1
|
Damjanović R, Vuksanović MM, Petrović M, Radovanović Ž, Stavrić M, Jančić Heinemann R, Živković I. Expanded Perlite-Reinforced Alginate Xerogels: A Chemical Approach to Sustainable Building and Packaging Materials. Gels 2024; 10:782. [PMID: 39727541 DOI: 10.3390/gels10120782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
In sustainable construction and packaging, the development of novel bio-based materials is crucial, driving a re-evaluation of traditional components. Lightweight, biodegradable materials, including xerogels, have great potential in architectural and packaging applications. However, reinforcing these materials to improve their mechanical strength remains a challenge. Alginate is a promising matrix material that may be compatible with inorganic fibrous or particulate materials. In this study, biocomposite xerogel-structured foam materials based on an alginate matrix with expanded perlite reinforcement are improved using certain additives in different weight ratios. The plasticizers used include glycerol and gum arabic, while chitosan was added as an additional reinforcement, and iota carrageenan was added as a stabilizer. The tested specimens, with varying weight ratios of the added components, showed good mechanical behavior that highlights their potential use as packaging and/or architectural materials. The influence of the presence of different components in the composite material specimens on the modulus of elasticity was investigated using SEM images and FTIR analyses of the specimens. The results show that the specimen with the largest improvement in the elastic modulus contained a combination of chitosan and glycerol at a lower percentage (1.96 MPa), and the specimen with the largest improvement in tensile strength was the specimen containing chitosan with no plasticizers (120 kPa), compared to cases where combinations of other materials are present.
Collapse
Affiliation(s)
- Radmila Damjanović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija M Vuksanović
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Miloš Petrović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| | - Željko Radovanović
- Innovation Centre of Faculty of Technology and Metallurgy doo, 11000 Belgrade, Serbia
| | - Milena Stavrić
- Institute of Architecture and Media, Graz University of Technology, 8010 Graz, Austria
| | | | - Irena Živković
- Faculty of Applied Arts, University of Arts in Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Ngo AN, Chatman KK, Douglas D, Mosley-Kellum KM, Wu K, Vadgama J. Engineering of layer-by-layer acetate-coated paclitaxel loaded poly(lactide-co-glycolide) acid nanoparticles for prostate cancer therapy- in vitro. J Pharm Sci 2024; 113:3375-3383. [PMID: 39313154 DOI: 10.1016/j.xphs.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
It is hypothesized that layer-by-layer acetate-coated Paclitaxel-loaded PLGA nanoparticles (F2) can be engineered to potentiate the effectiveness of Paclitaxel (PTX) on LNCaP, a human prostate cancer cell line. The core of the layer-by-layer NPs is formed by nanoprecipitation, and the shell of the NPs is engineered using the sodium acetate's unique coating mechanism and surface-active properties. The resulting nanoformulation physicochemical properties are characterized by Fourier Transform Infra-Red (FTIR), Differential Scanning Calorimetry (DSC) Transmission Electron Microscopy (TEM), NanoSight NS300, spectrophotometry, Korsmeyer-Peppas model, respectively. The NP's cytotoxicity on LNCaP is assessed by MTS assay. The DSC and the FTIR confirm SA's coating of the NPs. The particle's mean diameters (PMD) are 89.4±2.3- to 114.4±7.6 nm. The TEM shows a unique multilayer and spherical nanoparticle. The encapsulation efficiency of commonly PTX-loaded PLGA NPs (F1) and F2 are 84.37±2.71% and 86.74±2.22, respectively. The drug transport mechanism of F1 and F2 is anomalous transport and case II, respectively. F2 follows a zero-order release mechanism. The cell viability is 45.08±2.18% and 60.17±4.72% when LNCaP is treated with 10 µg/mL of F2 and F1, respectively, after 48 hours of exposure. F2 and F1 cell growth inhibition are dose-dependent. This unique process of engineering the layer-by-layer NPs will provide new horizons for developing future innovative nanoparticles for targeted prostate cancer therapy.
