1
|
Manya C, Solomon JH, Inoh MI, Yikawe SS, Mainasara R, Abdulmumini AA. Perceived benefit of antibiotics irrigation before pharyngeal repair of severe cut-throat injuries. Injury 2024; 55:111542. [PMID: 38626585 DOI: 10.1016/j.injury.2024.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION Wound irrigation has been employed as an important surgical step to remove bacteria, devitalized tissues, and foreign bodies from surgical sites to prevent infection and confer to the wound maximum potential of healing. METHOD A prospective study was conducted at Federal Medical Centre, Gusau, between January 2019- August 2023 to assess the benefit of antibiotics as additives in irrigation of dirty wounds. Seven (7) patients in total were presented with severe cut-throat injuries that require laryngopharyngoplasty. A combination of injection ciprofloxacin and metronidazole were used as additives into 1 L of normal saline, low pressure irrigation was done using 20mls syringe fitted to a broken needle or canular. Dysphagia Outcome and Severity Scale (DOSS) was used to assess return of pharyngeal function. RESULT The mean time of presentation of the patients was 34 ± 29 h (µ ± standard deviation) and a range of 6-72 h. The mean repair time was 58.3 ± 38.4 h with a range of 24-120 h. Most of the patients (85.7 %) had dysphagia outcome and severity scale of level 5 when per oral feeding was started with steady progress until discharge day. CONCLUSION Wound irrigation is one of the most crucial steps in treating severe cut-throat injuries. Based on our experience, adding antibiotics to the irrigant has shown potential in the control of local infection, particularly where patients present late.
Collapse
Affiliation(s)
- C Manya
- Federal Medical Centre, Department of Ear, Nose and Throat Surgery, Gusau, PMB 01008.
| | | | - M I Inoh
- University of Uyo Teaching Hospital, Department of ENT, Akwa Ibom
| | | | - R Mainasara
- Federal Medical Centre, Department of Ear, Nose and Throat Surgery, Gusau, PMB 01008
| | - A A Abdulmumini
- Federal Medical Centre, Department of Ear, Nose and Throat Surgery, Gusau, PMB 01008
| |
Collapse
|
2
|
Patel UK, Tiwari P, Tilak R, Joshi G, Kumar R, Agarwal A. Synthesis of ciprofloxacin-linked 1,2,3-triazole conjugates as potent antibacterial agents using click chemistry: exploring their function as DNA gyrase inhibitors via in silico- and in vitro-based studies. RSC Adv 2024; 14:17051-17070. [PMID: 38818013 PMCID: PMC11138863 DOI: 10.1039/d4ra01332h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024] Open
Abstract
The antibacterial efficacy of some newly developed C-3 carboxylic group-containing ciprofloxacin-linked 1,2,3-triazole conjugates was studied. Twenty-one compounds from three different series of triazoles were synthesized using click chemistry and evaluated for their antibacterial activity against nine different pathogenic strains, including three Gram-positive strains, i.e. Enterococcus faecalis (ATCC29212), Staphylococcus aureus (ATCC25923), Staphylococcus epidermidis (clinical isolate), and six Gram-negative bacterial strains, i.e. Escherichia coli (ATCC25922), Pseudomonas aeruginosa (ATCC27853), Salmonella typhi (clinical isolate), Proteus mirabilis (clinical isolate), Acinetobacter baumannii (clinical isolate) and Klebsiella pneumonia (clinical isolate). Among the compounds, 10, 10a, 10b, 10c, 10d, 11a, 11f, 12c, 12e and 12f showed excellent activity with MIC values upto 12.5 μg mL-1, whereas the control ciprofloxacin showed MIC values of 0.781-25 μg mL-1 towards various strains. In addition, the low toxicity profile of the synthesized molecules revealed that they are potent antibiotics. Molecular docking and MD analysis were performed using the protein structure of E. coli DNA gyrase B, which was further corroborated with an in vitro assay to evaluate the inhibition of DNA gyrase. The analysis revealed that compound 10b was the most potent inhibitor of DNA gyrase compared to ciprofloxacin, which was employed as the positive control. Furthermore, the structure of two title compounds (11a and 12d) was characterized using single-crystal analysis.
