1
|
Gaikwad M, George A, Sivadas A, Karunakaran K, N S, Byradeddy SN, Mukhopadhyay C, Mudgal PP, Kulkarni M. Development and characterization of formulations based on combinatorial potential of antivirals against genital herpes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03468-y. [PMID: 39347802 DOI: 10.1007/s00210-024-03468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Herpes simplex virus type 2 (HSV-2) treatment faces challenges due to antiviral resistance and systemic side effects of oral therapies. Local delivery of antiviral agents, such as tenofovir (TDF) and zinc acetate dihydrate (ZAD), may offer improved efficacy and reduced systemic toxicity. This study's objective is to develop and evaluate local unit dose formulations of TDF and ZAD combination for local treatment of HSV-2 infection and exploring their individual and combinatory effects in vitro. The study involved the development of immediate-release film and pessary formulations containing TDF and ZAD. These formulations were characterized for physicochemical properties and in vitro drug release profiles. Cytotoxicity and antiviral activity assays were conducted to evaluate the individual and combinatory effects of TDF and ZAD. Film formulations released over 90% of the drugs within 1 h, and pessary formulations within 90 min, ensuring effective local drug delivery. ZAD showed moderate antiviral activity while TDF exhibited significant antiviral activity at non-cytotoxic concentrations. The combination of TDF and ZAD demonstrated synergistic effects in co-infection treatments, reducing the concentration required for 50% inhibition of HSV-2. Developed film and pessary formulations offer consistent and predictable local drug delivery, enhancing antiviral efficacy while minimizing systemic side effects. The combination of TDF and ZAD showed potential synergy against HSV-2, particularly in co-infection treatments. Further preclinical studies on pharmacokinetics, safety, and efficacy are necessary to advance these formulations toward clinical application.
Collapse
Affiliation(s)
- Mahesh Gaikwad
- SCES's Indira College of Pharmacy, New Mumbai Pune Highway, Tathawade, Pune, India
| | - Amal George
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Aparna Sivadas
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Kavitha Karunakaran
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Sudheesh N
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Siddappa N Byradeddy
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Centre, Omaha, NE, USA
| | | | - Piya Paul Mudgal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India.
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Mumbai Pune Highway, Tathawade, Pune, India.
| |
Collapse
|
2
|
Patel SK, Agashe H, Patton DL, Sweeney Y, Beamer MA, Hendrix CW, Hillier SL, Rohan LC. Tenofovir vaginal film as a potential MPT product against HIV-1 and HSV-2 acquisition: formulation development and preclinical assessment in non-human primates. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1217835. [PMID: 37638127 PMCID: PMC10449455 DOI: 10.3389/frph.2023.1217835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Tenofovir (TFV) is an adenosine nucleotide analog with activity against HIV and HSV-2. Secondary analyses of clinical trials evaluating TFV gel as pre-exposure prophylaxis (PrEP) for HIV have shown that gel formulations of TFV provide significant protection against both HIV and HSV-2 acquisition in women who had evidence of use. An alternate quick-dissolving polymeric thin film, to deliver TFV (20 and 40 mg) has been developed as a potential multipurpose technology (MPT) platform. Film formulation was developed based on excipient compatibility, stability, and ability to incorporate TFV doses. Placebo, low dose (20 mg), and high dose (40 mg) films were utilized in these studies. The developed film platform efficiently incorporated the high dose of TFV (40 mg/film), released more than 50% of drug in 15 min with no in vitro toxicity. Pharmacological activity was confirmed in an ex vivo HIV-1 challenge study, which showed a reduction in HIV-1 infection with TFV films. Films were stable at both doses for at least 2 years. These films were found to be safe in macaques with repeated exposure for 2 weeks as evidenced by minimal perturbation to tissues, microbiome, neutrophil influx, and pH. Macaque sized TFV film (11.2 mg) evaluated in a pigtail macaque model showed higher vaginal tissue concentrations of TFV and active TFV diphosphate compared to a 15 mg TFV loaded gel. These studies confirm that TFV films are stable, safe and efficiently deliver the drug in cervicovaginal compartments supporting their further clinical development.
Collapse
Affiliation(s)
- Sravan Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Hrushikesh Agashe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Dorothy L. Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Yvonne Sweeney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - May A. Beamer
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Craig W. Hendrix
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sharon L. Hillier
- Magee-Womens Research Institute, Pittsburgh, PA, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, PA, United States
| | - Lisa C. Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
- Magee-Womens Research Institute, Pittsburgh, PA, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, PA, United States
| |
Collapse
|
3
|
Tomás M, Sousa LGV, Oliveira AS, Gomes CP, Palmeira-de-Oliveira A, Cavaleiro C, Salgueiro L, Cerca N, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Vaginal Sheets with Thymbra capitata Essential Oil for the Treatment of Bacterial Vaginosis: Design, Characterization and In Vitro Evaluation of Efficacy and Safety. Gels 2023; 9:gels9040293. [PMID: 37102907 PMCID: PMC10137747 DOI: 10.3390/gels9040293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
We aimed to incorporate Thymbra capitata essential oil (TCEO), a potent antimicrobial natural product against bacterial vaginosis (BV)-related bacteria, in a suitable drug delivery system. We used vaginal sheets as dosage form to promote immediate relief of the typical abundant vaginal discharge with unpleasant odour. Excipients were selected to promote the healthy vaginal environment reestablishment and bioadhesion of formulations, while the TCEO acts directly on BV pathogens. We characterized vaginal sheets with TCEO in regard to technological characterization, predictable in vivo performance, in vitro efficacy and safety. Vaginal sheet D.O (acid lactic buffer, gelatine, glycerine, chitosan coated with TCEO 1% w/w) presented a higher buffer capacity and ability to absorb vaginal fluid simulant (VFS) among all vaginal sheets with EO, showing one of the most promising bioadhesive profiles, an excellent flexibility and structure that allow it to be easily rolled for application. Vaginal sheet D.O with 0.32 µL/mL TCEO was able to significantly reduce the bacterial load of all in vitro tested Gardnerella species. Although vaginal sheet D.O presented toxicity at some concentrations, this product was developed for a short time period of treatment, so this toxicity can probably be limited or even reversed when the treatment ends.