Collapse
Affiliation(s)
- Albert Nguessan Ngo
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States.
| | - Kierston K Chatman
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Dezirae Douglas
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Keb M Mosley-Kellum
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Ke Wu
- Charles R. Drew University of Medicine and Science, United States
| | - Jaydutt Vadgama
- Charles R. Drew University of Medicine and Science, United States
| |
Collapse
|
3
|
Maghrabia AE, Boughdady MF, Khater SM, ِِAbu Hashim II, Meshali MM. Quality by design approach of apocynin loaded clove oil based nanostructured lipid carrier as a prophylactic regimen in hemorrhagic cystitis in vitro and in vivo comprehensive study. Sci Rep 2024; 14:19162. [PMID: 39160172 PMCID: PMC11333711 DOI: 10.1038/s41598-024-68721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Apocynin (APO) is a naturally occurring acetophenone with eminent anti-inflammatory and anti-oxidant peculiarities. It suffers from poor bioavailability due to low aqueous solubility. Herein, APO was loaded in a Clove oil (CO) based Nanostructured lipid carrier (NSLC) system using a simple method (ultrasonic emulsification) guided by a quality-by-design approach (23 full factorial design) to optimize the formulated NSLCs. The prepared NSLCs were evaluated regarding particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). The optimal formula (F2) was extensively investigated through transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry (DSC), X-ray diffractometry (XRD), in vitro release, and stability studies. Cytotoxicity against human urinary bladder carcinoma (T24) cell line and in vivo activity studies in rats with induced cystitis were also assessed. The results disclosed that the optimal formula (F2) had PS of 214.8 ± 5.8 nm with EE% of 79.3 ± 0.9%. F2 also exhibited a strong cytotoxic effect toward the T24 cancer cells expressed by IC50 value of 5.8 ± 1.3 µg/mL. Pretreatment with the optimal formula (orally) hinted uroprotective effect against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rat models, emphasized by histopathological, immunohistochemical, and biochemical investigations. In consideration of the simple fabrication process, APO-loaded CO-based NSLCs can hold prospective potential in the prophylaxis of oncologic and urologic diseases.
Collapse
Affiliation(s)
- Amir Elsayed Maghrabia
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Mohamed Khater
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | | |
Collapse
|
4
|
Akinjole O, Menta K, Alsalhi A, Bani-Yaghoub M, Youan BBC. Novel Meta-iodobenzylguanidine and Etoposide Complex: Physicochemical Characterization and Mathematical Modeling of Anticancer Activity. AAPS PharmSciTech 2023; 24:174. [PMID: 37594527 DOI: 10.1208/s12249-023-02599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 08/19/2023] Open
Abstract
It is hypothesized that meta-iodobenzylguanidine (MIBG) complexation with etoposide (VP-16) will improve drug solubility and specificity towards BE(2)C neuroblastoma (NB) cells, 90% of which are known to be MIBG avid. After MIBG and VP-16 interaction, the dry complex was analyzed for crystalline structure, surface morphology, solubility, and size distribution by X-ray powder diffraction (P-XRD), scanning electron microscopy (SEM), infrared (FTIR) and UV spectroscopy, and dynamic light scattering. After exposure to the complex, the cell viability and decay rates were assessed by the MTS assay and estimated using exponential decay models (EDM). Multi-factorial ANOVA and an independent t-test were used