1
|
Yang S, Xu Y, Zhu M, Yu Y, Hu W, Zhang T, Gao J. Engineering the Functional Expansion of Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411112. [PMID: 39498731 DOI: 10.1002/adma.202411112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Microneedles (MNs), composed of an array of micro-sized needles and a supporting base, have transcended their initial use to replace hypodermic needles in drug delivery and fluid collection, advancing toward multifunctional platforms. In this review, four major areas are summarized in interdisciplinary engineering approaches combined with MNs technology. First, electronics engineering, the most extensively researched field, enables applications in biomonitoring, electrical stimulation, and closed-loop theranostics through the generation, transmission, and transformation of electrical signals. Second, in electromagnetic engineering, the responsiveness of electromagnetic induction offers prospects for remote and programmable therapeutic applications. Third, photonic engineering endows MNs with novel functionalities, such as waveguiding and photonic manipulation to enhance optical therapeutic capabilities and facilitate the visualization of disease progression and treatment processes. Lastly, it reviewed the role of mechanical engineering in conferring shape adaptability and programmable motion features necessary for various MNs applications. This review focuses on the functionalities that emerge from the intersection of MNs with complementary engineering technologies, aiming to inspire further research and innovation in microneedle technology for biomedical applications.
Collapse
Affiliation(s)
- Shengfei Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yihua Xu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Mingjian Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yawei Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
2
|
Gromer DJ, Plikaytis BD, McCullough MP, Wimalasena ST, Rouphael N. The Relationship between Immunogenicity and Reactogenicity of Seasonal Influenza Vaccine Using Different Delivery Methods. Vaccines (Basel) 2024; 12:809. [PMID: 39066447 PMCID: PMC11281354 DOI: 10.3390/vaccines12070809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccine immunogenicity and reactogenicity depend on recipient and vaccine characteristics. We hypothesized that healthy adults reporting higher reactogenicity from seasonal inactivated influenza vaccine (IIV) developed higher antibody titers compared with those reporting lower reactogenicity. We performed a secondary analysis of a randomized phase 1 trial of a trivalent IIV delivered by microneedle patch (MNP) or intramuscular (IM) injection. We created composite reactogenicity scores as exposure variables and used hemagglutination inhibition (HAI) titers as outcome variables. We used mixed-model analysis of variance to estimate geometric mean titers (GMTs) and titer fold change and modified Poisson generalized estimating equations to estimate risk ratios of seroprotection and seroconversion. Estimates of H3N2 GMTs were associated with the Systemic and Local scores among the IM group. Within the IM group, those with high reaction scores had lower baseline H3N2 GMTs and twice the titer fold change by day 28. Those with high Local scores had a greater probability of seroconversion. These results suggest that heightened reactogenicity to IM IIV is related to low baseline humoral immunity to an included antigen. Participants with greater reactogenicity developed greater titer fold change after 4 weeks, although the response magnitude was similar or lower compared with low-reactogenicity participants.
Collapse
Affiliation(s)
- Daniel J. Gromer
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
- Laney Graduate School, Emory University, Atlanta, GA 30307, USA
| | | | - Michele P. McCullough
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| | - Sonia Tandon Wimalasena
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA; (M.P.M.); (S.T.W.); (N.R.)