Collapse
Affiliation(s)
- Mariana Tomás
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Lúcia G. V. Sousa
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Sofia Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Carolina P. Gomes
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Labfit-HPRD Health Products Research and Development, Lda Edifício UBIMedical, Estrada Municipal 506, 6200-281 Covilhã, Portugal
| | - Carlos Cavaleiro
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-790 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-790 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - José Martinez-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Labfit-HPRD Health Products Research and Development, Lda Edifício UBIMedical, Estrada Municipal 506, 6200-281 Covilhã, Portugal
| |
Collapse
|
4
|
Dahl DK, Whitesell AN, Sharma-Huynh P, Maturavongsadit P, Janusziewicz R, Fox RJ, Loznev HT, Button BM, Schorzman AN, Zamboni W, Ban J, Montgomery SA, Carey ET, Benhabbour SR. A mucoadhesive biodissolvable thin film for localized and rapid delivery of lidocaine for the treatment of vestibulodynia. Int J Pharm 2022; 612:121288. [PMID: 34800616 PMCID: PMC8753993 DOI: 10.1016/j.ijpharm.2021.121288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/27/2023]
Abstract
Vestibulodynia (VBD), an idiopathic pain disorder characterized by erythema and pain of the vulvar vestibule (the inner aspect of the labia minora and vaginal opening), is the most common cause of sexual pain for women of reproductive age. Women also feel discomfort with contact with clothing and tampon use. As most women with this disorder only have pain with provocation of the tissue, topical anesthetics applied to the vestibule are the current first line treatment for temporary pain relief. Treatment options are limited due to anatomical constraints of the vestibular region, poor drug retention time, imprecise dosing, leakage, and overall product messiness. In this study we report a novel approach to treatment of VBD using thin film designed to fit the vulvar vestibule and deliver lidocaine locally. Two use cases for VBD treatment were identified 1) rapid drug release (<5 min), for use prior to intercourse and 2) long-acting release (≥120 min) for prolonged use and relief throughout the day. Cellulose-based mucoadhesive thin films were fabricated using a solvent casting method. Three polymers including hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), and hydroxypropylmethycellulose (HMPC), were selected owing to their biocompatibility and ideal properties for film casting. Films casted with HEC, HPC, and HPMC exhibited mucoadhesive properties relative to a control, with the highest mucoadhesive force recorded for films casted with HPC. Effect of media volume, pH, presence of mucin and presence of drug on film dissolution rates were investigated. Dissolution rates were independent of media volume, media pH or drug presence, whereas faster dissolution rates were obtained for all films in presence of mucin. In vitro lidocaine release kinetics were influenced by polymer type, percent drug loading and film casting thickness. Lidocaine release was based on a diffusion mechanism rather than through film dissolution and faster release (∼5 min) was observed for HEC films compared HPC films (∼120 min). Higher drug loading and film thickness resulted in slower and more prolonged release kinetics of lidocaine. All films were biocompatible and exhibited good mechanical properties. Two film formulations (9% w/w HPC with 12% w/w LHC, 5% w/w HEC with 6% w/w LHC) were optimized to meet the two use case scenarios for VBD treatment and moved into in vivo testing. In vivo testing demonstrated the safety of the films in BALB/c mice, and the pharmacokinetic analysis demonstrated the delivery of lidocaine primarily to the vaginal tissue. We demonstrate the ability to develop a mucoadhesive, biodissolvable thin film and fine-tune drug release kinetics to optimize local delivery of lidocaine to the vulva.
Collapse
Affiliation(s)
- Denali K. Dahl
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashlyn N. Whitesell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Preetika Sharma-Huynh
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Panita Maturavongsadit
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rima Janusziewicz
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ryan J. Fox
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Henry T. Loznev
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian M. Button
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Institute for Nanomedicine, UNC Advanced Translational Pharmacology and Analytical Chemistry Lab
| | - William Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Institute for Nanomedicine, UNC Advanced Translational Pharmacology and Analytical Chemistry Lab
| | - Jisun Ban
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Institute for Nanomedicine, UNC Advanced Translational Pharmacology and Analytical Chemistry Lab
| | | | - Erin T. Carey
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S. Rahima Benhabbour
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Dedeloudi A, Siamidi A, Pavlou P, Vlachou M. Recent Advances in the Excipients Used in Modified Release Vaginal Formulations. MATERIALS 2022; 15:ma15010327. [PMID: 35009472 PMCID: PMC8745980 DOI: 10.3390/ma15010327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022]
Abstract
The formulation of an ideal vaginal drug delivery system (DDS), with the requisite properties, with respect to safety, efficacy, patient compliance, aesthetics, harmonization with the regulatory requirements, and cost, requires a meticulous selection of the active ingredients and the excipients used. Novel excipients defined by diversity and multifunctionality are used in order to ameliorate drug delivery attributes. Synthetic and natural polymers are broadly used in pharmaceutical vaginal formulations (solid, semi-solid dosage forms, implantable devices, and nanomedicines) with a promising perspective in improving stability and compatibility issues when administered topically or systemically. Moreover, the use of biopolymers is aiming towards formulating novel bioactive, biocompatible, and biodegradable DDSs with a controllable drug release rate. Overviewing vaginal microenvironment, which is described by variable and perplexed features, a perceptive choice of excipients is essential. This review summarizes the recent advances on the excipients used in modified vaginal drug delivery formulations, in an attempt to aid the formulation scientist in selecting the optimal excipients for the preparation of vaginal products.
Collapse
Affiliation(s)
- Aikaterini Dedeloudi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.D.); (A.S.)
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.D.); (A.S.)
| | - Panagoula Pavlou
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece;
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.D.); (A.S.)
- Correspondence: ; Tel.: +30-2107274674
| |
Collapse
|
6
|
Zhang J, Lu A, Thakkar R, Zhang Y, Maniruzzaman M. Development and Evaluation of Amorphous Oral Thin Films Using Solvent-Free Processes: Comparison between 3D Printing and Hot-Melt Extrusion Technologies. Pharmaceutics 2021; 13:pharmaceutics13101613. [PMID: 34683906 PMCID: PMC8538498 DOI: 10.3390/pharmaceutics13101613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Conventional oral dosage forms may not always be optimal especially for those patients suffering from dysphasia or difficulty swallowing. Development of suitable oral thin films (OTFs), therefore, can be an excellent alternative to conventional dosage forms for these patient groups. Hence, the main objective of the current investigation is to develop oral thin film (OTF) formulations using novel solvent-free approaches, including additive manufacturing (AM), hot-melt extrusion, and melt casting. AM, popularly recognized as 3D printing, has been widely utilized for on-demand and personalized formulation development in the pharmaceutical industry. Additionally, in general active pharmaceutical ingredients (APIs) are dissolved or dispersed in polymeric matrices to form amorphous solid dispersions (ASDs). In this study, acetaminophen (APAP) was selected as the model drug, and Klucel™ hydroxypropyl cellulose (HPC) E5 and Soluplus® were used as carrier matrices to form the OTFs. Amorphous OTFs were successfully manufactured by hot-melt extrusion and 3D printing technologies followed by comprehensive studies on the physico-chemical properties of the drug and developed OTFs. Advanced physico-chemical characterizations revealed the presence of amorphous drug in both HME and 3D printed films whereas some crystalline traces were visible in solvent and melt cast films. Moreover, advanced surface analysis conducted by Raman mapping confirmed a more homogenous distribution of amorphous drugs in 3D printed films compared to those prepared by other methods. A series of mathematical models were also used to describe drug release mechanisms from the developed OTFs. Moreover, the in vitro dissolution studies of the 3D printed films demonstrated an improved drug release performance compared to the melt cast or extruded films. This study suggested that HME combined with 3D printing can potentially improve the physical properties of formulations and produce OTFs with preferred qualities such as faster dissolution rate of drugs.
Collapse
|
7
|
Johnston DS, Goldberg E. Preclinical contraceptive development for men and women. Biol Reprod 2021; 103:147-156. [PMID: 32561907 DOI: 10.1093/biolre/ioaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
This manuscript endeavors to present research considerations for the preclinical development of non-hormonal contraceptives. Topics include (1) how advances in genomics and bioinformatics impact the identification of novel targets for non-hormonal contraception, (2) the importance of target validation prior to investment in a contraceptive development campaign, (3) considerations on targeting gametogenesis vs gamete maturation/function, (4) how targets from the male reproductive system are expanding women's options for 'on demand' contraception, and (5) some emerging non-hormonal methods that are not based on a specific molecular target. Also presented are ideas for developing a pipeline of non-hypothalamic-pituitary-gonadal-acting contraceptives for men and women while balancing risk and innovation, and our perspective on the pros and cons of industry and academic environments on contraceptive development. Three product development programs are highlighted that are biologically interesting, innovative, and likely to influence the field of contraceptive development in years to come.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
8
|
Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A, Gralińska K, Ekert M, Puri V, Wrotyńska-Barczyńska J, Michniak-Kohn B. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021; 13:884. [PMID: 34203714 PMCID: PMC8232205 DOI: 10.3390/pharmaceutics13060884] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The vagina has been considered a potential drug administration route for centuries. Most of the currently marketed and investigated vaginal formulations are composed with the use of natural or synthetic polymers having different functions in the product. The vaginal route is usually investigated as an administration site for topically acting active ingredients; however, the anatomical and physiological features of the vagina make it suitable also for drug systemic absorption. In this review, the most important natural and synthetic polymers used in vaginal products are summarized and described, with special attention paid to the properties important in terms of vaginal application. Moreover, the current knowledge on the commonly applied and innovative dosage forms designed for vaginal administration was presented. The aim of this work was to highlight the most recent research directions and indicate challenges related to vaginal drug administrations. As revealed in the literature overview, intravaginal products still gain enormous scientific attention, and novel polymers and formulations are still explored. However, there are research areas that require more extensive studies in order to provide the safety of novel vaginal products.