to assess for cell viability and solubility data, respectively. The resulting (1: 3 w/w) VP-16: MIBG complex had a mean diameter and zeta potential of 458.5 nm and 0.951 mV, respectively. It dramatically increased the drug apparent water solubility (~ 12-folds). This was ascribed to the formation of a VP-16/MIBG nanocrystalline state mainly governed by cation-π interactions, evidenced by FTIR, SEM, and P-XRD data following the complexation. The EDM relating percent cell viability to drug concentration yielded an excellent fit (r2 > 0.95) and enabled to estimate the IC50 values of both native drug and its complex: 6.2 μM and 5.23 μM, respectively (indicating a conservation of drug anticancer activity). The statistical results were consistent with those of the exponential decay models, indicating that MIBG does not inhibit the anticancer activity of VP-16. This study indicates that the VP-16/MIBG complexation improves VP-16 solubility without antagonizing its anticancer activity. Moreover, the efficiency of the EDM for drug IC50 estimation provides alternative mathematical method for such in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, 2464 Charlotte, Kansas City, Missouri, 64108, USA
| | - Kathryn Menta
- Division of Computing, Analytics and Mathematics, School of Science and Engineering, University of Missouri, Kansas City, USA
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Majid Bani-Yaghoub
- Division of Computing, Analytics and Mathematics, School of Science and Engineering, University of Missouri, Kansas City, USA
| | - Bi-Botti Celestin Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, 2464 Charlotte, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
5
|
Ngo AN, Murowchick J, Gounev AD, Gounev TK, Youan BBC. Physico-chemistry and Cytotoxicity of Tenofovir-Loaded Acid Phosphatase-Responsive Chitosan Nanoparticles. AAPS PharmSciTech 2023; 24:143. [PMID: 37353718 DOI: 10.1208/s12249-023-02580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
This study assesses the in vitro release of tenofovir (TFV)-loaded triphosphate (TPP) cross-linked chitosan nanoparticles (NPs) catalyzed by human prostatic acid phosphatase (hPAP) for 24 h. The physico-chemical characterization of the NPs included particle mean diameter (PMD), zeta potential (ζ), percent drug encapsulation efficiency (% EE), Fourier transform infra-red (FTIR) spectroscopy, powder X-ray diffractometry analysis (PXRD), and drug release kinetics. The first-order rate constant (k) and activation energy (Ea) of the cross-link (TPP) are determined by the integrated rate law and Arrhenius's equations. The hPAP Michaelis-Menten constant (Km) is determined by the Lineweaver-Burk's equation. The NP's safety profile is evaluated on vaginal epithelial cells (VK2/E6E7). The lyophilized drug-loaded NPs' PMD, ζ, and PDI are 149.97 nm, 4.4 mV, and 0.3, respectively. The % EE after lyophilization is 93.7 ± 4.4%. These NPs released drug at faster rate (63% of TFV within 6 h) under the enzyme's influence. The similarity and difference factors of drug release profiles (absence vs presence of hPAP) are 56.5 and 40.3, respectively. The hPAP's Km value of 0.019 mM suggests it has a good affinity for TPP at physiological pH ~ 7.4. The enhanced hydrolysis of TPP or degradation of chitosan NPs is fundamentally due to a decrease of TPP's activation energy by hPAP. In fact, the Ea value is 22.50 ± 3.06 kJ/mol or 16.33 ± 0.62 kJ/mol in the absence or presence of hPAP, respectively. The NPs are non-cytotoxic to the treated vaginal cell line. These hPAP-responsive NPs are promising topical nanomicrobicides for HIV/AIDS prevention.