| |
Collapse
|
3
|
Li H, Anjani QK, Hutton ARJ, Paris JL, Moreno‐Castellanos N, Himawan A, Larrañeta E, Donnelly RF. Design of a Novel Delivery Efficiency Feedback System for Biphasic Dissolving Microarray Patches Based on Poly(Lactic Acid) and Moisture-Indicating Silica. Adv Healthc Mater 2024; 13:e2304082. [PMID: 38471772 PMCID: PMC11468354 DOI: 10.1002/adhm.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Dissolving microarray patches (DMAPs) represent an innovative approach to minimally invasive transdermal drug delivery, demonstrating efficacy in delivering both small and large therapeutic molecules. However, concerns raised in end-user surveys have hindered their commercialization efforts. One prevalent issue highlighted in these surveys is the lack of clear indicators for successful patch insertion and removal time. To address this challenge, a color-change-based feedback system is devised, which confirms the insertion and dissolution of DMAPs, aiming to mitigate the aforementioned problems. The approach combines hydrophilic needles containing model drugs (fluorescein sodium and fluorescein isothiocyanate (FITC)-dextran) with a hydrophobic poly(lactic acid) baseplate infused with moisture-sensitive silica gel particles. The successful insertion and subsequent complete dissolution of the needle shaft are indicated by the progressive color change of crystal violet encapsulated in the silica. Notably, distinct color alterations on the baseplate, observed 30 min and 1 h after insertion for FITC-dextran and fluorescein sodium DMAPs respectively, signal the full dissolution of the needles, confirming the complete cargo delivery and enabling timely patch removal. This innovative feedback system offers a practical solution for addressing end-user concerns and may significantly contribute to the successful commercialization of DMAPs by providing a visualized drug delivery method.
Collapse
Affiliation(s)
- Huanhuan Li
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
| | | | | | - Juan Luis Paris
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐IBIMA Plataforma BIONANDMálaga29590Spain
| | | | - Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyUniversitas HasanuddinMakassar90245Indonesia
| | - Eneko Larrañeta
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
| | | |
Collapse
|
4
|
Omidian H, Dey Chowdhury S. Swellable Microneedles in Drug Delivery and Diagnostics. Pharmaceuticals (Basel) 2024; 17:791. [PMID: 38931458 PMCID: PMC11206711 DOI: 10.3390/ph17060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
This manuscript explores the transformative potential of swellable microneedles (MNs) in drug delivery and diagnostics, addressing critical needs in medical treatment and monitoring. Innovations in hydrogel-integrated MN arrays facilitate controlled drug release, thereby expanding treatment options for chronic diseases and conditions that require precise dosage control. The review covers challenges, such as scalability, patient compliance, and manufacturing processes, as well as achievements in advanced manufacturing, biocompatibility, and versatile applications. Nonetheless, limitations in physiological responsiveness and long-term stability remain, necessitating further research in material innovation and integration with digital technologies. Future directions focus on expanding biomedical applications, material advancements, and regulatory considerations for widespread clinical adoption.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
5
|
Geisshüsler S, Nilsson FA, Ziak N, Kotkowska Z, Paolucci M, Green Buzhor M, Zoratto N, Johansen P, Leroux JC. Cyclodextrin microneedles for the delivery of a nanoparticle-based peptide antigen vaccine. Eur J Pharm Biopharm 2024; 198:114249. [PMID: 38467334 DOI: 10.1016/j.ejpb.2024.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
In recent years, microneedles (MNs) have gained considerable interest in drug formulation due to their non-invasive and patient-friendly nature. Dissolving MNs have emerged as a promising approach to enhance drug delivery across the skin in a painless manner without generating sharp waste and providing the possibility for self-administration. Cyclodextrins, a group of cyclic oligosaccharides, are well-established in pharmaceutical products due to their safety and unique ability to form inclusion complexes with various drug molecules. In this manuscript, we report the development and characterization of dissolving MNs composed of cyclodextrins for intradermal delivery of a cyclodextrin-based nanoparticulate vaccine. Different cyclodextrins were tested and the most promising candidates were fabricated into MNs by micromolding. The MNs' piercing effectiveness and drug permeation across the skin were tested ex vivo. Furthermore, in vivo studies were carried out to assess the skin's tolerance to cyclodextrin-based MNs, and to evaluate the immune response using a model peptide antigen in a mouse model. The data revealed that the MNs were well-tolerated and effective, even leading to dose-sparing effects. This study highlights the potential of cyclodextrin-based dissolving MNs as a versatile platform for intradermal vaccine delivery, providing a compatible matrix for nanoparticulate formulations to enhance immune responses.
