1
|
Bonaventura F, Scheler S, Novak V, Olbinado MP, Wagner M, Grünzweig C, Zuern A. Does needle clogging change the spatial distribution of injected drug in tissue? New insights by X-ray computed tomography. Eur J Pharm Biopharm 2025; 207:114615. [PMID: 39694077 DOI: 10.1016/j.ejpb.2024.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Prefilled syringes (PFS) are primary packaging materials that offer convenience and safety for subcutaneous injection of parenteral drug solutions. However, an increasingly common problem with the trend towards higher drug concentrations is the clogging of the needle during storage due to evaporative water loss and consequent solidification of the drug. In contrast to all previous studies on this topic, this work focuses on pharmacokinetically relevant aspects and investigates the effects of needle clogging on the spatial distribution of the injected drug in the tissue. X-ray computed tomography (XCT) (both tube-based and synchrotron-based) was used to visualize and analyze the spreading pattern and the fate of the injected liquid in porcine skin. By using controlled injection and force measurement the tissue distribution was correlated with the plunger force profile and the fluid dynamics of the jet. Studies of monoclonal antibody solution demonstrate that clogs, which are formed by evaporation of water and solidification of drug solution in the needle tip, usually dissolve in the flow of the liquid during injection. In the initial injection phase, the liquid jet starts to escape the needle only through a narrow channel in the clog. The resulting high dynamic pressure can alter the distribution of the liquid in the tissue, causing a long tail of liquid that penetrates deep into the fibrous network of the subcutaneous layer. However, the volume of this tail was calculated to be low relative to the overall volume of the injected drug solution (less than 2.4%) and is therefore unlikely to have a significant effect on the absorption kinetics of the injected drug. In addition, it was shown that if a clog were to enter the tissue, it would quickly dissolve.
Collapse
Affiliation(s)
- Fabiano Bonaventura
- Novartis Pharmaceutical Manufacturing GmbH, Biochemiestraße 10, 6336 Langkampfen, Austria
| | - Stefan Scheler
- Novartis Pharmaceutical Manufacturing GmbH, Biochemiestraße 10, 6336 Langkampfen, Austria.
| | - Vladimir Novak
- ANAXAM, Park Innovaare, Parkstrasse 1, 5234 Villigen, Switzerland
| | - Margie P Olbinado
- ANAXAM, Park Innovaare, Parkstrasse 1, 5234 Villigen, Switzerland; Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Matthias Wagner
- ANAXAM, Park Innovaare, Parkstrasse 1, 5234 Villigen, Switzerland
| | | | | |
Collapse
|
2
|
Kotani K, Ngako Kadji FM, Mandai Y, Hiraoka Y. Backflow reduction in local injection therapy with gelatin formulations. Drug Deliv 2024; 31:2329100. [PMID: 38515401 PMCID: PMC10962293 DOI: 10.1080/10717544.2024.2329100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The local injection of therapeutic drugs, including cells, oncolytic viruses and nucleic acids, into different organs is an administrative route used to achieve high drug exposure at the site of action. However, after local injection, material backflow and side effect reactions can occur. Hence, this study was carried out to investigate the effect of gelatin on backflow reduction in local injection. Gelatin particles (GPs) and hydrolyzed gelatin (HG) were injected into tissue models, including versatile training tissue (VTT), versatile training tissue tumor-in type (VTT-T), and broiler chicken muscles (BCM), using needle gauges between 23 G and 33 G. The backflow material fluid was collected with filter paper, and the backflow fluid rate was determined. The backflow rate was significantly reduced with 35 μm GPs (p value < .0001) at different concentrations up to 5% and with 75 μm GPs (p value < .01) up to 2% in the tissue models. The reduction in backflow with HG of different molecular weights showed that lower-molecular-weight HG required a higher-concentration dose (5% to 30%) and that higher-molecular-weight HG required a lower-concentration dose (7% to 8%). The backflow rate was significantly reduced with the gelatin-based formulation, in regard to the injection volumes, which varied from 10 μL to 100 μL with VTT or VTT-T and from 10 μL to 200 μL with BCM. The 35 μm GPs were injectable with needles of small gauges, which included 33 G, and the 75 μm GPs and HG were injectable with 27 G needles. The backflow rate was dependent on an optimal viscosity of the gelatin solutions. An optimal concentration of GPs or HG can prevent material backflow in local injection, and further studies with active drugs are necessary to investigate the applicability in tumor and organ injections.
Collapse
Affiliation(s)
- Kazuki Kotani
- Department of Biomedical, R&D C-enter, Nitta Gelatin, Inc, Yao City, Osaka, Japan
| | | | - Yoshinobu Mandai
- Department of Biomedical, R&D C-enter, Nitta Gelatin, Inc, Yao City, Osaka, Japan
| | - Yosuke Hiraoka
- Department of Biomedical, R&D C-enter, Nitta Gelatin, Inc, Yao City, Osaka, Japan
| |
Collapse
|
3
|
Gresham J, Bruin G, Picci M, Bechtold-Peters K, Dimke T, Davies E, Błażejczyk K, Willekens W, Fehervary H, Velde GV. Visualisation and quantification of subcutaneous injections of different volumes, viscosities and injection rates: An ex-vivo micro-CT study. J Pharm Sci 2024; 113:3447-3456. [PMID: 39306036 DOI: 10.1016/j.xphs.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 10/11/2024]
Abstract
The effects of subcutaneous (SC) injection parameters such as drug formulation volume, viscosity and injection rate on therapeutic performance and tolerability have not been established for any drug product. In this study four groups of SC injections were performed on fresh ex vivo minipig abdominal tissue samples, varying volume (0.5-1 mL), viscosity (1-11 cP) and rate (0.02-0.1 mL/s). Micro-CT provided high resolution (50 micron) imaging of the SC tissues before and after injection, enabling a detailed 3D visualisation and analysis of how both injection parameters and tissue microstructure influence spatial distribution of injectables. We found that volume was the only significant factor for spatial distribution of injectate within our design space, and there were no significant factors for tissue backpressure. Variability within test groups was typically greater than differences between group means. Accordingly, whilst the higher viscosity formulations consistently exhibited reduced spatial distribution, the sample size was not large enough to establish confidence in this result. Comparing our findings to clinical evidence, we conclude that injection site and depth are more likely to influence PK and bioavailability than volume, viscosity and rate within our experimental space.
Collapse
Affiliation(s)
| | - Gerard Bruin
- Pharmacokinetic Sciences, Novartis Biomedical Research, Basel, Switzerland
| | - Marie Picci
- Clinical Development Excellence, Global Drug Development, Novartis Pharma AG, Switzerland
| | | | - Thomas Dimke
- Pharmacokinetic Sciences, Novartis Biomedical Research, Basel, Switzerland
| | | | - Kasia Błażejczyk
- Molecular Small Animal Imaging Center (MoSAIC), Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Willekens
- FIBER, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium
| | - Heleen Fehervary
- FIBER, KU Leuven Core Facility for Biomechanical Experimentation, Leuven, Belgium; Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Molecular Small Animal Imaging Center (MoSAIC), Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium; Biomedical MRI, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
de Lucio M, Leng Y, Wang H, Vlachos PP, Gomez H. Modeling drug transport and absorption in subcutaneous injection of monoclonal antibodies: Impact of tissue deformation, devices, and physiology. Int J Pharm 2024; 661:124446. [PMID: 38996825 DOI: 10.1016/j.ijpharm.2024.124446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The pharmaceutical industry has experienced a remarkable increase in the use of subcutaneous injection of monoclonal antibodies (mAbs), attributed mainly to its advantages in reducing healthcare-related costs and enhancing patient compliance. Despite this growth, there is a limited understanding of how tissue mechanics, physiological parameters, and different injection devices and techniques influence the transport and absorption of the drug. In this work, we propose a high-fidelity computational model to study drug transport and absorption during and after subcutaneous injection of mAbs. Our numerical model includes large-deformation mechanics, fluid flow, drug transport, and blood and lymphatic uptake. Through this computational framework, we analyze the tissue material responses, plume dynamics, and drug absorption. We analyze different devices, injection techniques, and physiological parameters such as BMI, flow rate, and injection depth. Finally, we compare our numerical results against the experimental data from the literature.