Collapse
Affiliation(s)
- Albert Nguessan Ngo
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
- School of Pharmacy, American University of Health Sciences, Signal Hill, California, 90755, USA
- College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California, 90059, USA
| | - James Murowchick
- Department of Geosciences, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Andrea Drew Gounev
- Department of Chemistry, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Todor K Gounev
- Department of Chemistry, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Bi-Botti Celestin Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
6
|
Mohandoss S, Velu KS, Stalin T, Ahmad N, Alomar SY, Lee YR. Tenofovir antiviral drug solubility enhancement with β-cyclodextrin inclusion complex and in silico study of potential inhibitor against SARS-CoV-2 main protease (M pro). J Mol Liq 2023; 377:121544. [PMID: 36874474 PMCID: PMC9968670 DOI: 10.1016/j.molliq.2023.121544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Tenofovir (TFR) is an antiviral drug commonly used to fight against viral diseases infection due to its good potency and high genetic barrier to drug resistance. In physiological conditions, TFR is less water soluble, more unstable, and less permeable, limiting its effective therapeutic applications. In addition to their use in treating the Coronavirus disease 2019 (COVID-19), cyclodextrins (CDs) are also being used as a molecule to develop therapies for other diseases due to its enhance solubility and stability. This study is designed to synthesize and characterization of β-CD:TFR inclusion complex and its interaction against SARS-CoV-2 (MPro) protein (PDB ID;7cam). Several techniques were used to characterize the prepared β-CD:TFR inclusion complex, including UV-Visible, FT-IR, XRD, SEM, TGA, and DSC, which provided appropriate evidence to confirm the formation. A 1:1 stoichiometry was determined for β-CD:TFR inclusion complex in aqueous medium from UV-Visible absorption spectra by using the Benesi-Hildebrand method. Phase solubility studies proposed that β-CD enhanced the excellent solubility of TFR and the stability constant was obtained at 863 ± 32 M-1. Moreover, the molecular docking confirmed the experimental results demonstrated the most desirable mode of TFR encapsulated into the β-CD nanocavity via hydrophobic interactions and possible hydrogen bonds. Moreover, TFR was validated in the β-CD:TFR inclusion complex as potential inhibitors against SARS-CoV-2 main protease (Mpro) receptors by using in silico methods. The enhanced solubility, stability, and antiviral activity against SARS-CoV-2 (MPro) suggest that β-CD:TFR inclusion complexes can be further used as feasible water-insoluble antiviral drug carriers in viral disease infection.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kuppu Sakthi Velu
- Department of Industrial Chemistry, Alagappa University, Karikudi 630003, Tamilnadu, India
| | - Thambusamy Stalin
- Department of Industrial Chemistry, Alagappa University, Karikudi 630003, Tamilnadu, India
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Yousef Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Akinjole O, Honaryar H, Coulibaly FS, Niroobakhsh Z, Youan BBC. Rheological analysis of a novel phenylboronic acid-closomer gel. Int J Pharm 2022; 626:122070. [PMID: 36041591 DOI: 10.1016/j.ijpharm.2022.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/30/2022]
Abstract
This study aims to characterize the rheological behavior of a novel phenylboronic acid (PBA)-based closomer nanoconjugate (Closogel) with potential application in pharmaceutical formulation. PBA was used as a cross-linking agent and model (antiviral) drug. The PBA loaded Closogel chemical structure was analyzed by boron (11B) NMR and Fourier transform infrared (FTIR) spectroscopy. The Closogel and control hydroxyethyl cellulose (HEC) gel were analyzed under oscillatory and continuous shear rheometry followed by mathematical modeling to characterize the gel flow behavior. The chemical analysis confirmed the existence of characteristic borate esters peaks and Boron chemical shifts within Closogel spectra. Due to its more flexible molecular structure, undiluted Closogel exhibited lower, yield stress, viscosity and relaxation time (30 Pa &163 Pa.s & 0.21 s vs 45 Pa &301 Pa.s & 0.39 s for HEC). Both Closogel and HEC gels exhibited a thixotropic behavior. The plastic undiluted and pseudoplastic 2.5 % w/v aqueous Closogels were more viscous than elastic (tan (δ) > 1) in the linear viscoelastic range. The Herschel-Bulkley model showed a significant fitting to all experimental data (R2 > 0.95). The 0.25 % w/v aqueous Closogel nearly exhibited a Newtonian behavior with a flow index of 0.93. These data suggest that PBA loaded Closomer-based gels have similar rheological behavior, with lower complex modulus than that of HEC gels, and they can be a promising platform used for delivery of topical antiviral or other bioactive agents.