Collapse
Affiliation(s)
- Silvana Geisshüsler
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Frida A Nilsson
- Department of Dermatology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Nicole Ziak
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Zuzanna Kotkowska
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland; Department of Dermatology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Marina Green Buzhor
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zürich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
6
|
Madani AF, Syauqi MA, Permatasari JA, Putri AA, M F, Permana AD. Development of Telmisartan Nanocrystal-Based Dissolving Microneedle for Brain Targeting via Trigeminal Pathway: A Potentially Promising Treatment for Alzheimer's with an Improved Pharmacokinetic Profile. ACS APPLIED BIO MATERIALS 2024; 7:2582-2593. [PMID: 38567491 DOI: 10.1021/acsabm.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Telmisartan (TMN), an angiotensin receptor blocker (ARB) drug, is being considered as an alternative therapy for Alzheimer's disease (ALZ). However, when taken orally, its low water solubility leads to a low bioavailability and brain concentration. To overcome this problem, TMN was formulated as nanocrystals (NC), then incorporated into dissolving microneedles (DMN) to enhance drug delivery to the brain via the trigeminal route on the face. TMN-NC was formulated with 1% PVA using the top-down method and stirred for 12 h, producing the smallest particle size of 132 ± 11 nm and showing a better release profile, reaching 89.51 ± 7.52% (2 times greater than pure TMN). TMN-NC-DMN with a combination of 15% PVA and 25% PVP showed optimal mechanical strength and penetration ability; they could dissolve completely within 15 min, and their surface pH was safe for the skin. The permeation test of TMN-NC-DMN showed the highest concentration, reaching 285.80 ± 32.12 μg/mL, compared to TMN-DMN and patch control, which only reached 87.17 ± 11.24 and 94.00 ± 11.09 μg/mL, respectively. The TMN-NC-DMN combination showed better bioavailability and was found to be well-delivered to the brain without any irritation to the skin. Pharmacokinetic parameters had a significant difference (p > 0.05) compared to other preparations, making it a promising treatment for ALZ.
Collapse
Affiliation(s)
- Aqilah F Madani
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Muhammad A Syauqi
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Jihan A Permatasari
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Annisa A Putri
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Fadel M
- Faculty of Medicine, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia
| |
Collapse
|
7
|
Vora LK, Sabri AH, Naser Y, Himawan A, Hutton ARJ, Anjani QK, Volpe-Zanutto F, Mishra D, Li M, Rodgers AM, Paredes AJ, Larrañeta E, Thakur RRS, Donnelly RF. Long-acting microneedle formulations. Adv Drug Deliv Rev 2023; 201:115055. [PMID: 37597586 DOI: 10.1016/j.addr.2023.115055] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara Naser
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aoife M Rodgers
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
8
|
Syafika N, Azis SBA, Enggi CK, Qonita HA, Mahmud TRA, Abizart A, Asri RM, Permana AD. Glucose-Responsive Microparticle-Loaded Dissolving Microneedles for Selective Delivery of Metformin: A Proof-of-Concept Study. Mol Pharm 2023; 20:1269-1284. [PMID: 36661193 DOI: 10.1021/acs.molpharmaceut.2c00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that is one of the most common health problems in the world, primarily type 2 DM (T2DM). Metformin (MTF), as the first-line treatment of DMT2, is effective in lowering glucose levels, but its oral administration causes problems, including gastrointestinal side effects, low bioavailability, and the risk of hypoglycemia. In this study, we formulated MTF into microparticles incorporating a glucose-responsive polymer (MP-MTF-GR), which could potentially increase the bioavailability and extend and control the release of MTF according to glucose levels. This system was delivered by dissolving microneedles (MP-MTF-GR-DMN), applied through the skin, thereby preventing gastrointestinal side effects of orally administered MTF. MP-MTF-GR was formulated using various concentrations of gelatin as a polymer combined with phenylboronic acid (PBA) as a glucose-responsive material. MP-MTF-GR was encapsulated in DMN using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) as DMN polymers. The physicochemical evaluation of MP-MTF-GR showed that MTF could be completely entrapped in MP with the percentage of MTF trapped increasing with increasing gelatin concentration without changing the chemical