Collapse
Affiliation(s)
- Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Hao Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Barsimantov J, Payne J, de Lucio M, Hakim M, Gomez H, Solorio L, Tepole AB. Poroelastic Characterization and Modeling of Subcutaneous Tissue Under Confined Compression. Ann Biomed Eng 2024; 52:1638-1652. [PMID: 38472602 DOI: 10.1007/s10439-024-03477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
Subcutaneous tissue mechanics are important for drug delivery. Yet, even though this material is poroelastic, its mechanical characterization has focused on its hyperelastic response. Moreover, advancement in subcutaneous drug delivery requires effective tissue mimics such as hydrogels for which similar gaps of poroelastic data exist. Porcine subcutaneous samples and gelatin hydrogels were tested under confined compression at physiological conditions and strain rates of 0.01%/s in 5% strain steps with 2600 s of stress relaxation between loading steps. Force-time data were used in an inverse finite element approach to obtain material parameters. Tissues and gels were modeled as porous neo-Hookean materials with properties specified via shear modulus, effective solid volume fraction, initial hydraulic permeability, permeability exponent, and normalized viscous relaxation moduli. The constitutive model was implemented into an isogeometric analysis (IGA) framework to study subcutaneous injection. Subcutaneous tissue exhibited an initial spike in stress due to compression of the solid and fluid pressure buildup, with rapid relaxation explained by fluid drainage, and longer time-scale relaxation explained by viscous dissipation. The inferred parameters aligned with the ranges reported in the literature. Hydraulic permeability, the most important parameter for drug delivery, was in the rangek 0 ∈ [ 0.142 , 0.203 ] mm4 /(N s). With these parameters, IGA simulations showed peak stresses due to a 1-mL injection to reach 48.8 kPa at the site of injection, decaying after drug volume disperses into the tissue. The poro-hyper-viscoelastic neo-Hookean model captures the confined compression response of subcutaneous tissue and gelatin hydrogels. IGA implementation enables predictive simulations of drug delivery.
Collapse
Affiliation(s)
- Jacques Barsimantov
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jordanna Payne
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Adrian B Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Chelales E, von Windheim K, Banipal AS, Siebeneck E, Benham C, Nief CA, Crouch B, Everitt JI, Sag AA, Katz DF, Ramanujam N. Determining the Relationship between Delivery Parameters and Ablation Distribution for Novel Gel Ethanol Percutaneous Therapy in Ex Vivo Swine Liver. Polymers (Basel) 2024; 16:997. [PMID: 38611255 PMCID: PMC11013462 DOI: 10.3390/polym16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Ethyl cellulose-ethanol (ECE) is emerging as a promising formulation for ablative injections, with more controllable injection distributions than those from traditional liquid ethanol. This study evaluates the influence of salient injection parameters on forces needed for infusion, depot volume, retention, and shape in a large animal model relevant to human applications. Experiments were conducted to investigate how infusion volume (0.5 mL to 2.5 mL), ECE concentration (6% or 12%), needle gauge (22 G or 27 G), and infusion rate (10 mL/h) impacted the force of infusion into air using a load cell. These parameters, with the addition of manual infusion, were investigated to elucidate their influence on depot volume, retention, and shape (aspect ratio), measured using CT imaging, in an ex vivo swine liver model. Force during injection increased significantly for 12% compared to 6% ECE and for 27 G needles compared to 22 G. Force variability increased with higher ECE concentration and smaller needle diameter. As infusion volume increased, 12% ECE achieved superior depot volume compared to 6% ECE. For all infusion volumes, 12% ECE achieved superior retention compared to 6% ECE. Needle gauge and infusion rate had little influence on the observed depot volume or retention; however, the smaller needles resulted in higher variability in depot shape for 12% ECE. These results help us understand the multivariate nature of injection performance, informing injection protocol designs for ablations using gel ethanol and infusion, with volumes relevant to human applications.
Collapse
Affiliation(s)
- Erika Chelales
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| | - Katriana von Windheim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| | - Arshbir Singh Banipal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| | - Elizabeth Siebeneck
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| | - Claire Benham
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| | - Corrine A. Nief
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| | - Brian Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| | - Jeffrey I. Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Alan Alper Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David F. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; (K.v.W.); (A.S.B.); (C.A.N.)
| |
Collapse
|
7
|
Wu L, Li H, Wang Y, Liu C, Zhao Z, Zhuang G, Chen Q, Zhou W, Guo J. Advancing injection force modeling and viscosity-dependent injectability evaluation for prefilled syringes. Eur J Pharm Biopharm 2024; 197:114221. [PMID: 38378097 DOI: 10.1016/j.ejpb.2024.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/30/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
The development of PFS requires a detailed understanding of the forces occurring during the drug administration process and patient's capability. This research describes an advanced mathematic injection force model that consisting hydrodynamic force and friction force. The hydrodynamic force follows the basic law of Hagen-Poiseuille but refines the modeling approach by delving into specific properties of drug viscosity (Newtonian and Shear-thinning) and syringe shape constant, while the friction force was accounted from empty barrel injection force. Additionally, we take actual temperature of injection into consideration, providing more accurate predication. The results show that the derivation of the needle dimension constant and the rheological behavior of the protein solutions are critical parameters. Also, the counter pressure generated by the tissue has been considered in actual administration to address the issue of the inaccuracies of current injection force evaluation preformed in air, especially when the viscosity of the injected drug solution is below 9.0 cP (injecting with 1 mL L PFS staked with 29G ½ inch needle). Human factor studies on patients' capability against medication viscosity filled the gap in design space of PFS drug product and available viscosity data in very early phase.
Collapse
Affiliation(s)
- Linke Wu
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China.
| | - Hui Li
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China
| | - Yunyun Wang
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China
| | - Chengyu Liu
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China
| | - Zhixin Zhao
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China
| | - Guisheng Zhuang
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China
| | - Quanmin Chen
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China.
| | - Weichang Zhou
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China
| | - Jeremy Guo
- Drug Product Development, WuXi Biologics Inc., No. 1951 Huifeng West Rd., 201401 Shanghai City, China.
| |
Collapse
|
8
|
Dahmana N, Destruel PL, Facchetti S, Braun V, Lebouc V, Marin Z, Patel S, Schwach G. Reversible protein complexes as a promising avenue for the development of high concentration formulations of biologics. Int J Pharm 2023; 648:123616. [PMID: 37977291 DOI: 10.1016/j.ijpharm.2023.123616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
High concentration formulations have become an important pre-requisite in the development of biological drugs, particularly in the case of subcutaneous administration where limited injection volume negatively affects the administered dose. In this study, we propose to develop high concentration formulations of biologics using a reversible protein-polyelectrolyte complex (RPC) approach. First, the versatility of RPC was assessed using different complexing agents and formats of therapeutic proteins, to define the optimal conditions for complexation and dissociation of the complex. The stability of the protein was investigated before and after complexation, as well as upon a 4-week storage period at various temperatures. Subsequently, two approaches were selected to develop high concentration RPC formulations: first, using up-concentrated RPC suspensions in aqueous buffers, and second, by generating spray-dried RPC and further resuspension in non-aqueous solvents. Results showed that the RPC concept is applicable to a wide range of therapeutic protein formats and the complexation-dissociation process did not affect the stability of the proteins. High concentration formulations up to 200 mg/mL could be achieved by up-concentrating RPC suspensions in aqueous buffers and RPC suspensions in non-aqueous solvents were concentrated up to 250 mg/mL. Although optimization is needed, our data suggests that RPC may be a promising avenue to achieve high concentration formulations of biologics for subcutaneous administration.
