cottet H. Hydrodynamic size characterization of a self-emulsifying lipid pharmaceutical excipient by Taylor dispersion analysis with fluorescent detection. Int J Pharm 2016; 513:262-269. [DOI: 10.1016/j.ijpharm.2016.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 11/15/2022]
|
23
|
Rezhdo O, Speciner L, Carrier R. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement. J Control Release 2016; 240:544-560. [PMID: 27520734 PMCID: PMC5082615 DOI: 10.1016/j.jconrel.2016.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/29/2023]
Abstract
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented.
Collapse
Affiliation(s)
- Oljora Rezhdo
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Lauren Speciner
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Rebecca Carrier
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States.
| |
Collapse
|
24
|
Sams L, Paume J, Giallo J, Carrière F. Relevant pH and lipase for in vitro models of gastric digestion. Food Funct 2016; 7:30-45. [PMID: 26527368 DOI: 10.1039/c5fo00930h] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of in vitro digestion models relies on the availability of in vivo data such as digestive enzyme levels and pH values recorded in the course of meal digestion. The variations of these parameters along the GI tract are important for designing dynamic digestion models but also static models for which the choice of representative conditions of the gastric and intestinal conditions is critical. Simulating gastric digestion with a static model and a single set of parameters is particularly challenging because the variations in pH and enzyme concentration occurring in the stomach are much broader than those occurring in the small intestine. A review of the literature on this topic reveals that most models of gastric digestion use very low pH values that are not representative of the fed conditions. This is illustrated here by showing the variations in gastric pH as a function of meal gastric emptying instead of time. This representation highlights those pH values that are the most relevant for testing meal digestion in the stomach. Gastric lipolysis is still largely ignored or is performed with microbial lipases. In vivo data on gastric lipase and lipolysis have however been collected in humans and dogs during test meals. The biochemical characterization of gastric lipase has shown that this enzyme is rather unique among lipases: (i) stability and activity in the pH range 2 to 7 with an optimum at pH 4-5.4; (ii) high tensioactivity that allows resistance to bile salts and penetration into phospholipid layers covering TAG droplets; (iii) sn-3 stereospecificity for TAG hydrolysis; and (iv) resistance to pepsin. Most of these properties have been known for more than two decades and should provide a rational basis for the replacement of gastric lipase by other lipases when gastric lipase is not available.
Collapse
Affiliation(s)
- Laura Sams
- CNRS, Aix Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. and GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Julie Paume
- GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Jacqueline Giallo
- GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Frédéric Carrière
- CNRS, Aix Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
25
|
Carrière F. Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs. Biochimie 2016; 125:297-305. [DOI: 10.1016/j.biochi.2015.11.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/15/2015] [Indexed: 11/25/2022]
|
26
|
Jannin V, Chevrier S, Michenaud M, Dumont C, Belotti S, Chavant Y, Demarne F. Development of self emulsifying lipid formulations of BCS class II drugs with low to medium lipophilicity. Int J Pharm 2015; 495:385-392. [DOI: 10.1016/j.ijpharm.2015.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
|
27
|
A comprehensive review on in vitro digestion of infant formula. Food Res Int 2015; 76:373-386. [DOI: 10.1016/j.foodres.2015.07.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022]
|
28
|
Wu L, Qiao Y, Wang L, Guo J, Wang G, He W, Yin L, Zhao J. A Self-microemulsifying Drug Delivery System (SMEDDS) for a Novel Medicative Compound Against Depression: a Preparation and Bioavailability Study in Rats. AAPS PharmSciTech 2015; 16:1051-8. [PMID: 25652729 DOI: 10.1208/s12249-014-0280-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022] Open
Abstract
AJS is the code name of an untitled novel medicative compound synthesized by the Tasly Holding Group Company (Tianjin, China) based on the structure of cinnamamide, which is one of the Biopharmaceutics Classification System (BCS) class II drugs. The drug has better antidepressant effect, achieved by acting on the 5-hydroxytryptamine receptor. However, the therapeutic effects of the drug are compromised due to its poor water solubility and lower bioavailability. Herein, a self-microemulsifying drug delivery system (SMEDDS) was developed to improve its solubility and oral bioavailability. AJS-SMEDDS formulation was optimized in terms of drug solubility in the excipients, droplet size, stability, and drug precipitation using a pseudo-ternary diagram. The pharmacokinetic study was