Collapse
Affiliation(s)
- Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Adam Tatarek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Aleksandra Falana
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Kinga Gralińska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Michał Ekert
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Vinam Puri
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Joanna Wrotyńska-Barczyńska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznań, Poland;
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
9
|
Panraksa P, Udomsom S, Rachtanapun P, Chittasupho C, Ruksiriwanich W, Jantrawut P. Hydroxypropyl Methylcellulose E15: A Hydrophilic Polymer for Fabrication of Orodispersible Film Using Syringe Extrusion 3D Printer. Polymers (Basel) 2020; 12:polym12112666. [PMID: 33198094 PMCID: PMC7696250 DOI: 10.3390/polym12112666] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023] Open
Abstract
Extrusion-based 3D printing technology is a relatively new technique that has a potential for fabricating pharmaceutical products in various dosage forms. It offers many advantages over conventional manufacturing methods, including more accurate drug dosing, which is especially important for the drugs that require exact tailoring (e.g., narrow therapeutic index drugs). In this work, we have successfully fabricated phenytoin-loaded orodispersible films (ODFs) through a syringe extrusion 3D printing technique. Two different grades of hydroxypropyl methylcellulose (HPMC E5 and HPMC E15) were used as the film-forming polymers, and glycerin and propylene glycol were used as plasticizers. The 3D-printed ODFs were physicochemically characterized and evaluated for their mechanical properties and in vitro disintegration time. Then, the optimum printed ODFs showing good mechanical properties and the fastest disintegration time were selected to evaluate their drug content and dissolution profiles. The results showed that phenytoin-loaded E15 ODFs demonstrated superior properties when compared to E5 films. It demonstrated a fast disintegration time in less than 5 s and rapidly dissolved and reached up to 80% of drug release within 10 min. In addition, it also exhibited drug content uniformity within United States Pharmacopeia (USP) acceptable range and exhibited good mechanical properties and flexibility with low puncture strength, low Young’s modulus and high elongation, which allows ease of handling and application. Furthermore, the HPMC E15 printing dispersions with suitable concentrations at 10% w/v exhibited a non-Newtonian (shear-thinning) pseudoplastic behavior along with good extrudability characteristics through the extrusion nozzle. Thus, HPMC E15 can be applied as a 3D printing polymer for a syringe extrusion 3D printer.
Collapse
Affiliation(s)
- Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (C.C.); (W.R.)
| | - Suruk Udomsom
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (C.C.); (W.R.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (C.C.); (W.R.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (C.C.); (W.R.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: or ; Tel.: +66-53944309
| |
Collapse
|
10
|
Design, fabrication and characterisation of drug-loaded vaginal films: State-of-the-art. J Control Release 2020; 327:477-499. [DOI: 10.1016/j.jconrel.2020.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
|
11
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Tamayo A, Rubio J, María-Dolores V. Mucoadhesive Vaginal Discs based on Cyclodextrin and Surfactants for the Controlled Release of Antiretroviral Drugs to Prevent the Sexual Transmission of HIV. Pharmaceutics 2020; 12:pharmaceutics12040321. [PMID: 32265431 PMCID: PMC7238131 DOI: 10.3390/pharmaceutics12040321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
The strategies for developing vaginal microbicides to protect women against human immunodeficiency virus (HIV) sexual transmission are constantly changing. Although the initial dosage forms required daily administration to offer effective protection, the trend then moved towards sustained-release dosage forms that require less frequency of administration in order to improve women's compliance with the treatment. Nevertheless, another possible strategy is to design on-demand products that can be used in a coitally-dependent manner and only need to be administered immediately before intercourse to offer protection. Vaginal discs based on freeze-dried hydroxypropylmethyl cellulose gels have been developed for this purpose, containing two surfactants, i.e., sodium dodecyl sulphate and polysorbate 60, alone or in combination with 2-hydroxypropyl-β-cyclodextrin, to achieve a formulation capable of incorporating both hydrophilic and lipophilic drugs. Several studies have been carried out to evaluate how the inclusion of these substances modifies the structure of gels (viscosity and consistency studies) and the porosimetry of the freeze-dried discs (scanning electron microscopy micrographs, mechanical properties, swelling behaviour). The drug release and mucoadhesive properties of the discs have also been evaluated with a view to their clinical application. The systems combining sodium dodecyl sulphate and 2-hydroxypropyl-β-cyclodextrin were found to be adequate for the vaginal administration of both Tenofovir and Dapivirine and also offer excellent mucoadhesion to vaginal tissue; these discs could therefore be an interesting option for a coitally-dependent administration to protect women against HIV transmission.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain; (F.N.-P.); (A.M.-I.); (R.C.-L.); (R.R.-C.)
| | - Araceli Martín-Illana
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain; (F.N.-P.); (A.M.-I.); (R.C.-L.); (R.R.-C.)
| | - Raúl Cazorla-Luna
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain; (F.N.-P.); (A.M.-I.); (R.C.-L.); (R.R.-C.)
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain; (F.N.-P.); (A.M.-I.); (R.C.-L.); (R.R.-C.)
| | - Aitana Tamayo
- Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Calle Kelsen 5, 28049-Madrid, Spain; (A.T.); (J.R.)
| | - Juan Rubio
- Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Calle Kelsen 5, 28049-Madrid, Spain; (A.T.); (J.R.)
| | - Veiga María-Dolores
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain; (F.N.-P.); (A.M.-I.); (R.C.-L.); (R.R.-C.)
- Correspondence: ; Tel.: +34-913-942091; Fax: +34-913-941736
| |
Collapse
|
12
|
Machado RM, Tomás M, Palmeira-de-Oliveira A, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. The vaginal sheet: an innovative form of vaginal film for the treatment of vaginal infections. Drug Dev Ind Pharm 2020; 46:135-145. [PMID: 31893929 DOI: 10.1080/03639045.2019.1711386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: To develop and characterize a new form of vaginal film.Significance: This formulation is intended to overcome some known limitations of traditional dosage forms. It has an absorptive intention to control symptoms and to improve the treatment of vaginal infections characterized by excessive fluid. The vaginal sheet is a thick drug delivery system easy to manipulate, nontoxic and composed by biocompatible macromolecules and polymers, such as gelatin and chitosan.Methods: The sheets were prepared by formulating gelatin or chitosan based gels isolated or in combination, in association with a plasticizer. Gels were subsequently lyophilized. Different proportions of polymer:plasticizer were tested. Lactose was used as a surrogate to study powder incorporation in the formulation. All formulations were analyzed regarding their organoleptic characteristics, texture (hardness and resilience), in vitro absorption efficiency of vaginal fluid simulant - VFS (pH 4 and 5), pH and acid-buffering capacity.Results: Different properties were obtained by varying polymer and plasticizer proportions. Combinations including gelatin with propylene glycol showed the best organoleptic characteristics. The best proportions were 4:3 and 4:5. Up to 10% of powder was successfully incorporated in the formulation. Hardness and resilience of formulations were largely dependent on the concentration of plasticizer. Absorption of vaginal fluid was found to be highly efficient, especially at pH 5. Buffering capacity, upon dilution in normal saline and VFS, was generally higher for VFS pH 4.Conclusions: The vaginal sheet is a promising solid drug delivery system able to further incorporate drugs to treat vaginal clinical conditions characterized by excessive fluid.