Collapse
Affiliation(s)
- Naoual Dahmana
- Pharmaceutical Development & Supplies, PTD Biologics Europe, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Pierre-Louis Destruel
- Pharmaceutical Development & Supplies, PTD Biologics Europe, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland.
| | - Samantha Facchetti
- Pharmaceutical Development & Supplies, PTD Biologics Europe, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Vanessa Braun
- Pharmaceutical Development & Supplies, PTD Biologics Europe, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Vanessa Lebouc
- Pharmaceutical Development & Supplies, PTD Biologics Europe, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Zana Marin
- Pharmaceutical Development & Supplies, PTD Biologics Europe, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Sulabh Patel
- Pharmaceutical Development & Supplies, PTD Biologics Europe, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Gregoire Schwach
- Pharmaceutical Development & Supplies, PTD Biologics Europe, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| |
Collapse
|
9
|
Ng F, Nicoulin V, Peloso C, Curia S, Richard J, Lopez-Noriega A. In Vitro and In Vivo Hydrolytic Degradation Behaviors of a Drug-Delivery System Based on the Blend of PEG and PLA Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55495-55509. [PMID: 38011651 DOI: 10.1021/acsami.2c13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
This paper presents the in vitro and in vivo degradation of BEPO, a marketed in situ forming depot technology used for the formulation of long-acting injectables. BEPO is composed of a solution of a blend of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) triblock and diblock in an organic solvent, where a therapeutic agent may be dissolved or suspended. Upon contact with an aqueous environment, the solvent diffuses and the polymers precipitate, entrapping the drug and forming a reservoir. Two representative BEPO compositions were subjected to a 3-month degradation study in vitro by immersion in phosphate-buffered saline at 37 °C and in vivo after subcutaneous injection in minipig. The material erosion rate, as a surrogate of the bioresorption, determined via the depot weight loss, changed substantially, depending on the composition and content of polymers within the test item. The swelling properties and internal morphology of depots were shown to be highly dependent on the solvent exchange rate during the precipitation step. Thermal analyses displayed an increase of the depot glass transition temperature over the degradation process, with no crystallinity observed at any stage. The chemical composition of degraded depots was determined by 1H NMR and gel permeation chromatography and demonstrated an enrichment in homopolymers, i.e., free PLA and (m)PEG, to the detriment of (m)PEG-PLA copolymers in both formulations. It was observed that the relative ratio of the degradants within the depot is driven by the initial polymer composition. Interestingly, in vitro and in vivo results showed very good qualitative consistency. Taken together, the outcomes from this study demonstrate that the different hydrolytic degradation behaviors of the BEPO compositions can be tuned by adjusting the polymer composition of the formulation.
Collapse
Affiliation(s)
- Feifei Ng
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Victor Nicoulin
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | - Silvio Curia
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Joël Richard
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | |
Collapse
|
10
|
de Lucio M, Leng Y, Wang H, Ardekani AM, Vlachos PP, Shi G, Gomez H. Computational modeling of the effect of skin pinch and stretch on subcutaneous injection of monoclonal antibodies using autoinjector devices. Biomech Model Mechanobiol 2023; 22:1965-1982. [PMID: 37526775 DOI: 10.1007/s10237-023-01746-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Subcutaneous injection of monoclonal antibodies (mAbs) has experienced unprecedented growth in the pharmaceutical industry due to its benefits in patient compliance and cost-effectiveness. However, the impact of different injection techniques and autoinjector devices on the drug's transport and uptake is poorly understood. Here, we develop a biphasic large-deformation chemomechanical model that accounts for the components of the extracellular matrix that govern solid deformation and fluid flow within the subcutaneous tissue: interstitial fluid, collagen fibers and negatively charged proteoglycan aggregates. We use this model to build a high-fidelity representation of a virtual patient performing a subcutaneous injection of mAbs. We analyze the impact of the pinch and stretch methods on the injection dynamics and the use of different handheld autoinjector devices. The results suggest that autoinjector base plates with a larger device-skin contact area cause significantly lower tissue mechanical stress, fluid pressure and fluid velocity during the injection process. Our simulations indicate that the stretch technique presents a higher risk of intramuscular injection for autoinjectors with a relatively long needle insertion depth.
Collapse
Affiliation(s)
- Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Hao Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Galen Shi
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Kho ASK, Béguin S, O'Cearbhaill ED, Ní Annaidh A. Mechanical characterisation of commercial artificial skin models. J Mech Behav Biomed Mater 2023; 147:106090. [PMID: 37717289 DOI: 10.1016/j.jmbbm.2023.106090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
Understanding of the mechanical properties of skin is crucial in evaluating the performance of skin-interfacing medical devices. Artificial skin models (ASMs) have rapidly gained attention as they are able to overcome the challenges in ethically sourcing consistent and representative ex vivo animal or human tissue models. Although some ASMs have become commercialised, a thorough understanding of the mechanical properties of the skin models is crucial to ensure that they are suitable for the purpose of the study. In the present study, skin and fat layers of ASMs (Simulab®, LifeLike®, SynDaver® and Parafilm®) were mechanically characterised through hardness, needle insertion, tensile and compression testing. Different boundary constraint conditions (minimally and highly constrained) were investigated for needle insertion testing, while anisotropic properties of the skin models were investigated through different specimen orientations during tensile testing. Analysis of variance (ANOVA) tests were performed to compare the mechanical properties between the skin models. Properties of the skin models were compared against literature to determine the suitability of the skin models based on the material property of interest. All skin models offer relatively consistent mechanical performance, providing a solid basis for benchtop evaluation of skin-interfacing medical device performance. Through prioritising models with mechanical properties that are consistent with human skin data, and with limited variance, researchers can use the data presented here as a toolbox to select the most appropriate ASM for their particular application.
Collapse
Affiliation(s)
- Antony S K Kho
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; BD Research Centre Ireland Ltd, Carysfort Avenue, Blackrock, Ireland
| | - Steve Béguin
- BD Research Centre Ireland Ltd, Carysfort Avenue, Blackrock, Ireland
| | - Eoin D O'Cearbhaill
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aisling Ní Annaidh
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield Dublin 4, Ireland; I-Form Advanced Manufacturing Research Centre, School of Mechanical & Materials Engineering, University College Dublin, Belfield Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield Dublin 4, Ireland.
| |
Collapse
|
12
|
Siemons M, Schroyen B, Darville N, Goyal N. Role of Modeling and Simulation in Preclinical and Clinical Long-Acting Injectable Drug Development. AAPS J 2023; 25:99. [PMID: 37848754 DOI: 10.1208/s12248-023-00864-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Innovations in the field of long-acting injectable drug development are increasingly being reported. More advanced in vitro and in vivo characterization can improve our understanding of the injection space and aid in describing the long-acting injectable (LAI) drug's behavior at the injection site more mechanistically. These innovations may enable unlocking the potential of employing a model-based framework in the LAI preclinical and clinical space. This review provides a brief overview of the LAI development process before delving deeper into the current status of modeling and simulation approaches in characterizing the preclinical and clinical LAI pharmacokinetics, focused on aqueous crystalline suspensions. A closer look is provided on in vitro release methods, available biopharmaceutical models and reported in vitro/in vivo correlations (IVIVCs) that may advance LAI drug development. The overview allows identifying the opportunities for use of model-informed drug development approaches and potential gaps where further research may be most warranted. Continued investment in improving our understanding of LAI PK across species through translational approaches may facilitate the future development of LAI drug products.
Collapse
Affiliation(s)
- Maxime Siemons
- Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, Beerse, Belgium.
| | - Bram Schroyen
- Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, Beerse, Belgium
| | - Nicolas Darville
- Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, Beerse, Belgium
| | - Navin Goyal
- Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, Beerse, Belgium
| |
Collapse
|
13
|
Tang H, Zaroudi M, Zhu Y, Cheng A, Qin L, Zhang B, Liu Y. Toroidal-spiral particles as a CAR-T cell delivery device for solid tumor immunotherapy. J Control Release 2023; 362:620-630. [PMID: 37673306 PMCID: PMC10947521 DOI: 10.1016/j.jconrel.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has resulted in positive effects on patients with hematologic malignancy but shows limited efficacy in solid tumor treatments due to insufficient trafficking and tumor infiltration, intensive CAR-T-related toxicities, and antigen escape. In this work, we developed and investigated a biodegradable and biocompatible polymeric toroidal-spiral particle (TSP) as a in vivo cell incubator and delivery device that can be implanted near tumor through a minimally invasive procedure or injected near or into solid tumors by using a biopsy needle. The main matrix structure of the millimeter-sized TSP is made from crosslinking of gelatin methacrylamine (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) with a tunable degradation rate from a few days to months, providing appropriate mechanical properties and sustained release of co-encapsulated drugs and/or stimulation compounds. The toroidal-spiral layer of the particles, presenting an internal void volume for high-capacity cell loading and flexibility of co-encapsulating small and large molecular compounds with individually manipulated release schedules, is filled with collagen and suspended T cells. The TSPs promote cell proliferation, activation, and migration in the tumor micro-environment in a prolonged and sustained manner. In this study, the efficacy of mesothelin (MSLN) CAR-T cells released from the TSPs was tested in preclinical mouse tumor models. Compared to systemic and intratumoral injection, peritumoral delivery of MSLN CAR-T cells using the TSPs resulted in a superior antitumor effect. The TSPs made of FDA approved materials as an in vivo reactor may provide an option for efficiently local delivery of CAR-T cells to solid tumors for higher efficacy and lower toxicity, with a minimally invasive administration procedure.