performed in rats, and the drug concentration in plasma samples was assayed using the high-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS) method. The optimized formulation for SMEDDS has a composition of castor oil 24.5%, Labrasol 28.6%, Cremphor EL 40.8%, and Transcutol HP 2.7% (co-surfactant). No drug precipitation or phase separation was observed from the optimized formulation after 3 months of storing at 25°C. The droplet size of microemulsion formed by the optimized formulation was 26.08 ± 1.68 nm, and the zeta potential was -2.76 mV. The oral bioavailability of AJS-SMEDDS was increased by 3.4- and 35.9-fold, respectively, compared with the solid dispersion and cyclodextrin inclusion; meanwhile, the C max of AJS-SMEDDS was about 2- and 40-fold as great as the two controls, respectively. In summary, the present SMEDDS enhanced oral bioavailability of AJS and was a promising strategy to orally deliver the drug.
Collapse
|
29
|
Leonaviciute G, Bernkop-Schnürch A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opin Drug Deliv 2015; 12:1703-16. [PMID: 26477549 DOI: 10.1517/17425247.2015.1068287] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oral administration of most therapeutic peptides and proteins is mainly restricted due to the enzymatic and absorption membrane barrier of the GI tract. In order to overcome these barriers, various technologies have been explored. Among them, self-emulsifying drug delivery systems (SEDDS) received considerable attention as potential carriers to facilitate oral peptide and protein delivery in recent years. AREAS COVERED This review article intends to summarize physiological barriers which limit the bioavailability of orally administrated peptide and protein drugs. Furthermore, the potential of SEDDS to protect incorporated peptides and proteins towards peptidases and proteases and to penetrate the mucus layer is reviewed. Their permeation-enhancing properties and their ability to release the drug in a controlled way are described. Moreover, this review covers the results of in vivo studies providing evidence for this promising approach. EXPERT OPINION As SEDDS can: i) provide a protective effect towards a presystemic metabolism; ii) efficiently permeate the intestinal mucus gel layer in order to reach the absorption membrane; and iii) be produced in a very simple and cost-effective manner, they are a promising tool for oral peptide and protein drug delivery.
Collapse
Affiliation(s)
- Gintare Leonaviciute
- a Leopold - Franzens University Innsbruck, Institut of Pharmacy, Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology , Innrain 80/82, Innsbruck, Austria +43 512 507 58601 ; +43 512 507 58699 ;
| | - Andreas Bernkop-Schnürch
- a Leopold - Franzens University Innsbruck, Institut of Pharmacy, Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology , Innrain 80/82, Innsbruck, Austria +43 512 507 58601 ; +43 512 507 58699 ;
| |
Collapse
|
30
|
Size characterization of commercial micelles and microemulsions by Taylor dispersion analysis. Int J Pharm 2015; 492:46-54. [DOI: 10.1016/j.ijpharm.2015.06.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 01/09/2023]
|
31
|
Abdayem R, Callejon S, Portes P, Kirilov P, Demarne F, Pirot F, Jannin V, Haftek M. Modulation of transepithelial electric resistance (TEER) in reconstructed human epidermis by excipients known to permeate intestinal tight junctions. Exp Dermatol 2015; 24:686-91. [PMID: 25952154 DOI: 10.1111/exd.12750] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/23/2022]
Abstract
Several excipients are commonly used to enhance the drug absorption through simple epithelia of the digestive tract. They permeate the paracellular barrier constituted by tight junctions (TJs). We compared the effects of two excipients, sodium caprate (C10) and a self-emulsifying excipient Labrasol composed of a mixture of caprylocaproyl polyoxyl-8 glycerides, both applied to emerged reconstructed human epidermis either 'systemically', that is by addition to the culture medium, or topically. During the 'systemic' application, which produced cytoplasmic translocation of occludin and leakage of the biotin marker into the lower stratum corneum, the decrease in the trans-epithelial electrical resistance (TEER) was less abrupt with Labrasol when compared with C10, even though both excipients produced comparable final effects over time. With topical Labrasol, a significant TEER decrease was obtained with 5 times the 'systemic' concentrations. Topical application of C10 also resulted in the loss of the barrier function measured with TEER but had dramatic deleterious effects on the tissue morphology observed with light and electron microscopy. Our study demonstrates the potential value of Labrasol as an enhancer of bioavailability of molecules applied through the transcutaneous route. Our results suggest modulation of the epidermal TJs by both compounds. Even though the C10 action was at least partly due to overall cell damage and despite the fact that the decrease in TEER after topical application was apparently related to the permeabilization of the primary barrier of the stratum corneum in the first place.