Collapse
Affiliation(s)
- Upendra Kumar Patel
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi UP-221005 India
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University Varanasi UP-221005 India
| | - Ragini Tilak
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University Varanasi UP-221005 India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University) Dist. Garhwal (Uttarakhand) Srinagar-246174 India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab Ghudda Bathinda-151401 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi UP-221005 India
| |
Collapse
|
3
|
Struga M, Roszkowski P, Bielenica A, Otto-Ślusarczyk D, Stępień K, Stefańska J, Zabost A, Augustynowicz-Kopeć E, Koliński M, Kmiecik S, Myslovska A, Wrzosek M. N-Acylated Ciprofloxacin Derivatives: Synthesis and In Vitro Biological Evaluation as Antibacterial and Anticancer Agents. ACS OMEGA 2023; 8:18663-18684. [PMID: 37273589 PMCID: PMC10233829 DOI: 10.1021/acsomega.3c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
A novel series of N-acylated ciprofloxacin (CP) conjugates 1-21 were synthesized and screened as potential antimicrobial agents. Conjugates 1 and 2 were 1.25-10-fold more potent than CP toward all Staphylococci (minimal inhibitory concentration 0.05-0.4 μg/mL). Most of the chloro- (3-7), bromo- (8-11), and CF3-alkanoyl (14-16) derivatives expressed higher or comparable activity to CP against selected Gram-positive strains. A few CP analogues (5, 10, and 11) were also more effective toward the chosen clinical Gram-negative rods. Conjugates 5, 10, and 11 considerably influenced the phases of the bacterial growth cycle over 18 h. Additionally, compounds 2, 4-7, 9-12, and 21 exerted stronger tuberculostatic action against three Mycobacterium tuberculosis isolates than the first-line antitubercular drugs. Amides 1, 2, 5, 6, 10, and 11 targeted gyrase and topoisomerase IV at 2.7-10.0 μg/mL, which suggests a mechanism of antibacterial action related to CP. These findings were confirmed by molecular docking studies. In addition, compounds 3 and 15 showed high antiproliferative activities against prostate PC3 cells (IC50 2.02-4.8 μM), up to 6.5-2.75 stronger than cisplatin. They almost completely reduced the growth and proliferation rates in these cells, without a cytotoxic action against normal HaCaT cell lines. Furthermore, derivatives 3 and 21 induced apoptosis/necrosis in PC3 cells, probably by increasing the intracellular ROS amount, as well as they diminished the IL-6 level in tumor cells.
Collapse
Affiliation(s)
- Marta Struga
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Roszkowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Bielenica
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Dagmara Otto-Ślusarczyk
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Karolina Stępień
- Department
of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Stefańska
- Department
of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Zabost
- Department
of Microbiology, National Tuberculosis and
Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department
of Microbiology, National Tuberculosis and
Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Michał Koliński
- Bioinformatics
Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Sebastian Kmiecik
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Alina Myslovska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department
of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
4
|
Design, synthesis, and biological investigation of quinoline/ciprofloxacin hybrids as antimicrobial and anti-proliferative agents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractCiprofloxacin-Piperazine C-7 linked quinoline derivatives 6a–c and 8a–c were synthesized and investigated for their antibacterial, antifungal, and anti-proliferative activities. Ciprofloxacin-quinoline-4-yl-1,3,4 oxadiazoles 6a and 6b showed promising anticancer activity against SR- leukemia and UO-31 renal cancer cell lines. The hybrids 8a–c and compound 6b exhibited noticeable antifungal activities against C.Albicans; 8a experienced the most potent antifungal activity compared to Itraconazole with MICs of 21.88 µg/mL and 11.22 µg/mL; respectively. Most of derivatives displayed better antibacterial activity than the parent ciprofloxacin against all the tested strains. Compound 6b was the most potent against the highly resistant Gram-negative K.pneumoniae with MIC 16.96 of µg/mL relative to the parent ciprofloxacin (MIC = 29.51 µg/mL). Docking studies of the tested hydrides in the active site of Topo IV enzyme of K.pneumoniae (5EIX) and S.aureus gyrase (2XCT) indicate that they had stronger binding affinity in both enzymes than ciprofloxacin but have different binding interactions. The hybrid 6b could be considered a promising lead compound for finding new dual antibacterial/anticancer agents. Moreover, Compound 8a could be a lead for discovering new dual antibacterial/antifungal agents.
Graphical abstract
Collapse
|
5
|
Suaifan GARY, Mohammed AAM, Alkhawaja BA. Fluoroquinolones' Biological Activities against Laboratory Microbes and Cancer Cell Lines. Molecules 2022; 27:1658. [PMID: 35268759 PMCID: PMC8911966 DOI: 10.3390/molecules27051658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Development of novel derivatives to rein in and fight bacteria have never been more demanding, as microbial resistance strains are alarmingly increasing. A multitude of new fluoroquinolones derivatives with an improved spectrum of activity and/or enhanced pharmacokinetics parameters have been widely explored. Reporting novel antimicrobial agents entails comparing their potential activity to their parent drugs; hence, parent fluoroquinolones have been used in research as positive controls. Given that these fluoroquinolones possess variable activities according to their generation, it is necessary to include parent compounds and market available antibiotics of the same class when investigating antimicrobial activity. Herein, we provide a detailed guide on the in vitro biological activity of fluoroquinolones based on experimental results published in the last years. This work permits researchers to compare and analyze potential fluoroquinolones as positive control agents and to evaluate changes occurring in their activities. More importantly, the selection of fluoroquinolones as positive controls by medicinal chemists when investigating novel FQs analogs must be correlated to the laboratory pathogen inquest for reliable results.