Collapse
Affiliation(s)
- Hui Tang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maryam Zaroudi
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuli Zhu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Lei Qin
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Bin Zhang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, United States; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
14
|
Pepin XJH, Grant I, Wood JM. SubQ-Sim: A Subcutaneous Physiologically Based Biopharmaceutics Model. Part 1: The Injection and System Parameters. Pharm Res 2023; 40:2195-2214. [PMID: 37634241 PMCID: PMC10547635 DOI: 10.1007/s11095-023-03567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To construct a detailed mechanistic and physiologically based biopharmaceutics model capable of predicting 1) device-formulation-tissue interaction during the injection process and 2) binding, degradation, local distribution, diffusion, and drug absorption, following subcutaneous injection. This paper is part of a series and focusses on the first aspect. METHODS A mathematical model, SubQ-Sim, was developed incorporating the details of the various substructures within the subcutaneous environment together with the calculation of dynamic drug disposition towards the lymph ducts and venous capillaries. Literature was searched to derive key model parameters in healthy and diseased subjects. External factors such as body temperature, exercise, body position, food or stress provide a means to calculate the impact of "life events" on the pharmacokinetics of subcutaneously administered drugs. RESULTS The model predicts the tissue backpressure time profile during the injection as a function of injection rate, volume injected, solution viscosity, and interstitial fluid viscosity. The shape of the depot and the concentrations of the formulation and proteins in the depot are described. The model enables prediction of formulation backflow following premature needle removal and the resulting formulation losses. Finally, the effect of disease (type 2 diabetes) or the presence of recombinant human hyaluronidase in the formulation on the injection pressure, are explored. CONCLUSIONS This novel model can successfully predict tissue back pressure, depot dimensions, drug and protein concentration and formulation losses due to incorrect injection, which are all important starting conditions for predicting drug absorption from a subcutaneous dose. The next article will describe the absorption model and validation against clinical data.
Collapse
Affiliation(s)
| | - Iain Grant
- Innovation Strategy & External Liaison, Pharmaceutical Technology & Development, Operations, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, UK.
| | - J Matthew Wood
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| |
Collapse
|
15
|
de Lucio M, Leng Y, Hans A, Bilionis I, Brindise M, Ardekani AM, Vlachos PP, Gomez H. Modeling large-volume subcutaneous injection of monoclonal antibodies with anisotropic porohyperelastic models and data-driven tissue layer geometries. J Mech Behav Biomed Mater 2023; 138:105602. [PMID: 36529050 DOI: 10.1016/j.jmbbm.2022.105602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has become one of the fastest-growing fields in the pharmaceutical industry. The transport and mechanical processes behind large volume injections are poorly understood. Here, we leverage a large-deformation poroelastic model to study high-dose, high-speed subcutaneous injection. We account for the anisotropy of subcutaneous tissue using of a fibril-reinforced porohyperelastic model. We also incorporate the multi-layer structure of the skin tissue, generating data-driven geometrical models of the tissue layers using histological data. We analyze the impact of handheld autoinjectors on the injection dynamics for different patient forces. Our simulations show the importance of considering the large deformation approach to model large injection volumes. This work opens opportunities to better understand the mechanics and transport processes that occur in large-volume subcutaneous injections of mAbs.
Collapse
Affiliation(s)
- Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Atharva Hans
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Ilias Bilionis
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Melissa Brindise
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA.
| |
Collapse
|
16
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
17
|
Gupta S, Kobayashi RH, Litzman J, Cherwin L, Hoeller S, Kreuwel H. Subcutaneous immunoglobulin 16.5% for the treatment of pediatric patients with primary antibody immunodeficiency. Expert Rev Clin Immunol 2023; 19:7-17. [PMID: 36346032 DOI: 10.1080/1744666x.2023.2144836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Human immunoglobulin (IG) administered intravenously (IVIG) or subcutaneously (SCIG) is used to prevent infections in patients with primary immunodeficiency diseases (PIDDs) such as primary antibody immunodeficiencies. AREAS COVERED This review provides an overview of PIDD with a focus on SCIG treatment, including the properties and clinical trial results of a new SCIG 16.5% (Cutaquig, Octapharma) in pediatric patients. We also discuss the various benefits of SCIG including stable serum immunoglobulin G levels, high tolerability with fewer systemic side effects, and the flexibility of self-administration. EXPERT OPINION Individualized treatment for PIDD in children is necessary given the different factors that affect administration of SCIG. Variables such as the dose, dosing interval, administration sites, and ancillary equipment can be adjusted to impact the long-term satisfaction with SCIG administration in pediatric patients. The successful work that has been conducted by both professional and patient organizations to increase awareness of PIDD, especially in pediatric patients, is substantial and ongoing. The importance of early diagnosis and treatment in the pediatric patient population cannot be overstated. The safety, efficacy, and tolerability of SCIG 16.5% have been demonstrated in pediatric patients with PIDDs providing an additional therapeutic option in this vulnerable population.
Collapse
Affiliation(s)
- Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California, Irvine, Irvine, CA, USA
| | - Roger H Kobayashi
- School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, St. Anne's University in Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Laurel Cherwin
- Scientific and Medical Affairs, Octapharma AG, Paramus, NJ, USA
| | - Sonja Hoeller
- Scientific and Medical Affairs, Octapharma AG, Paramus, NJ, USA
| | - Huub Kreuwel
- Scientific and Medical Affairs, Octapharma AG, Paramus, NJ, USA
| |
Collapse
|
18
|
Coutant M, Malmkvist J, Kaiser M, Foldager L, Herskin MS. Piglets' acute responses to local anesthetic injection and surgical castration: Effects of the injection method and interval between injection and castration. Front Vet Sci 2022; 9:1009858. [PMID: 36246321 PMCID: PMC9556771 DOI: 10.3389/fvets.2022.1009858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Although applied in some countries, efficacy of local anesthetics based on procaine to mitigate acute responses to piglet castration remains questioned. This paper presents results from a factorial study examining the effects of two methods of injection of a procaine-based drug (intra-funicular, IF, vs. intra-testicular, IT), and four intervals between drug injection and castration (2.5, 5, 10, and 30 min) on acute responses of 3–4 day old piglets. The study involved 597 male piglets, and 13 treatments: surgical castration without anesthesia (CC), local anesthesia followed by castration involving all combinations of injection method and interval, and sham handling separated by the same four intervals (SH). Responses of piglets to drug injection, castration and sham handling were evaluated based on quantification of intra-procedural vocalizations and leg movements, as well as saliva cortisol concentration in samples taken before and after castration. No differences were found between IF and the simpler IT injection method. Intervals of 2.5 or 30 min led to stronger piglet responses than the other intervals. Overall, treatments involving anesthesia led to significantly stronger responses than sham handling, during both injection and castration. All treatments, even sham handling, led to a significant increase in saliva cortisol, with no differences between anesthesia treatments and controls. Based on these results, castration 5–10 min after intra-testicular injection of procaine seems to be preferable as compared to the other treatments tested. However, piglets still showed measurable signs of pain and stress during both injection and castration, while handling alone (including the use of a castration bench) triggered a noticeable stress response. In light of these findings, the overall benefit of the procedure in terms of piglet welfare remains arguable.