Collapse
Affiliation(s)
- Rita Monteiro Machado
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal
| | - Mariana Tomás
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal
| | - José Martinez-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS, UBI - Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Labfit, HPRD - Health Products Research and Development Lda, Covilhã, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Iqbal Z, Dilnawaz F. Nanocarriers For Vaginal Drug Delivery. ACTA ACUST UNITED AC 2020; 13:3-15. [PMID: 30767755 DOI: 10.2174/1872211313666190215141507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Vaginal drug delivery approach represents one of the imperative strategies for local and systemic delivery of drugs. The peculiar dense vascular networks, mucus permeability, and range of physiological characteristics of the vaginal cavity have been exploited for therapeutic benefit. Furthermore, the vaginal drug delivery has been curtailed due to the influence of different physiological factors like acidic pH, constant cervical secretion, microflora, cyclic changes during periods along with turnover of mucus of varying thickness. OBJECTIVE This review highlights advancement of nanomedicine and its prospective progress towards the clinic. METHODS Relevant literature reports and patents related to topics are retrieved and used. RESULT The extensive literature search and patent revealed that nanocarriers are efficacious over conventional treatment approaches. CONCLUSION Recently, nanotechnology based drug delivery approach has promised better therapeutic outcomes by providing enhanced permeation and sustained drug release activity. Different nanoplatforms based on drugs, peptides, proteins, antigens, hormones, nucleic material, and microbicides are gaining momentum for vaginal therapeutics.
Collapse
Affiliation(s)
- Zeenat Iqbal
- Nanomedicine Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Fahima Dilnawaz
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Bhubaneswar -751023, Odisha, India
| |
Collapse
|
14
|
Preparation and evaluation of orally disintegrating film containing donepezil for Alzheimer disease. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Bedoya LM, Peña J, Veiga MD. Development of mucoadhesive vaginal films based on HPMC and zein as novel formulations to prevent sexual transmission of HIV. Int J Pharm 2019; 570:118643. [PMID: 31446023 DOI: 10.1016/j.ijpharm.2019.118643] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Although vaginal films were initially developed for a fast release of the drug, with the adequate formulation they can also be useful for sustained release. The latest strategies for the prevention of the sexual transmission of HIV have moved towards sustained-release dosage forms, so films may be an effective strategy that could also improve the patient's comfort. A hydrophilic polymer (hydroxypropylmethyl cellulose) and an amphiphilic polymer (zein) have been evaluated for the development of Tenofovir sustained-release vaginal films. The modification of the film's properties by the inclusion of polar (glycerol and polyethylene glycol 400 (PEG)) and amphiphilic (tributyl citrate and oleic acid) plasticisers was also evaluated. The films' physicochemical and mechanical properties were determined. The in vitro release of Tenofovir from the films and their bioadhesive capacity and behaviour in simulated vaginal fluid were also assessed. The combination of hydroxypropylmethyl cellulose and zein in films (ratio 1:5), with the inclusion of PEG (40% w/w) proved not only to have excellent mechanical properties, but was also able to release TFV in a sustained manner for 120 h and remain attached to biological tissues throughout this time. This film could be an interesting option for the prevention of sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Araceli Martín-Illana
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Raúl Cazorla-Luna
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Luis-Miguel Bedoya
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain.
| | - Juan Peña
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040-Madrid, Spain.
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Smart Freeze-Dried Bigels for the Prevention of the Sexual Transmission of HIV by Accelerating the Vaginal Release of Tenofovir during Intercourse. Pharmaceutics 2019; 11:pharmaceutics11050232. [PMID: 31086015 PMCID: PMC6571877 DOI: 10.3390/pharmaceutics11050232] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 01/31/2023] Open
Abstract
Sub-Saharan African women are still at risk from the human immunodeficiency virus (HIV), and sex with men is the main route of transmission. Vaginal formulations containing antiretroviral drugs are promising tools to give women the power to protect themselves. The aim of this work was to obtain freeze-dried bigels containing pectin, chitosan, or hypromellose for the vaginal controlled release of Tenofovir, which is accelerated in the presence of semen. Nine batches of bigels were formulated using different proportions of these polymers in the hydrogel (1, 2, and 3% w/w). The bigels obtained were freeze-dried and then underwent hardness and deformability, mucoadhesion, swelling, and drug release tests, the last two in simulated vaginal fluid (SVF) and SVF/simulated seminal fluid (SSF) mixture. The formulation containing 3% pectin (fd3P) has the highest values for hardness, resistance to deformation, and good mucoadhesivity. Its swelling is conditioned by the pH of the medium, which is responsive to the controlled release of Tenofovir in SVF, with the fastest release in the SVF/SSF mixture. fd3P would be an interesting smart microbicidal system to allow faster release of Tenofovir in the presence of semen, and thus increase women’s ability to protect themselves from the sexual transmission of HIV.
Collapse
|
17
|
Pharmacokinetics and Pharmacodynamics of Tenofovir Reduced-Glycerin 1% Gel in the Rectal and Vaginal Compartments in Women: A Cross-Compartmental Study With Directly Observed Dosing. J Acquir Immune Defic Syndr 2019; 78:175-182. [PMID: 29767639 DOI: 10.1097/qai.0000000000001655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Evidence is lacking regarding whether vaginal pre-exposure prophylaxis with topical tenofovir (TFV) reduces the risk of rectal HIV acquisition. SETTING Bronx, NY. METHODS MTN-014 was a phase 1, cross-over, randomized sequence trial comparing the cross-compartment pharmacokinetics and pharmacodynamics of daily TFV reduced-glycerin 1% gel after 14 days each of rectal and vaginal application, with directly observed dosing and a 6-week washout period between phases. RESULTS Fourteen HIV-uninfected women enrolled; 91% of doses were observed and 13 women completed all study procedures. TFV and TFV diphosphate (TFV-DP) were detected in most samples collected from the dosing compartment. After vaginal dosing, TFV was detected in 10/14 samples of rectal fluid (RF) (median 4.4 ng/sponge) and 1/13 rectal tissue samples (0.2 ng/mg); TFV-DP was detected in 2/13 rectal tissue samples at 59.8 and 76.5 fmol/mg. After rectal dosing, TFV was detected in 9/14 samples of vaginal fluid (median 1.1 ng/swab) and in 6/14 vaginal tissue samples (median below limit of quantification); TFV-DP was detected in 3/14 vaginal tissue samples at 17.3, 87.6, and 77.1 fmol/mg. Neither cervicovaginal lavage fluid nor RF collected 24 hours after rectal or vaginal dosing resulted in a statistically significant suppression of viral replication. CONCLUSIONS In this study of 14 days each of vaginal and rectal application of TFV reduced-glycerin 1% gel, we found only a small degree of cross-compartment distribution of TFV in RF and vaginal fluids and no pharmacodynamic activity in ex vivo testing. Although high TFV concentrations in the dosing compartment may be protective, low cross-compartment tissue concentrations are not likely to be protective.