structure of MTF and producing stable MP. In addition, the results of the physicochemical evaluation of MP-MTF-GR-DMN showed that DMN had adequate mechanical strength properties and penetration ability and was stable to environmental changes. The results of the in vitro release and ex vivo permeation study on media with various concentrations of glucose showed that the release and permeation of MTF from the formula increased with increasing glucose levels in the media. The MP-MTF-GR-DMN formula successfully delivered MTF through the skin at 11.30 ± 0.29, 23.31 ± 1.64, 36.12 ± 3.77, and 53.09 ± 3.01 μg from PBS, PBS + glucose 1%, PBS + glucose 2%, and PBS + glucose 4%, respectively, at 24 h, which indicates glucose-responsive permeation and release behavior. The formula developed was also proven to be nontoxic based on hemolysis tests. Importantly, the in vivo study on the rat model showed that this combination approach could provide a better glucose reduction compared to other routes, reducing the blood glucose level to normal levels after 3 h and maintaining this level for 8 h. Furthermore, this approach did not change the skin moisture of the rats. This MP-MTF-GR-DMN is a promising alternative to MTF delivery to overcome MTF problems and increase the effectiveness of T2DM therapy.
Collapse
Affiliation(s)
- Nur Syafika
- Faculty of Pharmacy, Hasanuddin University, Makassar90245, Indonesia
| | | | | | - Hanin Azka Qonita
- Faculty of Pharmacy, Hasanuddin University, Makassar90245, Indonesia
| | | | - Ahmad Abizart
- Faculty of Medicine, Hasanuddin University, Makassar90245, Indonesia
| | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar90245, Indonesia
| |
Collapse
|
9
|
Aziz AYR, Hasir NA, Imran NBP, Hamdan MF, Mahfufah U, Wafiah N, Arjuna A, Utami RN, Permana AD. Development of Hydrogel-Forming Microneedles for Transdermal Delivery of Albendazole from Liquid Reservoir. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:1101-1120. [DOI: 10.1080/09205063.2022.2157671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Nurul Afia Hasir
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | | | - Ulfah Mahfufah
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Nurfadilla Wafiah
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Andi Arjuna
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Rifka Nurul Utami
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
10
|
Mahfufah U, Aisha Fitri Sultan N, Maqhfirah Nurul Fitri A, Elim D, Alif Sya'ban Mahfud M, Wafiah N, Ardita Friandini R, Chabib L, Aliyah, Dian Permana A. Application of multipolymers system in the development of hydrogel-forming microneedle integrated with polyethylene glycol reservoir for transdermal delivery of albendazole. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Preparation of particle-attached microneedles using a dry coating process. J Control Release 2022; 351:1003-1016. [DOI: 10.1016/j.jconrel.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022]
|
12
|
The clinical and translational prospects of microneedle devices, with a focus on insulin therapy for diabetes mellitus as a case study. Int J Pharm 2022; 628:122234. [PMID: 36191817 DOI: 10.1016/j.ijpharm.2022.122234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
Microneedles have the clinical advantage of being able to deliver complex drugs across the skin in a convenient and comfortable manner yet haven't successfully transitioned to medical practice. Diabetes mellitus is a complicated disease, which is commonly treated with multiple daily insulin injections, contributing to poor treatment adherence. Firstly, this review determines the clinical prospect of microneedles, alongside considerations that ought to be addressed before microneedle technology can be translated from bench to bedside. Thereafter, we use diabetes as a case study to consider how microneedle-based-technology may be successfully harnessed. Here, publications referring to insulin microneedles were evaluated to understand whether insertion efficiency, angle of insertion, successful dose delivery, dose adjustability, material biocompatibility and therapeutic stability are being addressed in early stage research. Moreover, over 3,000 patents from 1970-2019 were reviewed with the search term '"microneedle" AND "insulin"' to understand the current status of the field. In conclusion, the reporting of early stage microneedle research demonstrated a lack of consistency relating to the translational factors addressed. Additionally, a more rational design, based on a patient-centred approach is required before microneedle-based delivery systems can be used to revolutionise the lives of people living with diabetes following regulatory approval.