Collapse
Affiliation(s)
- Mathilde Coutant
- Department of Animal Science, Aarhus University, Tjele, Denmark
- *Correspondence: Mathilde Coutant
| | - Jens Malmkvist
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Marianne Kaiser
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Leslie Foldager
- Department of Animal Science, Aarhus University, Tjele, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
19
|
Coutant M, Malmkvist J, Kaiser M, Foldager L, Herskin MS. Piglets' acute responses to procaine-based local anesthetic injection and surgical castration: Effects of two volumes of anesthetic. FRONTIERS IN PAIN RESEARCH 2022; 3:943138. [PMID: 36017329 PMCID: PMC9395716 DOI: 10.3389/fpain.2022.943138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Surgical castration of piglets is painful, but practiced routinely in commercial pig production. Procaine-based local anesthetics are used to mitigate piglet pain during castration in some countries. Yet, effects of the volume of anesthetic injected remain under-studied. The volume of drug administered may modulate the pain mitigating effect via variation in intra-testicular pressure at injection, potentially leading to pain or discomfort, as well as variation in the dose of active ingredient administered. The present study investigated the effects of injection with two volumes of a procaine-based local anesthetic, 0.3 vs. 0.5 mL per testis, on acute responses of 3-4 day old piglets. A total of 290 piglets were divided into 5 treatment groups: castration without anesthesia, castration after intra-testicular injection of 0.5 or 0.3 mL of drug per testis, and sham handling with one or two stays in a castration bench. Acute responses to drug injection, castration and sham handling were evaluated based on quantification of intra-procedural vocalizations and foreleg movements, as well as saliva cortisol concentrations before and after castration. Regardless of the volume, injection of anesthetic as well as castration led to significantly stronger responses than sham handling. Responses to the two drug volumes did not differ significantly, and responses to castration following injection of 0.3 mL did not differ from piglets castrated without anesthesia. All treatments, including sham handling, led to a significant increase in saliva cortisol, and no difference was found between anesthesia treatments and sham handling. Overall, the results suggested that injection of 0.5 mL led to better pain mitigation at castration compared to injection of 0.3 mL, but even when the local anesthetic was used, the combined procedures of injection and castration led to intra-procedural signs of pain and stress.
Collapse
Affiliation(s)
| | - Jens Malmkvist
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Marianne Kaiser
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Leslie Foldager
- Department of Animal Science, Aarhus University, Tjele, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
20
|
The effects of gravity and compression on interstitial fluid transport in the lower limb. Sci Rep 2022; 12:4890. [PMID: 35318426 PMCID: PMC8941011 DOI: 10.1038/s41598-022-09028-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Edema in the limbs can arise from pathologies such as elevated capillary pressures due to failure of venous valves, elevated capillary permeability from local inflammation, and insufficient fluid clearance by the lymphatic system. The most common treatments include elevation of the limb, compression wraps and manual lymphatic drainage therapy. To better understand these clinical situations, we have developed a comprehensive model of the solid and fluid mechanics of a lower limb that includes the effects of gravity. The local fluid balance in the interstitial space includes a source from the capillaries, a sink due to lymphatic clearance, and movement through the interstitial space due to both gravity and gradients in interstitial fluid pressure (IFP). From dimensional analysis and numerical solutions of the governing equations we have identified several parameter groups that determine the essential length and time scales involved. We find that gravity can have dramatic effects on the fluid balance in the limb with the possibility that a positive feedback loop can develop that facilitates chronic edema. This process involves localized tissue swelling which increases the hydraulic conductivity, thus allowing the movement of interstitial fluid vertically throughout the limb due to gravity and causing further swelling. The presence of a compression wrap can interrupt this feedback loop. We find that only by modeling the complex interplay between the solid and fluid mechanics can we adequately investigate edema development and treatment in a gravity dependent limb.
Collapse
|
21
|
Kobayashi RH, Litzman J, Rizvi S, Kreuwel H, Hoeller S, Gupta S. Overview of subcutaneous immunoglobulin 16.5% in primary and secondary immunodeficiency diseases. Immunotherapy 2022; 14:259-270. [PMID: 34986666 DOI: 10.2217/imt-2021-0313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Most primary immunodeficiency diseases, and select secondary immunodeficiency diseases, are treated with immunoglobulin (IG) therapy, administered intravenously or subcutaneously (SCIG). The first instance of IG replacement for primary immunodeficiency disease was a 16.5% formulation administered subcutaneously in 1952. While most SCIG products are now a 10 or 20% concentration, this review will focus on SCIG 16.5% products with a historical overview of development, including the early pioneers who initiated and refined IG replacement therapy, as well as key characteristics, manufacturing and clinical studies. In determining an appropriate IG regimen, one must consider specific patient needs, characteristics and preferences. There are advantages to SCIG, such as stable serum immunoglobulin G levels, high tolerability and the flexibility of self-administered home treatment.
Collapse
Affiliation(s)
| | - Jiří Litzman
- Department of Clinical Immunology & Allergology, St. Anne's University in Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | - Sonja Hoeller
- Octapharma Pharm. ProduduktionsgesmbH, Vienna, Austria
| | - Sudhir Gupta
- Division of Basic & Clinical Immunology, University of California, Irvine, CA, USA
| |
Collapse
|
22
|
Roberts BC, Rini C, Klug R, Sherman DB, Morel D, Pettis RJ. Novel cannula design improves large volume auto-injection rates for high viscosity solutions. Drug Deliv 2021; 29:43-51. [PMID: 34962225 PMCID: PMC8725910 DOI: 10.1080/10717544.2021.2018069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A prototype reusable large-volume (2 mL) autoinjector (LVAI) was designed to compare injection performance of a novel 27 gauge ultra-thin wall (UTW) pre-filled syringe (PFS) cannula (8 mm external cannula length, 14.4 mm total needle length) against an existing 27 gauge special thin wall (STW) PFS cannula (12.7 mm external cannula length, 19 mm total needle length) across a range of injectate viscosities (2.3–30 cP) in a series of in vivo feasibility studies in swine. The UTW cannula had an approximately 30% greater cross-sectional lumen area than the STW cannula. The target exposed needle length was adjusted to ensure appropriate needle penetration depth and achieve injectate deposition in the subcutaneous (SC) tissue. Delivery time and volume, injection site leakage, injectate depot location, and local tissue effects were examined. The STW and UTW cannulae both provided effective SC delivery of contrast placebo solutions, and were able to accommodate injectate viscosity up to 30 cP without quantifiable leakage from the tissue and with minor tissue effects which resolved within 1–2 hours. Delivery times at each viscosity were significantly different between PFS types with the UTW PFS producing faster delivery times. In a histological substudy of the UTW cannula using injectate viscosities up to 50 cP, injection site reactions were rare and, when present, were of minimal severity. This series of studies demonstrates the feasibility of LVAI SC injection and informs autoinjector and PFS design considerations. Use of a UTW cannula may enable more rapid LVAI injections with minimal tissue effects, especially for higher viscosity formulations.
Collapse
Affiliation(s)
- Bruce C Roberts
- Translational and Clinical Sciences Center of Excellence, BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Christopher Rini
- Translational and Clinical Sciences Center of Excellence, BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Rick Klug
- Translational and Clinical Sciences Center of Excellence, BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Douglas B Sherman
- Translational and Clinical Sciences Center of Excellence, BD Technologies and Innovation, Research Triangle Park, NC, USA
| | | | - Ronald J Pettis
- Translational and Clinical Sciences Center of Excellence, BD Technologies and Innovation, Research Triangle Park, NC, USA
| |
Collapse
|
23
|
Lange J, Schneider A, Jordi C, Lau M, Disher T. Formative Study on the Wearability and Usability of a Large-Volume Patch Injector. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2021; 14:363-377. [PMID: 34815721 PMCID: PMC8605886 DOI: 10.2147/mder.s337670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background The subcutaneous self-administration of biologics using a single large-volume bolus dose requires novel large-volume patch injectors. However, the usability and wearability of such on-body devices has rarely been investigated thus far. Therefore, this formative simulated use experiment studies the overall handling and acceptability in terms of the size and weight of a novel 10 mL large-volume patch injector device platform. Methods Twenty-three participants, including patients and healthcare professionals, simulated two injections with the large-volume patch injector, each lasting 17 min. During the injections, the patient participants performed predefined movements and activities with the on-body devices. Perceived usability and wearability were assessed through observation by the moderator and participant-reported feedback using five-point Likert scales and open-ended interviews. Results All participants successfully completed the simulated injections. Only non-serious usability issues were identified. Users rated the device acceptability in terms of wearability and usability with high ratings. Conclusion The results suggest the safe and effective usage of a novel prefilled large-volume patch injector that enables the subcutaneous delivery of a single bolus dose of up to 10 mL with an injection duration of 15 min. The participants of the simulated use study successfully used the device regardless of the disease state, age, or body size and habitus.