Collapse
Affiliation(s)
- Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| | - Houman Honaryar
- School of Computing and Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City 64110, MO, USA.
| | - Fohona S Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| | - Zahra Niroobakhsh
- School of Computing and Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City 64110, MO, USA.
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| |
Collapse
|
8
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
9
|
Alsalhi A, Ayon NJ, Sikder S, Youan BBC. Self-Assembled Nanomicelles to Enhance Solubility and Anticancer Activity of Etoposide. Assay Drug Dev Technol 2021; 19:526-538. [PMID: 34813380 DOI: 10.1089/adt.2021.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is hypothesized that etoposide/VP-16 nanomicellar formulation (VP-16 NMF) utilizing D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) can improve etoposide solubility and anticancer activity. The following four different concentrations of TPGS: 3, 6, 8, and 10 wt% were used to solubilize the drug. Among these four formulations, 10 wt% of TPGS loaded with VP-16 NMF dramatically enhanced etoposide apparent solubility by 26-folds compared with the native drug. The physicochemical properties of the optimized formulation were further analyzed by dynamic light scattering, X-ray powder diffraction, scanning electron microscopy, proton nuclear magnetic resonance (1HNMR) and Fourier transform infrared spectroscopy. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) was used to assess solubility and intracellular uptake of the drug from the NMF. Cell viability assay ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium solution [MTS]) was performed on MCF-7 and MCF-10A cell lines to assess intracellular uptake and anticancer activity of etoposide. The MTS assay results showed that the VP-16 NMF platform provides a higher anticancer activity than the native VP-16 on the MCF-7 cells line as it integrates a dual anticancer activity of VP-16 and TPGS. LC-MS/MS data showed a threefold increase in cellular uptake of VP-16 NMF in MCF-7 cell line compared with the native etoposide. These data suggest that an optimal TPGS concentration can improve VP-16 bioavailability and efficacy with potential benefits for chemotherapy.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Navid J Ayon
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Sadia Sikder
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bi-Botti C Youan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
10
|
Alsalhi A, Ayon NJ, Coulibaly F, Alshamrani M, Al-Nafisah A, Youan BBC. Enhancing Etoposide Aqueous Solubility and Anticancer Activity with L-Arginine. Assay Drug Dev Technol 2021; 19:508-525. [PMID: 34757813 DOI: 10.1089/adt.2021.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is hypothesized that L-arginine (ARG) can improve etoposide (VP-16) water solubility while preserving its anticancer activity. Factorial design is used to identify conditions for optimum drug aqueous solubility after freeze-drying. The physicochemical properties of the optimized formulation is further analyzed by X-ray powder diffraction, scanning electron microscopy, proton nuclear magnetic resonance, and fourier transform infrared spectroscopy. Drug stability in formulation is analyzed using mass spectrometry based fragmentation analysis. Liquid chromatography tandem mass spectrometry and cell viability assay on Michigan Cancer Foundation-7 (MCF-7) cell line are performed to assess the drug cellular uptake and the anticancer activity, respectively. At the VP-16: ARG ratio of 4:10 (w/w), the drug apparent solubility increased significantly (∼65-folds) with a 3.5-fold improvement in the drug dissolution rate. The interaction between VP-16 and ARG transforms the drug from crystalline to amorphous solid state. VP-16-ARG complex in lower native drug concentration range (50-300 μM) has lower anticancer activity compared with native VP-16, due to reduced intracellular transport of the more hydrophilic complex as indicated by the cell viability assay and confirmed by cell uptake study. However, at higher drug concentrations (500 μM) the complex's higher anticancer activity is ascribed to the synergistic effect between ARG and VP-16. These data suggest that an optimal ARG concentration can have positive effects with potential benefits for chemotherapy.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| | - Navid J Ayon