Collapse
|
13
|
Zhu T, Zhang W, Jiang P, Zhou S, Wang C, Qiu L, Shi H, Cui P, Wang J. Progress in Intradermal and Transdermal Gene Therapy with Microneedles. Pharm Res 2022; 39:2475-2486. [PMID: 36008737 DOI: 10.1007/s11095-022-03376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023]
Abstract
Gene therapy is one of the most widely studied treatments and has the potential to treat a variety of intractable diseases. The skin's limited permeability, as the body's initial protective barrier, drastically inhibits the delivery effect of gene medicine. Given the potential adverse effects and physicochemical features of the medications, improving generic drug penetration into the skin barrier and achieving an effective level of target tissues remains a challenge. Microneedles have made tremendous improvements in aided gene transfer and medication delivery as a unique method. Microneedles offer the advantage of being minimally invasive and painless, as well as the ability to distribute gene medicines straight through the stratum corneum. Microneedles have been used to penetrate skin tissue with various nucleic acids and medicines in recent years, allowing for a wide range of applications in the treatment of skin ailments. This review focuses on skin-related disorders and immunity, and it primarily discusses the progress of microneedle transdermal gene therapy in recent years. It also complements the current major vectors and related microneedle gene therapy applications.
Collapse
Affiliation(s)
- Ting Zhu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Wenya Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, People's Republic of China.
- The Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, People's Republic of China.
| |
Collapse
|
14
|
Li W, Chen JY, Terry RN, Tang J, Romanyuk A, Schwendeman SP, Prausnitz MR. Core-shell microneedle patch for six-month controlled-release contraceptive delivery. J Control Release 2022; 347:489-499. [PMID: 35550913 DOI: 10.1016/j.jconrel.2022.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
There is a tremendous need for simple-to-administer, long-acting contraception, which can increase access to improved family planning. Microneedle (MN) patches enable simple self-administration and have previously been formulated for 1-2 months' controlled release of contraceptive hormone using monolithic polymer/drug MN designs having first-order release kinetics. To achieve zero-order release, we developed a novel core-shell MN patch where the shell acts as a rate-controlling membrane to delay release of a contraceptive hormone, levonorgestrel (LNG), for 6 months. In this approach, LNG was encapsulated in a poly(lactide-co-glycolide) (PLGA) core surrounded by a poly(l-lactide) (PLLA) shell and a poly(D,l-lactide) (PLA) cap that were fabricated by sequential casting into a MN mold. Upon application to skin, the core-shell MNs utilized an effervescent interface to separate from the patch backing within 1 min. The core-shell design limited the initial 24 h burst release of LNG to 5.8 ± 0.5% and achieved roughly zero-order LNG release for 6.2 ± 0.1 months in vitro. A monolithic MN patch formulated with the same LNG and PLGA core, but without the rate-controlling PLLA shell and PLA cap had a larger LNG burst release of 22.6 ± 2.0% and achieved LNG release for just 2.1 ± 0.2 months. This study provides the first core-shell MN patch for controlled months-long drug release and supports the development of long-acting contraception using a simple-to-administer, twice-per-year MN patch.