Collapse
Affiliation(s)
- Jakob Lange
- Ypsomed Delivery Systems, Ypsomed AG, Burgdorf, Switzerland
| | | | | | - Michael Lau
- Insight Product Development, Chicago, IL, USA
| | | |
Collapse
|
24
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 418] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Evaluation of Loco-Regional Skin Toxicity Induced by an In Situ Forming Depot after a Single Subcutaneous Injection at Different Volumes and Flow Rates in Göttingen Minipigs. Int J Mol Sci 2021; 22:ijms22179250. [PMID: 34502155 PMCID: PMC8431084 DOI: 10.3390/ijms22179250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
The present study aims to investigate the loco-regional tolerability and injection parameters (i.e., flow rate and administration volume) of an in situ forming depot (ISFD) in Göttingen minipigs, to secure both the therapeutic procedure and compliance in chronic medical prescriptions. The ISFD BEPO® technology (MedinCell S.A.) is investigated over 10 days, after a single subcutaneous injection of test item based on a DMSO solution of diblock and triblock polyethylene glycol-polylactic acid copolymers. Injection sites are systematically observed for macroscopic loco-regional skin reactions as well as ultrasound scanning, enabling longitudinal in vivo imaging of the depot. Observations are complemented by histopathological examinations at 72 h and 240 h post-injection. Overall, no treatment-emergent adverse effects are macroscopically or microscopically observed at the subcutaneous injection sites, for the tested injection flow rates of 1 and 8 mL/min and volumes of 0.2 and 1 mL. The histopathology examination confirms an expected foreign body reaction, with an intensity depending on the injected volume. The depot morphology is similar irrespective of the administration flow rates. These results indicate that the ISFD BEPO® technology can be considered safe when administered subcutaneously in Göttingen minipigs, a human-relevant animal model for subcutaneous administrations, in the tested ranges.
Collapse
|
26
|
Woodley WD, Morel DR, Sutter DE, Pettis RJ, Bolick NG. Clinical Evaluation of Large Volume Subcutaneous Injection Tissue Effects, Pain, and Acceptability in Healthy Adults. Clin Transl Sci 2021; 15:92-104. [PMID: 34268888 PMCID: PMC8742644 DOI: 10.1111/cts.13109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
Determining feasibility and tolerability of large volume viscous subcutaneous injection may enable optimized, intuitive delivery system design. A translational early feasibility clinical study examined large volume subcutaneous injection viability, tolerability, acceptability, tissue effects and depot location for ~1, 8, and 20 cP injections at volumes up to 10 ml in the abdomen and 5 ml in the thigh in 32 healthy adult subjects. A commercial syringe pump system delivered 192 randomized, constant rate (20 µl/s) injections (6/subject) with in‐line injection pressure captured versus time. Deposition location was qualified via ultrasound. Tissue effects and pain tolerability were monitored through 2 hours post‐injection with corresponding Likert acceptability questionnaires administered through 72 hours. All injection conditions were feasible and well‐tolerated with ≥79.3% favorable subject responses for injection site appearance and sensation immediately post‐injection, increasing to ≥96.8% at 24 hours. Mean subject pain measured via 100 mm visual analog scale increased at needle insertion (6.9 mm, SD 10.8), peaked during injection (26.9 mm, SD 21.7) and diminished within 10 minutes post‐removal (1.9 mm, SD 4.2). Immediate injection site wheal (90.9%) and erythema (92.6%) formation was observed with progressive although incomplete resolution through 2 hours (44.6% and 11.4% remaining, respectively). Wheal resolution occurred more rapidly at lower viscosities. Most subjects (64.5%) had no preference between abdomen and thigh. Correlations between tissue effects, injection pressure and pain were weak (Pearson’s rho ± 0–0.4). The large volume injections tested, 1–20 cP viscosities up to 10 ml in the abdomen and 5 ml in the thigh, are feasible with good subject acceptability and rapid resolution of tissue effects and pain.
Collapse
Affiliation(s)
- Wendy D Woodley
- BD Technologies & Innovation, Research Triangle Park, NC, USA
| | - Didier R Morel
- BD Medical- Pharmaceutical Systems, Le Pont de Claix, France
| | - Diane E Sutter
- BD Technologies & Innovation, Research Triangle Park, NC, USA
| | - Ronald J Pettis
- BD Technologies & Innovation, Research Triangle Park, NC, USA
| | | |
Collapse
|
27
|
Allmendinger A, Butt YL, Mueller C. Intraocular pressure and injection forces during intravitreal injection into enucleated porcine eyes. Eur J Pharm Biopharm 2021; 166:87-93. [PMID: 34102300 DOI: 10.1016/j.ejpb.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Injection of biological molecules into the intravitreous humor is of increasing interest for the treatment of posterior segment eye diseases such as age-related degenerative macular degeneration. The injection volume is limited by an increase in intraocular pressure (IOP) and 50-100 µL are typically used for most intravitreally (IVT) applied commercial products. Direct measurement of IOP is difficult and has not been studied dependent on solution properties and injection rates. We used an instrumental set-up to study IOP ex vivo using healthy enucleated porcine eyes. IOP was determined as a function of injection volume for viscosities between 1 and 100 mPas, injection rates of 0.1, 1, and 1.5 mL/min, and needle length and diameter (27/30G and 0.5/0.75″) using Dextran solutions. IOP increased exponentially for injection volumes larger than 100 µL. We did not observe differences in IOP dependent on viscosity, injection rate, and needle diameter. However, variability increased significantly for injection volumes larger than 100 µL and, unexpectedly, declined with higher viscosities. We demonstrate that the exponential increase in IOP is not reflected by injection force measurements for typical configurations that are used for IVT application. The present findings may guide injection volumes for intravitreal injection and inform injection force considerations during technical drug product development.
Collapse
Affiliation(s)
- Andrea Allmendinger
- Pharmaceutical Development & Supplies Biologics, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland.
| | - Yuen Li Butt
- Pharmaceutical Development & Supplies Biologics, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland
| | - Claudia Mueller
- Pharmaceutical Development & Supplies Biologics, F. Hoffmann-La Roche, Grenzacherstr. 124, 4070 Basel, Switzerland
| |
Collapse
|
28
|
Opportunities in an Evolving Pharmaceutical Development Landscape: Product Differentiation of Biopharmaceutical Drug Products. Pharm Res 2021; 38:739-757. [PMID: 33903976 DOI: 10.1007/s11095-021-03037-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The current perspective reviews the biopharmaceutical market until end of 2020 and highlights the transforming biopharmaceutical landscape during the recent decade. In particular, the rise of biosimilars and the development of new therapeutic modalities through recent advancement in molecular biology research sustainably change the product scenery. The present manuscript describes opportunities for pharmaceutical technical development, highlighting concepts such as product differentiation to succeed in a competitive product landscape. Product differentiation offers the opportunity for numerous life-cycle options and market exclusivity through incremental improvements in standard of care treatment. In particular, different formulation options and formulation-device combinations are described, focusing on systemic delivery of monoclonal antibody products and patient-centered development. The concept of product differentiation is exemplified in a case study about HER2+ breast cancer therapy, underlining pharmaceutical technical solutions and major improvements for the patient.
Collapse
|
29
|
Shahriar M, Rewanwar A, Rohilla P, Marston J. Understanding the effect of counterpressure buildup during syringe injections. Int J Pharm 2021; 602:120530. [PMID: 33811964 DOI: 10.1016/j.ijpharm.2021.120530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022]
Abstract
The pain felt during injection, typically delivered via a hypodermic needle as a single bolus, is associated with the pressure build-up around the site of injection. It is hypothesized that this counterpressure is a function of the target tissue as well as fluid properties. Given that novel vaccines target different tissues (muscle, adipose, and skin) and can exhibit a wide range of fluid properties, we conducted a study of the effect of volumetric flow rate, needle size, viscosity and rheology of fluid, and hyaluronidase as an adjuvant on counterpressure build-up in porcine skin and muscle tissues. In particular, we found a significant increase in counterpressure for intradermal (ID) injections compared to intramuscular (IM) injections, by an order of magnitude in some cases. We also showed that the addition of adjuvant affected the tissue back pressure only in case of subcutaneous (SC) injections. We observed that the volumetric flow rate plays an important role along with the needle size. This study aims to improve the current understanding and limitations of liquid injectability via hypodermic needles, however, the results also have implications for other technologies, such as intradermal jet injection where a liquid bleb is formed under the skin.