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| | - Fohona Coulibaly
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| | - Meshal Alshamrani
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| | - Abrar Al-Nafisah
- Department of Chemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bi-Botti C Youan
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas city, Kansas City, Missouri, USA
| |
Collapse
|
11
|
Grande F, Ioele G, Occhiuzzi MA, De Luca M, Mazzotta E, Ragno G, Garofalo A, Muzzalupo R. Reverse Transcriptase Inhibitors Nanosystems Designed for Drug Stability and Controlled Delivery. Pharmaceutics 2019; 11:E197. [PMID: 31035595 PMCID: PMC6572254 DOI: 10.3390/pharmaceutics11050197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
An in-depth analysis of nanotechnology applications for the improvement of solubility, distribution, bioavailability and stability of reverse transcriptase inhibitors is reported. Current clinically used nucleoside and non-nucleoside agents, included in combination therapies, were examined in the present survey, as drugs belonging to these classes are the major component of highly active antiretroviral treatments. The inclusion of such agents into supramolecular vesicular systems, such as liposomes, niosomes and lipid solid NPs, overcomes several drawbacks related to the action of these drugs, including drug instability and unfavorable pharmacokinetics. Overall results reported in the literature show that the performances of these drugs could be significantly improved by inclusion into nanosystems.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
12
|
Yang K, Fu J, Hu L, Xiong Z, Li M, Wei X, Xiao Z, Lu S, Sun K. Impact of ZnO Photoluminescence on Organic Photovoltaic Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39962-39969. [PMID: 30362352 DOI: 10.1021/acsami.8b14224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
ZnO is a widely used electron transport material in third generation solar cells. Intrinsic defects arising from different synthetic methods and conditions lead to different fluorescent colors. The defect mechanisms have been explored in the literature, but their impact on organic photovoltaic (OPV) cell performance is rarely reported. Herein, three different ZnO nanoparticles showing blue, green, and yellow emission colors are synthesized and incorporated into OPV cells. The as-cast ZnO films result in vastly different OPV performances. It is found the sodium acetate as the byproduct of the synthesis can significantly influence the interfacial contact. After removing the impurity via rinsing with polar organic solvents, the different ZnO nanoparticles can deliver similar power conversion efficiencies (PCEs) in three representative OPV systems. The PCEs reached 4, 8, and 10% in P3HT:PC61BM-, PTB7-Th:PC71BM-, and PBDB-T-SF:IT-4F-based OPV cells, respectively. A series of characterizations indicate that the intrinsic defect types do not affect the optical and electrical properties of the ZnO film, including photon transmittance, electrical conductivity, and charge extraction from the active layer as well as electron mobility. The results together suggest that the intrinsic defect in ZnO nanoparticles has little impact on OPV performance. Thus, it might be necessary to revisit the strategies for defect engineering or passivation in oxide-based interfacial materials.