Collapse
|
18
|
Mesquita L, Galante J, Nunes R, Sarmento B, das Neves J. Pharmaceutical Vehicles for Vaginal and Rectal Administration of Anti-HIV Microbicide Nanosystems. Pharmaceutics 2019; 11:pharmaceutics11030145. [PMID: 30917532 PMCID: PMC6472048 DOI: 10.3390/pharmaceutics11030145] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Prevention strategies play a key role in the fight against HIV/AIDS. Vaginal and rectal microbicides hold great promise in tackling sexual transmission of HIV-1, but effective and safe products are yet to be approved and made available to those in need. While most efforts have been placed in finding and testing suitable active drug candidates to be used in microbicide development, the last decade also saw considerable advances in the design of adequate carrier systems and formulations that could lead to products presenting enhanced performance in protecting from infection. One strategy demonstrating great potential encompasses the use of nanosystems, either with intrinsic antiviral activity or acting as carriers for promising microbicide drug candidates. Polymeric nanoparticles, in particular, have been shown to be able to enhance mucosal distribution and retention of promising antiretroviral compounds. One important aspect in the development of nanotechnology-based microbicides relates to the design of pharmaceutical vehicles that allow not only convenient vaginal and/or rectal administration, but also preserve or even enhance the performance of nanosystems. In this manuscript, we revise relevant work concerning the selection of vaginal/rectal dosage forms and vehicle formulation development for the administration of microbicide nanosystems. We also pinpoint major gaps in the field and provide pertinent hints for future work.
Collapse
Affiliation(s)
- Letícia Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Joana Galante
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Rute Nunes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal.
| | - José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal.
| |
Collapse
|
19
|
Grab S, Rohan LC. A Quantitative Disintegration Method for Polymeric Films. J Pharm Innov 2018; 13:321-329. [PMID: 30559901 PMCID: PMC6294315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
PURPOSE Current in vitro disintegration methods for polymeric films are qualitative and introduce significant user bias. The goal of these studies is to develop a novel, quantitative disintegration technique which can be used to characterize polymeric films in vitro. METHODS A method was developed using a Texture Analyzer instrument to evaluate film disintegration. Solvent casted, clinically advanced, anti-HIV, vaginal films as well as marketed vaginal films were used throughout these studies. Method development followed a Quality by Design (QbD) process and was used to evaluate film products. RESULTS The current method developed provided reproducible, quantitative disintegration times for the commercially available Vaginal Contraceptive Film (57.88 ± 5.98 sec.). It distinguished between two clinically advanced antiretroviral containing films based on disintegration time (p value < 0.001); the tenofovir film (41.28 ± 3.35 sec.) and the dapivirine film (88.36 ± 10.61 sec.). This method could also distinguish between tenofovir and dapivirine films which had been altered in terms of volume (p<0.0001) and formulation (p<0.0001) based on disintegration time. CONCLUSIONS This method can be applied for pharmaceutical films for ranging indications as part of vigorous in vitro characterization. Parameters of the test can be altered based on site of application or indication.
Collapse
Affiliation(s)
- Sheila Grab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
| | - Lisa C Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
20
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
21
|
Castro PM, Sousa F, Magalhães R, Ruiz-Henestrosa VMP, Pilosof AM, Madureira AR, Sarmento B, Pintado ME. Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules. Carbohydr Polym 2018; 194:411-421. [DOI: 10.1016/j.carbpol.2018.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022]
|
22
|
Bunge KE, Dezzutti CS, Hendrix CW, Marzinke MA, Spiegel HML, Moncla BJ, Schwartz JL, Meyn LA, Richardson‐Harman N, Rohan LC, Hillier SL. FAME-04: A Phase 1 trial to assess the safety, acceptability, pharmacokinetics and pharmacodynamics of film and gel formulations of tenofovir. J Int AIDS Soc 2018; 21:e25156. [PMID: 30101439 PMCID: PMC6088248 DOI: 10.1002/jia2.25156] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Fast-dissolving vaginal film formulations release antiretroviral drugs directly into vaginal fluid and may be as efficient at drug delivery yet more acceptable to women than gels. In this Phase 1 vaginal film study, the safety, acceptability, pharmacokinetics and pharmacodynamics of two doses of tenofovir (TFV) film and TFV 1% gel were compared to corresponding placebo formulations. METHODS Seventy-eight healthy HIV negative women were randomized to self-insert daily vaginal film (10 mg TFV, 40 mg TFV or placebo) or 4 mL of vaginal gel (TFV 1% [40 mg] or placebo) for seven days. Grade 2 and higher adverse events (AEs) related to study product were compared across study arms using Fisher's exact test. Plasma TFV concentrations were measured before and 2 hours after last product use. Paired cervical and vaginal tissue biopsies obtained 2 hours after the last dose were measured to determine tenofovir diphosphate (TFV-DP) concentrations and exposed to HIV in an ex vivo challenge assay. Acceptability was assessed through questionnaire. RESULTS There was only one grade 2 or higher related AE, the primary endpoint; it occurred in the placebo gel arm. AEs occurred in 90% of participants; the majority (91%) were grade 1. AEs were similar across study arms. TFV concentrations in plasma and TFV-DP concentrations in cervical and vaginal tissues were comparable between 40 mg TFV film and the TFV gel groups. There was a significant relationship between reduced viral replication and TFV-DP concentrations in cervical tissues. Film users were less likely to report product leakage than gel users (66% vs. 100%, p < 0.001). CONCLUSIONS Films were safe and well tolerated. Furthermore, films delivered TFV to mucosal tissues at concentrations similar to gel and were sufficient to block HIV infection of genital tissue ex vivo.
Collapse
Affiliation(s)
- Katherine E Bunge
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of PittsburghPittsburghPAUSA
| | - Charlene S Dezzutti
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of PittsburghPittsburghPAUSA
- Magee‐Womens Research InstitutePittsburghPAUSA
| | - Craig W Hendrix
- Division of Clinical PharmacologyDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mark A Marzinke
- Division of Clinical PharmacologyDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Hans M L Spiegel
- Department of Health and Human ServicesKelly Government SolutionsContractor to National Institute of Allergy and Infectious DiseasesNational Institutes of HealthRockvilleMDUSA
| | - Bernard J Moncla
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of PittsburghPittsburghPAUSA
- Magee‐Womens Research InstitutePittsburghPAUSA
| | | | - Leslie A Meyn
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of PittsburghPittsburghPAUSA
| | | | - Lisa C Rohan
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of PittsburghPittsburghPAUSA
- Magee‐Womens Research InstitutePittsburghPAUSA
- Department of Pharmaceutical SciencesUniversity of PittsburghPittsburghPAUSA
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of PittsburghPittsburghPAUSA
- Magee‐Womens Research InstitutePittsburghPAUSA
| |
Collapse
|
23
|
A Quantitative Disintegration Method for Polymeric Films. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
The Vaginal Microbiome and its Potential to Impact Efficacy of HIV Pre-exposure Prophylaxis for Women. Curr HIV/AIDS Rep 2018; 14:153-160. [PMID: 28812207 DOI: 10.1007/s11904-017-0362-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW This review describes existing evidence addressing the potential modulation of pre-exposure prophylaxis (PrEP) products, specifically 1% tenofovir (TFV) gel and oral tenofovir-based PrEP, by vaginal dysbiosis and discusses future considerations for delivering novel, long-acting PrEP products to women at high risk for vaginal dysbiosis and HIV. RECENT FINDINGS We describe results from analyses investigating the modification of PrEP efficacy by vaginal dysbiosis and studies of biological mechanisms that could render PrEP ineffective in the presence of specific microbiota. A secondary analysis from the CAPRISA-004 cohort demonstrated that there is no effect of the 1% TFV gel in the presence of non-Lactobacillus dominant microbiota. Another recent analysis comparing oral tenofovir-based PrEP efficacy among women with and without bacterial vaginosis in the Partners PrEP Study found that oral PrEP efficacy is not modified by bacterial vaginosis. Gardnerella vaginalis, commonly present in women with vaginal dysbiosis, can rapidly metabolize TFV particularly when it is locally applied and thereby prevent TFV integration into cells. Given that vaginal dysbiosis appears to modulate efficacy for 1% TFV gel but not for oral tenofovir-based PrEP, vaginal dysbiosis is potentially less consequential to HIV protection from TFV in the context of systemic drug delivery and high product adherence. Vaginal dysbiosis may undermine the efficacy of 1% TFV gel to protect women from HIV but not the efficacy of oral PrEP. Ongoing development of novel ring, injectable, and film-based PrEP products should investigate whether vaginal dysbiosis can reduce efficacy of these products, even in the presence of high adherence.