Collapse
Affiliation(s)
- Md Shahriar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Ankit Rewanwar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Pankaj Rohilla
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Jeremy Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
30
|
Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
31
|
Skade L, Kristensen CS, Nielsen MBF, Diness LH. Effect of two methods and two anaesthetics for local anaesthesia of piglets during castration. Acta Vet Scand 2021; 63:1. [PMID: 33407757 PMCID: PMC7789362 DOI: 10.1186/s13028-020-00566-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background Since January 2019, surgical castration of male piglets must be performed using local anaesthesia, if farmers deliver pigs to the primary exporting slaughterhouses according to the “Danish quality scheme”; a voluntary initiative taken by the Danish pig industry. The approved procedure for local anaesthesia in Denmark is a three-step injection method with procaine. A comparison of lidocaine and procaine with the same concentration and injection methods of local anaesthetics has not previously been studied. The purpose of this study was to investigate the effect of two injection methods and two local anaesthetics on piglets’ avoidance behaviour (vocalisation and resistance movements) as well as the time spent on the procedures. The study included 203 male piglets that were randomly assigned to one of five treatments: 1. Control: Sham-handling without injection of local anaesthesia, 2. Pro3: Procaine injection using a three-step method, 3. Pro2: Procaine injection using a two-step method, 4. Lid3: Lidocaine injection using a three-step method, 5. Lid2: Lidocaine injection using a two-step method. During injection of local anaesthesia and castration, vocalisation was measured using a decibel meter and resistance movements were registrated by video recordings. Results During castration, piglets treated with local anaesthesia showed significantly reduced vocalisation and resistance movements and time spent on castration was also significantly reduced compared to the control group. During injection of the local anaesthesia, the piglets had significantly increased vocalisation and resistance movements compared to the control group. Piglets injected with lidocaine had a significantly reduced resistance movement score and a tendency to reduced vocalisation compared to piglets injected with procaine. No differences in avoidance behaviour were found between the injection methods. Conclusions The use of local anaesthesia, irrespective of the method and local anaesthetic, was effective in reducing vocalisation and resistance movements during surgery as well as the time spent on castration.
Collapse
|
32
|
Woodley WD, Yue W, Morel DR, Lainesse A, Pettis RJ, Bolick NG. Clinical Evaluation of an Investigational 5 mL Wearable Injector in Healthy Human Subjects. Clin Transl Sci 2020; 14:859-869. [PMID: 33278331 PMCID: PMC8212760 DOI: 10.1111/cts.12946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022] Open
Abstract
An investigational wearable injector (WI), the BD Libertas Wearable Injector (BD Libertas is a trademark of Becton, Dickinson and Company), was evaluated in an early feasibility clinical study for functional performance, tissue effects, subject tolerability, and acceptability of 5 mL, non‐Newtonian ~ 8 cP subcutaneous placebo injections in 52 healthy adult subjects of 2 age groups (18–64 years and ≥ 65 years). Randomized WI subcutaneous injections (n = 208, 4/subject) were delivered to the right and left abdomen and thigh of each subject, 50% (1 thigh and 1 abdomen) with a defined movement sequence during injection. Injector functional performance was documented. Deposition was qualified and quantified with ultrasound. Tissue effects and tolerability (pain) were monitored through 24 hours with corresponding acceptability questionnaires administered through 72 hours. WI (n = 205) automatically inserted the needle, delivered 5 mL ± 5% in 5.42 minutes (SD 0.74) and retracted. Depots were entirely (93.2%) or predominantly (5.4%) localized within the target subcutaneous tissue. Slight to moderate wheals (63.9%) and erythema (75.1%) were observed with ≥ 50% resolution within 30–60 minutes. Subject pain (100 mm Visual Analog Scale) peaked mid‐injection (mean 9.1 mm, SD 13.4) and rapidly resolved within 30 minutes (mean 0.4 mm, SD 2.6). Subjects’ peak pain (≥ 90.2%), injection site appearance (≥ 92.2%) and injector wear, size, and removal (≥ 92.1%) were acceptable (Likert responses) with 100% likely to use the injector if prescribed. Injection site preference was divided between none (46%), abdomen (25%), or thigh (26.9%). The investigational WI successfully delivered 5 mL viscous subcutaneous injections. Tissue effects and pain were transient, well‐tolerated and acceptable. Neither injection site, movement or subject age affected injector functional performance or subject pain and acceptability.
Collapse
Affiliation(s)
- Wendy D Woodley
- BD Technologies & Innovation, Research Triangle Park, North Carolina, USA
| | - Wen Yue
- BD, Franklin Lakes, New Jersey, USA
| | | | | | - Ronald J Pettis
- BD Technologies & Innovation, Research Triangle Park, North Carolina, USA
| | - Natasha G Bolick
- BD Technologies & Innovation, Research Triangle Park, North Carolina, USA
| |
Collapse
|
33
|
Lopez Hernandez H, Souza JW, Appel EA. A Quantitative Description for Designing the Extrudability of Shear-Thinning Physical Hydrogels. Macromol Biosci 2020; 21:e2000295. [PMID: 33164332 DOI: 10.1002/mabi.202000295] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Physically associated hydrogels (PHs) capable of reversible transitions between solid and liquid-like states have enabled novel strategies for 3D printing, therapeutic drug and cell delivery, and regenerative medicine. Among the many design criteria (e.g., viscoelasticity, cargo diffusivity, biocompatibility) for these applications, engineering PHs for extrudability is a necessary and critical design criterion for the successful application of these materials. As the development of many distinct PH material systems continues, a strategy to determine the extrudability of PHs a priori will be exceedingly useful for reducing costly and time-consuming trial-and-error experimentation. Here, a strategy to determine the property-function relationships for PHs in injectable drug delivery applications at clinically relevant flow rates is presented. This strategy-validated with two chemically and physically distinct PHs-reveals material design spaces in the form of Ashby-style plots that highlight acceptable, application-specific material properties. It is shown that the flow behavior of PHs does not obey a single shear-thinning power law and the implications for injectable drug delivery are discussed. This approach for generating design criteria has potential for streamlining the screening of PHs and their utility in applications with varying geometrical (i.e., needle diameter) and process (i.e., flow rate) constraints.
Collapse
Affiliation(s)
| | - Jason W Souza
- Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
34
|
Tissue Resistance during Large-Volume Injections in Subcutaneous Tissue of Minipigs. Pharm Res 2020; 37:184. [PMID: 32888065 DOI: 10.1007/s11095-020-02906-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Injection devices for administration of biopharmaceuticals enable subcutaneous self-administration by patients. To meet patient specific capabilities, injection forces need to be characterized. We address the open question of whether tissue resistance significantly contributes to overall injection forces, especially for large injection volumes. METHODS Subcutaneous tissue resistance was systematically quantified for injection volumes up to 11 mL depending on viscosity (1-20 mPa·s) and injection rates (0.025-0.2 mL/s) using Göttingen Minipigs as the animal model. The contribution of an artificially applied external force at the injection site simulating autoinjector needle cover depression was tested between 2.5-7.5 N. RESULTS Tissue resistance reached average values of ~120 mbar for injection volumes up to 11 mL independent of viscosity and injection rate, and maximum values of 300 mbar were determined. Artificially applied external forces led to higher values, independent of the absolute applied force - maximum values of 1 bar were obtained when injecting 4.5 mL of the 20 mPa·s solution at an injection rate of 0.1 mL/s with the application of an artificial 5 N force, corresponding to ~450 mbar. All conditions yield defined injection sites suggesting tissue resistance is defined by mechanical properties of the subcutaneous tissue. CONCLUSIONS We set our results in relation to overall injection forces, concluding that maximum values in tissue resistance may cause challenges during subcutaneous injection when using injection devices. Graphical abstract.
Collapse
|
35
|
Design and Characterization of Injectable Poly(Lactic-Co-Glycolic Acid) Pastes for Sustained and Local Drug Release. Pharm Res 2020; 37:36. [PMID: 31965346 DOI: 10.1007/s11095-019-2730-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/31/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE We describe the preparation of injectable polymeric paste (IPP) formulations for local and sustained release of drugs. Furthermore, we include the characterization and possible applications of such pastes. Particular attention is paid to characteristics relevant to the successful clinical formulation development, such as viscosity, injectability, degradation, drug release, sterilization, stability performance and pharmacokinetics. METHODS Paste injectability was characterized using measured viscosity and the Hagen-Poiseuille equation to determine injection forces. Drug degradation, release and formulation stability experiments were performed in vitro and drug levels were quantified using HPLC-UV methods. Pharmacokinetic evaluation of sustained-release lidocaine IPPs used five groups of six rats receiving increasing doses subcutaneously. An anti-cancer formulation was evaluated in a subcutaneous tumor xenograft mouse model. RESULTS The viscosity and injectability of IPPs could be controlled by changing the polymeric composition. IPPs demonstrated good long-term stability and tunable drug-release with low systemic exposure in vivo in rats. Preliminary data in a subcutaneous tumor model points to a sustained anticancer effect. CONCLUSIONS These IPPs are tunable platforms for local and sustained delivery of drugs and have potential for further clinical development to treat a number of diseases.