Collapse
Affiliation(s)
- Rawad Abdayem
- Fundamental, clinical and therapeutic aspects of the skin barrier function, Université Lyon 1, Lyon, France
| | - Sylvie Callejon
- Fundamental, clinical and therapeutic aspects of the skin barrier function, Université Lyon 1, Lyon, France
| | | | - Plamen Kirilov
- Fundamental, clinical and therapeutic aspects of the skin barrier function, Université Lyon 1, Lyon, France
| | | | - Fabrice Pirot
- Fundamental, clinical and therapeutic aspects of the skin barrier function, Université Lyon 1, Lyon, France
| | | | - Marek Haftek
- Fundamental, clinical and therapeutic aspects of the skin barrier function, Université Lyon 1, Lyon, France
| |
Collapse
|
32
|
McEvoy CL, Trevaskis NL, Edwards GA, Perlman ME, Ambler CM, Mack MC, Brockhurst B, Porter CJ. In vitro–in vivo evaluation of lipid based formulations of the CETP inhibitors CP-529,414 (torcetrapib) and CP-532,623. Eur J Pharm Biopharm 2014; 88:973-85. [DOI: 10.1016/j.ejpb.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
33
|
Jannin V, Dellera E, Chevrier S, Chavant Y, Voutsinas C, Bonferoni C, Demarne F. In vitro lipolysis tests on lipid nanoparticles: comparison between lipase/co-lipase and pancreatic extract. Drug Dev Ind Pharm 2014; 41:1582-8. [PMID: 25342478 DOI: 10.3109/03639045.2014.972412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLC) are lipid nanocarriers aimed to the delivery of drugs characterized by a low bioavailability, such as poorly water-soluble drugs and peptides or proteins. The oral administration of these lipid nanocarriers implies the study of their lipolysis in presence of enzymes that are commonly involved in dietary lipid digestion in the gastrointestinal tract. In this study, a comparison between two methods was performed: on one hand, the lipase/co-lipase assay, commonly described in the literature to study the digestion of lipid nanocarriers, and on the other hand, the lipolysis test using porcine pancreatic extract and the pH-stat apparatus. This pancreatic extract contains both the pancreatic lipase and carboxyl ester hydrolase (CEH) that permit to mimic in a biorelevant manner the duodenal digestive lipolysis. The test was performed by means of a pH-stat apparatus to work at constant pH, 5.5 or 6.25, representing respectively the fasted or fed state pH conditions. The evolution of all acylglycerol entities was monitored during the digestion by sampling the reaction vessel at different time points, until 60 min, and the lipid composition of the digest was analyzed by gas chromatography. SLN and NLC systems obtained with long-chain saturated acylglycerols were rapidly and completely digested by pancreatic enzymes. The pH-stat titration method appears to be a powerful technique to follow the digestibility of these solid lipid-based nanoparticles.