Collapse
|
25
|
Cautela MP, Moshe H, Sosnik A, Sarmento B, das Neves J. Composite films for vaginal delivery of tenofovir disoproxil fumarate and emtricitabine. Eur J Pharm Biopharm 2018; 138:3-10. [PMID: 29408341 DOI: 10.1016/j.ejpb.2018.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/18/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Prevention of male-to-female HIV transmission remains a huge challenge and topical pre-exposure prophylaxis (PrEP) using microbicides may help overcoming the problem. In this work, different types of films containing the antiretroviral drugs tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) were developed. Formulations based in poly(vinyl alcohol) and pectin were produced as single- or double-layered films. Films containing TDF/FTC or TDF/FTC-loaded Eudragit® L 100 nanoparticles (NPs) obtained by nano spray-drying were tested for physicochemical, technological and biological properties relevant to microbicide development. All systems featured organoleptic and mechanical properties considered suitable for vaginal use and potentially favoring users' acceptability. Film design (single- or double-layered, and the incorporation or not of NPs) had a greater impact on disintegration time and drug release in a simulated vaginal fluid. Upon film disintegration, pH and osmolality of the fluid remained within values considered compatible with the vaginal environment. Double-layered films significantly reduced burst effect and the overall release of both drugs as compared to fast releasing, single-layered films. The effect on delaying drug release was most noticeable when TDF/FTC-loaded NPs were incorporated into double-layered films. This last design seems particularly advantageous for the development of a coitus-independent, on-demand microbicide product. Moreover, all film types were shown potentially safe when evaluated by the MTT metabolic activity and lactate dehydrogenase release assays using HeLa and CaSki cervical cell lines. Overall, results support that proposed films may be suitable for the vaginal delivery of TDF/FTC in the context of topical PrEP.
Collapse
Affiliation(s)
- Mafalda Pereira Cautela
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Hen Moshe
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
26
|
Khandalavala K, Mandal S, Pham R, Destache CJ, Shibata A. Nanoparticle Encapsulation for Antiretroviral Pre-Exposure Prophylaxis. JOURNAL OF NANOTECHNOLOGY AND MATERIALS SCIENCE 2017; 4:53-61. [PMID: 29881781 PMCID: PMC5987555 DOI: 10.15436/2377-1372.17.1583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HIV continues to be one of the greatest challenges facing the global health community. More than 36 million people currently live with HIV and, in 2015 2.1 million new infections were reported globally. Pre-Exposure Prophylaxis (PrEP) prevents HIV infection by inhibiting viral entry, replication, or integration at the primary site of pathogenic contraction. Failures of large antiretroviral drug (ARV) PrEP clinical trials indicate the current insufficiencies of PrEP for women in high-risk areas, such as sub-Saharan Africa. A combination of social, adherence, and drug barriers create these insufficiencies and limit the efficacy of ARV. Nanotechnology offers the promise of extended drug release and enhances bioavailability of ARVs when encapsulated in polymeric nano-particles. Nanoparticle encapsulation has been evaluated in vitro in comparative studies to drug solutions and exhibit higher efficacy and lower cytotoxicity profiles. Delivery systems for nanoparticle PrEP facilitate administration of nano-encapsulated ARVs to high-risk tissues. In this mini-review, we summarize the comparative nanoparticle and drug solution studies and the potential of two delivery methods: thermosensitive gels and polymeric nanoparticle films for direct prophylactic applications.
Collapse
Affiliation(s)
| | - Subhra Mandal
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, 68178, USA
| | - Rachel Pham
- Department of Biology, Creighton University, Omaha, NE, 68178, USA
| | | | | |
Collapse
|
27
|
Tyo KM, Vuong HR, Malik DA, Sims LB, Alatassi H, Duan J, Watson WH, Steinbach-Rankins JM. Multipurpose tenofovir disoproxil fumarate electrospun fibers for the prevention of HIV-1 and HSV-2 infections in vitro. Int J Pharm 2017; 531:118-133. [PMID: 28797967 DOI: 10.1016/j.ijpharm.2017.08.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
Abstract
Sexually transmitted infections affect hundreds of millions of people worldwide. Both human immunodeficiency virus (HIV-1 and -2) and herpes simplex virus-2 (HSV-2) remain incurable, urging the development of new prevention strategies. While current prophylactic technologies are dependent on strict user adherence to achieve efficacy, there is a dearth of delivery vehicles that provide discreet and convenient administration, combined with prolonged-delivery of active agents. To address these needs, we created electrospun fibers (EFs) comprised of FDA-approved polymers, poly(lactic-co-glycolic acid) (PLGA) and poly(DL-lactide-co-ε-caprolactone) (PLCL), to provide sustained-release and in vitro protection against HIV-1 and HSV-2. PLGA and PLCL EFs, incorporating the antiretroviral, tenofovir disoproxil fumarate (TDF), exhibited sustained-release for up to 4 weeks, and provided complete in vitro protection against HSV-2 and HIV-1 for 24h and 1 wk, respectively, based on the doses tested. In vitro cell culture and EpiVaginal tissue tests confirmed the safety of fibers in vaginal and cervical cells, highlighting the potential of PLGA and PLCL EFs as multipurpose next-generation drug delivery vehicles.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Hung R Vuong
- Department of Biochemistry, School of Medicine, University of Louisville, KY, United States
| | - Danial A Malik
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States
| | - Lee B Sims
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Houda Alatassi
- Department of Pathology, University of Louisville, Louisville, KY, United States
| | - Jinghua Duan
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Walter H Watson
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States.