Collapse
Affiliation(s)
- Ke Yang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , China
| | - Jiehao Fu
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , China
- Organic Semiconductor Research Center , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , China
| | - Lijun Hu
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , China
| | - Zhuang Xiong
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , China
| | - Meng Li
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , China
| | - Xingzhan Wei
- Organic Semiconductor Research Center , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , China
| | - Zeyun Xiao
- Organic Semiconductor Research Center , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , China
| | - Shirong Lu
- Organic Semiconductor Research Center , Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714 , China
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering , Chongqing University , Chongqing 400044 , China
| |
Collapse
|
13
|
Ngo AN, Thomas D, Murowchick J, Ayon NJ, Jaiswal A, Youan BBC. Engineering fast dissolving sodium acetate mediated crystalline solid dispersion of docetaxel. Int J Pharm 2018; 545:329-341. [PMID: 29689368 DOI: 10.1016/j.ijpharm.2018.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022]
Abstract
It is hypothesized that a novel crystalline solid dispersion (CSD) of docetaxel (C-DXT) can be engineered by dispersing native docetaxel (DXT, a BCS class II drug) in sodium acetate crystal (SA). DXT is dissolved in glacial acetic/SA solution and freeze-dried. The resulting C-DXT is characterized by differential scanning calorimetry (DSC), powder X-ray analysis (PXRD), LC-MS/MS, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Quartz crystal microbalance with dissipation monitoring (QCM-D) and dynamic light scattering (DLS). Its cytotoxicity on model cancerous (MCF-7, MDA-MB-468) and normal breast cells (MCF-10A) is assessed by MTS assay. SEM/TEM data and the absence of the characteristics peaks of DXT on the DSC curve (at 193.4 °C) and the XRD scan (at 2θ = 15.31 °C and 23.04 °C) confirm the presence of C-DXT in SA. The LC-MS/MS data indicates the chemical stability of DXT. The yield and C-DXT loading are 95.2% and 6.52% w/w, respectively. The C-DXT rapidly forms an aqueous non-rigid nanosuspension with a faster drug dissolution rate compared to native DXT. Unlike, control Tween 80/ethanol, SA is noncytotoxic to normal cells. However, C-DXT's cytotoxicity is time and dose dependent for all diseased cells. This unique CSD process might be applicable to other hydrophobic bioactive agents to enhance their safety and efficacy.
Collapse
Affiliation(s)
- Albert Nguessan Ngo
- Division of Pharmaceutical Sciences, University of Missouri Kansas City, MO, USA
| | - Danielle Thomas
- Division of Pharmaceutical Sciences, University of Missouri Kansas City, MO, USA
| | - James Murowchick
- Department of Geosciences, University of Missouri Kansas City, MO, USA
| | - Navid J Ayon
- Division of Pharmaceutical Sciences, University of Missouri Kansas City, MO, USA
| | | | | |
Collapse
|
14
|
Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017; 104:273-292. [DOI: 10.1016/j.ejps.2017.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
15
|
Timur SS, Şahin A, Aytekin E, Öztürk N, Polat KH, Tezel N, Gürsoy RN, Çalış S. Design and in vitro evaluation of tenofovir-loaded vaginal gels for the prevention of HIV infections. Pharm Dev Technol 2017; 23:301-310. [PMID: 28503983 DOI: 10.1080/10837450.2017.1329835] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infection with the human immunodeficiency virus (HIV) is affecting women disproportionally with increasing incidence rates over the last decades. Tenofovir is one of the most commonly used antiretroviral agents, which belongs to the nucleoside/nucleotide reverse transcriptase inhibitor family, for the prevention of HIV acquisition. In scope of this study, a thermogelling system containing tenofovir-loaded chitosan nanoparticles for the controlled release of tenofovir was developed and characterized. The in vitro release studies have shown that the burst release effect was decreased to 27% with f-TFV CS NPs-Gel. Gelation temperature of developed formulation was found as 26.6 ± 0.2 °C, which provides ease of administration while gelation occurs after the administration to the vagina. The work of adhesion values was used as parameters for comparison of mucoadhesive performance and the mucoadhesion of f-TFV CS NPs-Gel was found as 0.516 ± 0.136 N.s at 37 °C. The biocompatibility of blank formulations was evaluated by cell viability studies using L929 cells, in which Gel + CS NPs formulation was found to be safe with 82.4% and 90.2% cell viability for 1:16 and 1:32 dilutions, respectively. In conclusion, an improved tenofovir containing vaginal gel formulation was successfully developed and evaluated for preventing HIV transmission.
Collapse
Affiliation(s)
- Selin Seda Timur
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Adem Şahin
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Eren Aytekin
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Naile Öztürk
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Kerem Heybet Polat
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Nurten Tezel
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Reyhan Neslihan Gürsoy
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| | - Sema Çalış
- a Faculty of Pharmacy, Department of Pharmaceutical Technology , Hacettepe University , Ankara , Turkey
| |
Collapse
|