Collapse
Affiliation(s)
| | - Eleonora Dellera
- b Department of Drug Sciences , University of Pavia , Viale Taramelli , Pavia , Italy
| | | | | | | | - Cristina Bonferoni
- b Department of Drug Sciences , University of Pavia , Viale Taramelli , Pavia , Italy
| | | |
Collapse
|
34
|
Bakala-N'Goma JC, Williams HD, Sassene PJ, Kleberg K, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Müllertz A, Pouton CW, Porter CJH, Carrière F. Toward the establishment of standardized in vitro tests for lipid-based formulations. 5. Lipolysis of representative formulations by gastric lipase. Pharm Res 2014; 32:1279-87. [PMID: 25288015 DOI: 10.1007/s11095-014-1532-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/24/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE Lipid-based formulations (LBF) are substrates for digestive lipases and digestion can significantly alter their properties and potential to support drug absorption. LBFs have been widely examined for their behaviour in the presence of pancreatic enzymes. Here, the impact of gastric lipase on the digestion of representative formulations from the Lipid Formulation Classification System has been investigated. METHODS The pHstat technique was used to measure the lipolysis by recombinant dog gastric lipase (rDGL) of eight LBFs containing either medium (MC) or long (LC) chain triglycerides and a range of surfactants, at various pH values [1.5 to 7] representative of gastric and small intestine contents under both fasting and fed conditions. RESULTS All LBFs were hydrolyzed by rDGL. The highest specific activities were measured at pH 4 with the type II and IIIA MC formulations that contained Tween®85 or Cremophor EL respectively. The maximum activity on LC formulations was recorded at pH 5 for the type IIIA-LC formulation. Direct measurement of LBF lipolysis using the pHstat, however, was limited by poor LC fatty acid ionization at low pH. CONCLUSIONS Since gastric lipase initiates lipid digestion in the stomach, remains active in the intestine and acts on all representative LBFs, its implementation in future standardized in vitro assays may be beneficial. At this stage, however, routine use remains technically challenging.
Collapse
Affiliation(s)
- Jean-Claude Bakala-N'Goma
- CNRS, Aix Marseille Université, UMR7282 Enzymologie Interfaciale et de Physiologie de la Lipolyse, 31 Chemin Joseph-Aiguier, 13402, Marseille cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rosiaux Y, Jannin V, Hughes S, Marchaud D. Solid lipid excipients — Matrix agents for sustained drug delivery. J Control Release 2014; 188:18-30. [DOI: 10.1016/j.jconrel.2014.06.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
36
|
Thomas N, Richter K, Pedersen TB, Holm R, Müllertz A, Rades T. In vitro lipolysis data does not adequately predict the in vivo performance of lipid-based drug delivery systems containing fenofibrate. AAPS JOURNAL 2014; 16:539-49. [PMID: 24687210 DOI: 10.1208/s12248-014-9589-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
The present study investigated the utility of in vitro lipolysis performance indicators drug solubilization and maximum supersaturation ratio (SR(M)) for their predictive use for the in vivo performance in a minipig model. The commercial Lipanthyl formulation and a series of LbDDS based on identical self-nanoemulsifying drug delivery systems (SNEDDS) containing 200 mg of fenofibrate, either dissolved or suspended, were subjected to combined gastric (pH 2) and intestinal (pH 6.5) in vitro lipolysis. Based on the solubilization profiles and SRM the rank-order SNEDDS (75% drug load) > super-SNEDDS (150% drug load, dissolved) = SNEDDS suspension (150% drug load, partially suspended) > Lipanthyl was established, with an increased likelihood of drug precipitation above SR(M) > 3. The in vitro performance, however, was not reproduced in vivo in a minipig model as the mean plasma concentration over time curves of all LbDDS were comparable, independent of the initial physical state of the drug. There was no correlation between the area under the solubilization-time curves (AUC(in vitro)) of the intestinal step and the AUC(in vivo). The study suggests careful interpretation of in vitro performance criteria and revision of LbDDS optimization towards increased solubilization.