| |
Collapse
|
28
|
Notario-Pérez F, Ruiz-Caro R, Veiga-Ochoa MD. Historical development of vaginal microbicides to prevent sexual transmission of HIV in women: from past failures to future hopes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1767-1787. [PMID: 28670111 PMCID: PMC5479294 DOI: 10.2147/dddt.s133170] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infection with human immunodeficiency virus (HIV) remains a global public health concern and is particularly serious in low- and middle-income countries. Widespread sexual violence and poverty, among other factors, increase the risk of infection in women, while currently available prevention methods are outside the control of most. This has driven the study of vaginal microbicides to prevent sexual transmission of HIV from men to women in recent decades. The first microbicides evaluated were formulated as gels for daily use and contained different substances such as surfactants, acidifiers and monoclonal antibodies, which failed to demonstrate efficacy in clinical trials. A gel containing the reverse transcriptase inhibitor tenofovir showed protective efficacy in women. However, the lack of adherence by patients led to the search for dosage forms capable of releasing the active principle for longer periods, and hence to the emergence of the vaginal ring loaded with dapivirine, which requires a monthly application and is able to reduce the sexual transmission of HIV. The future of vaginal microbicides will feature the use of alternative dosage forms, nanosystems for drug release and probiotics, which have emerged as potential microbicides but are still in the early stages of development. Protecting women with vaginal microbicide formulations would, therefore, be a valuable tool for avoiding sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Dolores Veiga-Ochoa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Bedoya LM, Tamayo A, Rubio J, Veiga MD. Influence of Chitosan Swelling Behaviour on Controlled Release of Tenofovir from Mucoadhesive Vaginal Systems for Prevention of Sexual Transmission of HIV. Mar Drugs 2017; 15:md15020050. [PMID: 28230790 PMCID: PMC5334630 DOI: 10.3390/md15020050] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/27/2022] Open
Abstract
The main challenges facing efforts to prevent the transmission of human immunodeficiency virus (HIV) are the lack of access to sexual education services and sexual violence against young women and girls. Vaginal formulations for the prevention of sexually transmitted infections are currently gaining importance in drug development. Vaginal mucoadhesive tablets can be developed by including natural polymers that have good binding capacity with mucosal tissues, such as chitosan or guar gum, semisynthetic polymers such as hydroxypropylmethyl cellulose, or synthetic polymers such as Eudragit® RS. This paper assesses the potential of chitosan for the development of sustained-release vaginal tablets of Tenofovir and compares it with different polymers. The parameters assessed were the permanence time of the bioadhesion—determined ex vivo using bovine vaginal mucosa as substrate—the drug release profiles from the formulation to the medium (simulated vaginal fluid), and swelling profiles in the same medium. Chitosan can be said to allow the manufacture of tablets that remain adhered to the vaginal mucosa and release the drug in a sustained way, with low toxicity and moderate swelling that ensures the comfort of the patient and may be useful for the prevention of sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Araceli Martín-Illana
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Raúl Cazorla-Luna
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Roberto Ruiz-Caro
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Luis-Miguel Bedoya
- Departamento Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Aitana Tamayo
- Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Juan Rubio
- Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - María-Dolores Veiga
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Grooms TN, Vuong HR, Tyo KM, Malik DA, Sims LB, Whittington CP, Palmer KE, Matoba N, Steinbach-Rankins JM. Griffithsin-Modified Electrospun Fibers as a Delivery Scaffold To Prevent HIV Infection. Antimicrob Agents Chemother 2016; 60:6518-6531. [PMID: 27550363 PMCID: PMC5075055 DOI: 10.1128/aac.00956-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/07/2016] [Indexed: 01/19/2023] Open
Abstract
Despite current prophylactic strategies, sexually transmitted infections (STIs) remain significant contributors to global health challenges, spurring the development of new multipurpose delivery technologies to protect individuals from and treat virus infections. However, there are few methods currently available to prevent and no method to date that cures human immunodeficiency virus (HIV) infection or combinations of STIs. While current oral and topical preexposure prophylaxes have protected against HIV infection, they have primarily relied on antiretrovirals (ARVs) to inhibit infection. Yet continued challenges with ARVs include user adherence to daily treatment regimens and the potential toxicity and antiviral resistance associated with chronic use. The integration of new biological agents may avert some of these adverse effects while also providing new mechanisms to prevent infection. Of the biologic-based antivirals, griffithsin (GRFT) has demonstrated potent inhibition of HIV-1 (and a multitude of other viruses) by adhering to and inactivating HIV-1 immediately upon contact. In parallel with the development of GRFT, electrospun fibers (EFs) have emerged as a promising platform for the delivery of agents active against HIV infection. In the study described here, our goal was to extend the mechanistic diversity of active agents and electrospun fibers by incorporating the biologic GRFT on the EF surface rather than within the EFs to inactivate HIV prior to cellular entry. We fabricated and characterized GRFT-modified EFs (GRFT-EFs) with different surface modification densities of GRFT and demonstrated their safety and efficacy against HIV-1 infection in vitro We believe that EFs are a unique platform that may be enhanced by incorporation of additional antiviral agents to prevent STIs via multiple mechanisms.
Collapse
Affiliation(s)
- Tiffany N Grooms
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Hung R Vuong
- Department of Biochemistry, University of Louisville, Louisville, Kentucky, USA
| | - Kevin M Tyo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Danial A Malik
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lee B Sims
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | | | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Owensboro Cancer Research Program at University of Louisville James Graham Brown Cancer Center, Owensboro, Kentucky, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Owensboro Cancer Research Program at University of Louisville James Graham Brown Cancer Center, Owensboro, Kentucky, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
31
|
Machado A, Cunha-Reis C, Araújo F, Nunes R, Seabra V, Ferreira D, das Neves J, Sarmento B. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomater 2016; 44:332-40. [PMID: 27544812 DOI: 10.1016/j.actbio.2016.08.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 08/16/2016] [Indexed: 02/04/2023]
Abstract
UNLABELLED Topical pre-exposure prophylaxis (PrEP) with antiretroviral drugs holds promise in preventing vaginal transmission of HIV. However, significant biomedical and social issues found in multiple past clinical trials still need to be addressed in order to optimize protection and users' adherence. One approach may be the development of improved microbicide products. A novel delivery platform comprising drug-loaded nanoparticles (NPs) incorporated into a thin polymeric film base (NPs-in-film) was developed in order to allow the vaginal administration of the microbicide drug candidate tenofovir. The system was optimized for relevant physicochemical features and characterized for biological properties, namely cytotoxicity and safety in a mouse model. Tenofovir-loaded poly(lactic-co-glycolic acid) (PLGA)/stearylamine (SA) composite NPs with mean diameter of 127nm were obtained with drug association efficiency above 50%, and further incorporated into an approximately 115μm thick, hydroxypropyl methylcellulose/poly(vinyl alcohol)-based film. The system was shown to possess suitable mechanical properties for vaginal administration and to quickly disintegrate in approximately 9min upon contact with a simulated vaginal fluid (SVF). The original osmolarity and pH of SVF was not affected by the film. Tenofovir was also released in a biphasic fashion (around 30% of the drug in 15min, followed by sustained release up to 24h). The incorporation of NPs further improved the adhesive potential of the film to ex vivo pig vaginal mucosa. Cytotoxicity of NPs and film was significantly increased by the incorporation of SA, but remained at levels considered tolerable for vaginal delivery of tenofovir. Moreover, histological analysis of genital tissues and cytokine/chemokine levels in vaginal lavages upon 14days of daily vaginal administration to mice confirmed that tenofovir-loaded NPs-in-film was safe and did not induce any apparent histological changes or pro-inflammatory response. Overall, obtained data support that the proposed delivery system combining the use of polymeric NPs and a film base may constitute an exciting alternative for the vaginal administration of microbicide drugs in the context of topical PrEP. STATEMENT OF SIGNIFICANCE The development of nanotechnology-based microbicides is a recent but promising research field seeking for new strategies to circumvent HIV sexual transmission. Different reports detail on the multiple potential advantages of using drug nanocarriers for such purpose. However, one important issue being frequently neglected regards the development of vehicles for the administration of microbicide nanosystems. In this study, we propose and detail on the development of a nanoparticle-in-film system for the vaginal delivery of the microbicide drug candidate tenofovir. This is an innovative approach that, to our best knowledge, had never been tested for tenofovir. Results, including those from in vivo testing, sustain that the proposed system is safe and holds potential for further development as a vaginal microbicide product.