Collapse
|
36
|
Assessment of the Injection Performance of a Tapered Needle for Use in Prefilled Biopharmaceutical Products. J Pharm Sci 2020; 109:515-523. [DOI: 10.1016/j.xphs.2019.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
|
37
|
Schneider A, Mueller P, Jordi C, Richard P, Sneeringer P, Nayyar R, Yovanoff M, Lange J. Hold the device against the skin: the impact of injection duration on user’s force for handheld autoinjectors. Expert Opin Drug Deliv 2019; 17:225-236. [DOI: 10.1080/17425247.2020.1704730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Yildiz A, Lenau TA. In Vitro Simulation of Tissue Back-Pressure for Pen Injectors and Auto-Injectors. J Pharm Sci 2019; 108:2685-2689. [DOI: 10.1016/j.xphs.2019.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
39
|
Gelbmann N, Zöchling A, Pichotta A, Schmidt T, Murányi A, Ernegger T, Pock K, Römisch J. Octanorm [cutaquig®], a new immunoglobulin (human) subcutaneous 16.5% solution for injection (165 mg/mL) – Biochemical characterization, pathogen safety, and stability. Biologicals 2019; 60:60-67. [DOI: 10.1016/j.biologicals.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023] Open
|
40
|
Assessment of Forces in Intradermal Injection Devices: Hydrodynamic Versus Human Factors. Pharm Res 2018; 35:120. [PMID: 29671074 DOI: 10.1007/s11095-018-2397-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The force that has to be exerted on the plunger for administering a given amount of fluid in a given time, has an important influence on comfort for the subject and usability for the administrator in intradermal drug delivery. The purpose of this study is to model those forces that are subject-independent, by linking needle and syringe geometry to the force required for ejecting a given fluid at a given ejection rate. MATERIAL AND METHODS We extend the well-known Hagen-Poiseuille formula to predict pressure drop induced by a fluid passing through a cylindrical body. The model investigates the relation between the pressure drop in needles and the theoretic Hagen-Poiseuille prediction and is validated in fifteen needles from 26G up to 33G suited for intradermal drug delivery. We also provide a method to assess forces exerted by operators in real world conditions. RESULTS The model is highly linear in each individual needle with R-square values ranging from 75% up to 99.9%. Ten out of fifteen needles exhibit R-square values above 99%. A proof-of-concept for force assessment is provided by logging forces in operators in real life conditions. CONCLUSIONS The force assessment method and the model can be used to pinpoint needle geometry for intradermal injection devices, tuning comfort for subjects and usability for operators.
Collapse
|
41
|
Practical Considerations for High Concentration Protein Formulations. CHALLENGES IN PROTEIN PRODUCT DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-90603-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Mahler HC, Allmendinger A. Stability, Formulation, and Delivery of Biopharmaceuticals. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Andrea Allmendinger
- F. Hoffmann-La Roche AG; Pharmaceutical Development & Supplies Biologics EU, Late-Stage Pharmaceutical and Processing Development; Grenzacherstrasse 124 4070 Basel Switzerland
| |
Collapse
|
43
|
Roethlisberger D, Mahler HC, Altenburger U, Pappenberger A. If Euhydric and Isotonic Do Not Work, What Are Acceptable pH and Osmolality for Parenteral Drug Dosage Forms? J Pharm Sci 2016; 106:446-456. [PMID: 27889072 DOI: 10.1016/j.xphs.2016.09.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Parenteral products should aim toward being isotonic and euhydric (physiological pH). Yet, due to other considerations, this goal is often not reasonable or doable. There are no clear allowable ranges related to pH and osmolality, and thus, the objective of this review was to provide a better understanding of acceptable formulation pH, buffer strength, and osmolality taking into account the administration route (i.e., intramuscular, intravenous, subcutaneous) and administration technique (i.e., bolus, push, infusion). This evaluation was based on 3 different approaches: conventional, experimental, and parametric. The conventional way of defining formulation limits was based on standard pH and osmolality ranges. Experimental determination of titratable acidity or in vitro hemolysis testing provided additional drug product information. Finally, the parametric approach was based on the calculation of theoretical values such as (1) the maximal volume of injection which cannot shift the blood's pH or its molarity out of the physiological range and (b) a dilution ratio at the injection site and by verifying that threshold values are not exceeded. The combination of all 3 approaches can support the definition of acceptable pH, buffer strength, and osmolality of formulations and thus may reduce the risk of failure during preclinical and clinical development.
Collapse
Affiliation(s)
- Dieter Roethlisberger
- F. Hoffmann-La Roche Ltd., Pharmaceutical Development and Supplies, Pharma Technical Development Biologics EU, Basel, Switzerland.
| | - Hanns-Christian Mahler
- F. Hoffmann-La Roche Ltd., Pharmaceutical Development and Supplies, Pharma Technical Development Biologics EU, Basel, Switzerland
| | - Ulrike Altenburger
- F. Hoffmann-La Roche Ltd., Pharmaceutical Development and Supplies, Pharma Technical Development Biologics EU, Basel, Switzerland
| | - Astrid Pappenberger
- F. Hoffmann-La Roche Ltd., Pharmaceutical Development and Supplies, Pharma Technical Development Biologics EU, Basel, Switzerland
| |
Collapse
|
44
|
Mathaes R, Koulov A, Joerg S, Mahler HC. Subcutaneous Injection Volume of Biopharmaceuticals—Pushing the Boundaries. J Pharm Sci 2016; 105:2255-9. [DOI: 10.1016/j.xphs.2016.05.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/16/2022]
|
45
|
Doughty DV, Clawson CZ, Lambert W, Subramony JA. Understanding Subcutaneous Tissue Pressure for Engineering Injection Devices for Large-Volume Protein Delivery. J Pharm Sci 2016; 105:2105-13. [PMID: 27287520 DOI: 10.1016/j.xphs.2016.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022]
Abstract
Subcutaneous injection allows for self-administration of monoclonal antibodies using prefilled syringes, autoinjectors, and on-body injector devices. However, subcutaneous injections are typically limited to 1 mL due to concerns of injection pain from volume, viscosity, and formulation characteristics. Back pressure can serve as an indicator for changes in subcutaneous mechanical properties leading to pain during injection. The purpose of this study was to investigate subcutaneous pressures and injection site reactions as a function of injection volume and flow rate. A pressure sensor in the fluid path recorded subcutaneous pressures in the abdomen of Yorkshire swine. The subcutaneous tissue accommodates large-volume injections and with little back pressure as long as low flow rates are used. A 1 mL injection in 10 seconds (360 mL/h flow rate) generated a pressure of 24.0 ± 3.4 kPa, whereas 10 mL delivered in 10 minutes (60 mL/h flow rate) generated a pressure of 7.4 ± 7.8 kPa. After the injection, the pressure decays to 0 over several seconds. The subcutaneous pressures and mechanical strain increased with increasing flow rate but not increasing dose volume. These data are useful for the design of injection devices to mitigate back pressure and pain during subcutaneous large-volume injection.
Collapse
Affiliation(s)
- Diane V Doughty
- Drug Delivery and Device Development, Biopharmaceutical Development, MedImmune LLC., Gaithersburg, Maryland 20878.
| | - Corbin Z Clawson
- Drug Delivery and Device Development, Biopharmaceutical Development, MedImmune LLC., Gaithersburg, Maryland 20878
| | - William Lambert
- Drug Delivery and Device Development, Biopharmaceutical Development, MedImmune LLC., Gaithersburg, Maryland 20878
| | - J Anand Subramony
- Drug Delivery and Device Development, Biopharmaceutical Development, MedImmune LLC., Gaithersburg, Maryland 20878
| |
Collapse
|