Collapse
Affiliation(s)
- Nicky Thomas
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Amara S, Patin A, Giuffrida F, Wooster TJ, Thakkar SK, Bénarouche A, Poncin I, Robert S, Point V, Molinari S, Gaussier H, Diomande S, Destaillats F, Cruz-Hernandez C, Carrière F. In vitro digestion of citric acid esters of mono- and diglycerides (CITREM) and CITREM-containing infant formula/emulsions. Food Funct 2014; 5:1409-21. [DOI: 10.1039/c4fo00045e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The GI lipolysis of CITREM is investigated for the first time using various digestive lipases and a two-stepin vitrodigestion model.
Collapse
Affiliation(s)
- Sawsan Amara
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| | - Amaury Patin
- Nestlé Research Center
- CH-1000 Lausanne 26, Switzerland
| | | | | | | | - Anaïs Bénarouche
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| | - Isabelle Poncin
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| | - Sylvie Robert
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| | - Vanessa Point
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| | - Sacha Molinari
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| | - Hélène Gaussier
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| | - Sadia Diomande
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| | | | | | - Frédéric Carrière
- CNRS
- Aix Marseille Université
- Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282
- 13402 Marseille Cedex 20, France
| |
Collapse
|
38
|
Griffin BT, Kuentz M, Vertzoni M, Kostewicz ES, Fei Y, Faisal W, Stillhart C, O'Driscoll CM, Reppas C, Dressman JB. Comparison of in vitro tests at various levels of complexity for the prediction of in vivo performance of lipid-based formulations: case studies with fenofibrate. Eur J Pharm Biopharm 2013; 86:427-37. [PMID: 24184675 DOI: 10.1016/j.ejpb.2013.10.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/17/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
The objectives of this study were to characterise three prototype fenofibrate lipid-based formulations using a range of in vitro tests with differing levels of complexity and to assess the extent to which these methods provide additional insight into in vivo findings. Three self-emulsifying drug delivery systems (SEDDS) were prepared: a long chain (LC) Type IIIA SEDDS, a medium chain (MC) Type IIIA SEDDS, and a Type IIIB/IV SEDDS containing surfactants only (SO). Dilution, dispersion and digestion tests were performed to assess solubilisation and precipitation behaviour in vitro. Focussed beam reflectance measurements and solid state characterisation of the precipitate was conducted. Oral bioavailability was evaluated in landrace pigs. Dilution and dispersion testing revealed that all three formulations were similar in terms of maintaining fenofibrate in a solubilised state on dispersion in biorelevant media. During in vitro digestion, the Type IIIA formulations displayed limited drug precipitation (<5%), whereas the Type IIIB/IV formulation displayed extensive drug precipitation (~70% dose). Solid state analysis confirmed that precipitated fenofibrate was crystalline. The oral bioavailability was similar for the three lipid formulations (65-72%). In summary, the use of LC versus MC triglycerides in Type IIIA SEDDS had no impact on the bioavailability of fenofibrate. The extensive precipitation observed with the Type IIIB/IV formulation during in vitro digestion did not adversely impact fenofibrate bioavailability in vivo, relative to the Type IIIA formulations. These results were predicted suitably using in vitro dilution and dispersion testing, whereas the in vitro digestion method failed to predict the outcome of the in vivo study.
Collapse
Affiliation(s)
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland
| | - Maria Vertzoni
- Faculty of Pharmacy, National & Kapodistrian University of Athens, Greece
| | - Edmund S Kostewicz
- Institut für Pharmazeutische Technologie, Goethe Universität, Frankfurt am Main, Germany
| | - Yang Fei
- Institut für Pharmazeutische Technologie, Goethe Universität, Frankfurt am Main, Germany
| | - Waleed Faisal
- School of Pharmacy, University College Cork, Ireland
| | - Cordula Stillhart
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland
| | | | - Christos Reppas
- Faculty of Pharmacy, National & Kapodistrian University of Athens, Greece
| | - Jennifer B Dressman
- Institut für Pharmazeutische Technologie, Goethe Universität, Frankfurt am Main, Germany
| |
Collapse
|