Collapse
|
32
|
das Neves J, Martins JP, Sarmento B. Will dapivirine redeem the promises of anti-HIV microbicides? Overview of product design and clinical testing. Adv Drug Deliv Rev 2016; 103:20-32. [PMID: 26732684 DOI: 10.1016/j.addr.2015.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
Abstract
Microbicides are being developed in order to prevent sexual transmission of HIV. Dapivirine, a non-nucleoside reverse transcriptase inhibitor, is one of the leading drug candidates in the field, currently being tested in various dosage forms, namely vaginal rings, gels, and films. In particular, a ring allowing sustained drug release for 1month is in an advanced stage of clinical testing. Two parallel phase III clinical trials are underway in sub-Saharan Africa and results are expected to be released in early 2016. This article overviews the development of dapivirine and its multiple products as potential microbicides, with particular emphasis being placed on clinical evaluation. Also, critical aspects regarding regulatory approval, manufacturing, distribution, and access are discussed.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - João Pedro Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| |
Collapse
|
33
|
Safety and Pharmacokinetics of Quick-Dissolving Polymeric Vaginal Films Delivering the Antiretroviral IQP-0528 for Preexposure Prophylaxis. Antimicrob Agents Chemother 2016; 60:4140-50. [PMID: 27139475 DOI: 10.1128/aac.00082-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/24/2016] [Indexed: 12/22/2022] Open
Abstract
For human immunodeficiency virus (HIV) prevention, microbicides or drugs delivered as quick-dissolving films may be more acceptable to women than gels because of their compact size, minimal waste, lack of an applicator, and easier storage and transport. This has the potential to improve adherence to promising products for preexposure prophylaxis. Vaginal films containing IQP-0528, a nonnucleoside reverse transcriptase inhibitor, were evaluated for their pharmacokinetics in pigtailed macaques. Polymeric films (22 by 44 by 0.1 mm; providing 75% of a human dose) containing IQP-0528 (1.5%, wt/wt) with and without poly(lactic-co-glycolic acid) (PLGA) nanoparticle encapsulation were inserted vaginally into pigtailed macaques in a crossover study design (n = 6). With unencapsulated drug, the median (range) vaginal fluid concentrations of IQP-0528 were 160.97 (2.73 to 2,104), 181.79 (1.86 to 15,800), and 484.50 (8.26 to 4,045) μg/ml at 1, 4, and 24 h after film application, respectively. Median vaginal tissue IQP-0528 concentrations at 24 h were 3.10 (0.03 to 222.58) μg/g. The values were similar at locations proximal, medial, and distal to the cervix. The IQP-0528 nanoparticle-formulated films delivered IQP-0528 in vaginal tissue and secretions at levels similar to those obtained with the unencapsulated formulation. A single application of either formulation did not disturb the vaginal microflora or the pH (7.24 ± 0.84 [mean ± standard deviation]). The high mucosal IQP-0528 levels delivered by both vaginal film formulations were between 1 and 5 log higher than the in vitro 90% inhibitory concentration (IC90) of 0.146 μg/ml. The excellent coverage and high mucosal levels of IQP-0528, well above the IC90, suggest that the films may be protective and warrant further evaluation in a vaginal repeated low dose simian-human immunodeficiency virus (SHIV) transmission study in macaques and clinically in women.
Collapse
|
34
|
Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics of Dapivirine and Maraviroc Vaginal Rings: A Double-Blind Randomized Trial. J Acquir Immune Defic Syndr 2016; 70:242-9. [PMID: 26034880 DOI: 10.1097/qai.0000000000000702] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Variable adherence limits effectiveness of daily oral and intravaginal tenofovir-containing pre-exposure prophylaxis. Monthly vaginal antiretroviral rings are one approach to improve adherence and drug delivery. METHODS MTN-013/IPM 026, a multisite, double-blind, randomized, placebo-controlled trial in 48 HIV-negative US women, evaluated vaginal rings containing dapivirine (DPV) (25 mg) and maraviroc (MVC) (100 mg), DPV only, MVC only, and placebo used continuously for 28 days. Safety was assessed by adverse events. Drug concentrations were quantified in plasma, cervicovaginal fluid (CVF), and cervical tissue. Cervical biopsy explants were challenged with HIV ex vivo to evaluate pharmacodynamics. RESULTS There was no difference in related genitourinary adverse events between treatment arms compared with placebo. DPV and MVC concentrations rose higher initially before falling more rapidly with the combination ring compared with relatively stable concentrations with the single-drug rings. DPV concentrations in CVF were 1 and 5 log10 greater than cervical tissue and plasma for both rings. MVC was consistently detected only in CVF. DPV and MVC CVF and DPV tissue concentrations dropped rapidly after ring removal. Cervical tissue showed a significant inverse linear relationship between HIV replication and DPV levels. CONCLUSIONS In this first study of a combination microbicide vaginal ring, all 4 rings were safe and well tolerated. Tissue DPV concentrations were 1000 times greater than plasma concentrations and single drug rings had more stable pharmacokinetics. DPV, but not MVC, demonstrated concentration-dependent inhibition of HIV-1 infection in cervical tissue. Because MVC concentrations were consistently detectable only in CVF and not in plasma, improved drug release of MVC rings is needed.
Collapse
|
35
|
Nelson AG, Zhang X, Ganapathi U, Szekely Z, Flexner CW, Owen A, Sinko PJ. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. J Control Release 2015; 219:669-680. [PMID: 26315816 PMCID: PMC4879940 DOI: 10.1016/j.jconrel.2015.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
The year 2016 will mark an important milestone - the 35th anniversary of the first reported cases of HIV/AIDS. Antiretroviral Therapy (ART) including Highly Active Antiretroviral Therapy (HAART) drug regimens is widely considered to be one of the greatest achievements in therapeutic drug research having transformed HIV infection into a chronically managed disease. Unfortunately, the lack of widespread preventive measures and the inability to eradicate HIV from infected cells highlight the significant challenges remaining today. Moving forward there are at least three high priority goals for anti-HIV drug delivery (DD) research: (1) to prevent new HIV infections from occurring, (2) to facilitate a functional cure, i.e., when HIV is present but the body controls it without drugs and (3) to eradicate established infection. Pre-exposure Prophylaxis (PrEP) represents a significant step forward in preventing the establishment of chronic HIV infection. However, the ultimate success of PrEP will depend on achieving sustained antiretroviral (ARV) tissue concentrations and will require strict patient adherence to the regimen. While first generation long acting/extended release (LA/ER) DD Systems (DDS) currently in development show considerable promise, significant DD treatment and prevention challenges persist. First, there is a critical need to improve cell specificity through targeting in order to selectively achieve efficacious drug concentrations in HIV reservoir sites to control/eradicate HIV as well as mitigate systemic side effects. In addition, approaches for reducing cellular efflux and metabolism of ARV drugs to prolong effective concentrations in target cells need to be developed. Finally, given the current understanding of HIV pathogenesis, next generation anti-HIV DDS need to address selective DD to the gut mucosa and lymph nodes. The current review focuses on the DDS technologies, critical challenges, opportunities, strategies, and approaches by which novel delivery systems will help iterate towards prevention, functional cure and eventually the eradication of HIV infection.
Collapse
Affiliation(s)
- Antoinette G Nelson
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Xiaoping Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Usha Ganapathi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Charles W Flexner
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Andrew Owen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|