Collapse
Affiliation(s)
- Ghadeer A. R. Y. Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Aya A. M. Mohammed
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Bayan A. Alkhawaja
- Department of Pharmacy, Faculty of Pharmacy and Medical Sciences, The University of Petra, Amman 11196, Jordan;
| |
Collapse
|
6
|
Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl Microbiol Biotechnol 2019; 103:6933-6948. [DOI: 10.1007/s00253-019-10017-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
|
7
|
Suaifan GA, Mohammed AA. Fluoroquinolones structural and medicinal developments (2013–2018): Where are we now? Bioorg Med Chem 2019; 27:3005-3060. [DOI: 10.1016/j.bmc.2019.05.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/11/2022]
|
8
|
Design, synthesis and molecular modeling studies on novel moxifloxacin derivatives as potential antibacterial and antituberculosis agents. Bioorg Chem 2019; 88:102965. [DOI: 10.1016/j.bioorg.2019.102965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022]
|
9
|
Abstract
For nearly a century the use of antibiotics to treat infectious diseases has benefited human and animal health. In recent years there has been an increase in the emergence of antibiotic-resistant bacteria, in part attributed to the overuse of compounds in clinical and farming settings. The genus Listeria currently comprises 17 recognized species found throughout the environment. Listeria monocytogenes is the etiological agent of listeriosis in humans and many vertebrate species, including birds, whereas Listeria ivanovii causes infections mainly in ruminants. L. monocytogenes is the third-most-common cause of death from food poisoning in humans, and infection occurs in at-risk groups, including pregnant women, newborns, the elderly, and immunocompromised individuals.
Collapse
|
10
|
Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur J Med Chem 2018; 157:1223-1248. [DOI: 10.1016/j.ejmech.2018.08.095] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
|
11
|
Rusch M, Spielmeyer A, Zorn H, Hamscher G. Biotransformation of ciprofloxacin by Xylaria longipes: structure elucidation and residual antibacterial activity of metabolites. Appl Microbiol Biotechnol 2018; 102:8573-8584. [PMID: 30030566 DOI: 10.1007/s00253-018-9231-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
The impressive ability of the fungus Xylaria longipes to transform the highly persistent fluoroquinolone ciprofloxacin into microbiologically less active degradation products was demonstrated. Fluoroquinolones are used extensively in both human and veterinary medicine. Poor metabolization and high chemical stability of these synthetic antibiotics led to their presence in several environmental compartments. This undesirable behavior may promote the spread of resistance mechanisms due to concomitant exposure to bacteria. Therefore, the biotransformation of ciprofloxacin, one of the most prescribed fluoroquinolones in human medicine, by the ascomycetous soft rot fungus X. longipes was investigated in detail. Submerged cultivation of the fungus allowed for high-yield formation of four biotransformation products. These compounds were subsequently purified by preparative high-performance liquid chromatography. Applying accurate mass spectrometry and nuclear magnetic resonance spectroscopy, desethylene-ciprofloxacin, desethylene-N-acetyl-ciprofloxacin, N-formyl-ciprofloxacin and N-acetyl-ciprofloxacin were unambiguously identified. N-acetylation and N-formylation of the drug led to a 75-88% reduction of the initial antibacterial activity, whereas a breakdown of the piperazine substituent resulted in almost inactive products. These findings suggest an important role in the inactivation and degradation of this and other synthetic compounds in the environment.
Collapse
Affiliation(s)
- Marina Rusch
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Astrid Spielmeyer
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
13
|
Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:215-225. [PMID: 29128664 DOI: 10.1016/j.nano.2017.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
The aim of this study was to develop PEGylated phosphatidylcholine (PC)-rich nanovesicles (phosphatiosomes) carrying ciprofloxacin (CIPX) for lung targeting to eradicate extracellular and intracellular methicillin-resistant Staphylococcus aureus (MRSA). Soyaethyl morphonium ethosulfate (SME) was intercalated in the nanovesicle surface with the dual goals of achieving strengthened bactericidal activity of CIPX-loaded phosphatiosomes and delivery to the lungs. The isothermal titration calorimetry (ITC) results proved the strong association of SME phosphatiosomes with pulmonary surfactant. We demonstrated a superior anti-MRSA activity of SME phosphatiosomes compared to plain phosphatiosomes and to free CIPX. A synergistic effect of CIPX and SME nanocarriers was found in the biofilm eradication. SME phosphatiosomes were readily engulfed by the macrophages, restricting the intracellular MRSA count by 1-2 log units. SME phosphatiosomes efficiently accumulated in the lungs after intravenous injection. In a rat model of lung infection, the MRSA burden in the lungs could be decreased by 8-fold after SME nanosystem application.
Collapse
|
14
|
Akhtar R, Yousaf M, Naqvi SAR, Irfan M, Zahoor AF, Hussain AI, Chatha SAS. Synthesis of ciprofloxacin-based compounds: A review. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1234622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rabia Akhtar
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Yousaf
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Institute of Chemistry, Government College University, Faisalabad, Pakistan
| | | | | |
Collapse
|
15
|
Pandit N, Shah K, Agrawal N, Upmanyu N, Shrivastava SK, Mishra P. Synthesis, characterization and biological evaluation of some novel fluoroquinolones. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1526-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Vembu S, Pazhamalai S, Gopalakrishnan M. Potential antibacterial activity of triazine dendrimer: Synthesis and controllable drug release properties. Bioorg Med Chem 2015; 23:4561-4566. [DOI: 10.1016/j.bmc.2015.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/24/2022]
|
17
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|