Collapse
Affiliation(s)
- Wei Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
| | - Jonathan Yuxuan Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Richard N Terry
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jie Tang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrey Romanyuk
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
15
|
Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The Role of 3D Printing Technology in Microengineering of Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106392. [PMID: 35362226 DOI: 10.1002/smll.202106392] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Microneedles (MNs) are minimally invasive devices, which have gained extensive interest over the past decades in various fields including drug delivery, disease diagnosis, monitoring, and cosmetics. MN geometry and shape are key parameters that dictate performance and therapeutic efficacy, however, traditional fabrication methods, such as molding, may not be able to offer rapid design modifications. In this regard, the fabrication of MNs using 3D printing technology enables the rapid creation of complex MN prototypes with high accuracy and offers customizable MN devices with a desired shape and dimension. Moreover, 3D printing shows great potential in producing advanced transdermal drug delivery systems and medical devices by integrating MNs with a variety of technologies. This review aims to demonstrate the advantages of exploiting 3D printing technology as a new tool to microengineer MNs. Various 3D printing methods are introduced, and representative MNs manufactured by such approaches are highlighted in detail. The development of advanced MN devices is also included. Finally, clinical translation and future perspectives for the development of MNs using 3D printing are discussed.
Collapse
Affiliation(s)
- Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Emma McAlister
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
16
|
Babity S, Couture F, Campos EVR, Hedtrich S, Hagen R, Fehr D, Bonmarin M, Brambilla D. A Naked Eye-Invisible Ratiometric Fluorescent Microneedle Tattoo for Real-Time Monitoring of Inflammatory Skin Conditions. Adv Healthc Mater 2022; 11:e2102070. [PMID: 34921529 DOI: 10.1002/adhm.202102070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Indexed: 01/05/2023]
Abstract
The field of portable healthcare monitoring devices has an urgent need for the development of real-time, noninvasive sensing and detection methods for various physiological analytes. Currently, transdermal sensing techniques are severely limited in scope (i.e., measurement of heart rate or sweat composition), or else tend to be invasive, often needing to be performed in a clinical setting. This study proposes a minimally invasive alternative strategy, consisting of using dissolving polymeric microneedles to deliver naked eye-invisible functional fluorescent ratiometric microneedle tattoos directly to the skin for real-time monitoring and quantification of physiological and pathological parameters. Reactive oxygen species are overexpressed in the skin in association with various pathological conditions. Here, one demonstrates for the first time the microneedle-based delivery to the skin of active fluorescent sensors in the form of an invisible, ratiometric microneedle tattoo capable of sensing reactive oxygen species in a reconstructed human-based skin disease model, as well as an in vivo model of UV-induced dermal inflammation. One also elaborates a universal ratiometric quantification concept coupled with a custom-built, multiwavelength portable fluorescence detection system. Fully realized, this approach presents an opportunity for the minimally invasive monitoring of a broad range of physiological parameters through the skin.
Collapse
Affiliation(s)
- Samuel Babity
- Faculté de Pharmacie Université de Montréal C.P. 6128, Succursale Centre‐ville, Montréal Québec H3C 3J7 Canada
| | - Frédéric Couture
- TransBIOTech 201 Monseigneur‐Bourget Lévis Québec G6V 6Z9 Canada
- Nutraceuticals and Functional Foods Institute (INAF) Université Laval, Québec Québec G1K 7P4 Canada
- Centre intégré de santé et de services sociaux de Chaudière‐Appalaches Lévis Québec G6E 3E2 Canada
| | - Estefânia V. R. Campos
- Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall Vancouver British Columbia V6T 1Z3 Canada
- Human and Natural Sciences Center Federal University of ABC Santo Andre SP 09210‐580 Brazil
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences University of British Columbia 2405 Wesbrook Mall Vancouver British Columbia V6T 1Z3 Canada
| | - Raphael Hagen
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Daniel Fehr
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Mathias Bonmarin
- School of Engineering Zurich University of Applied Sciences Technikumstrasse 9 Winterthur 8400 Switzerland
| | - Davide Brambilla
- Faculté de Pharmacie Université de Montréal C.P. 6128, Succursale Centre‐ville, Montréal Québec H3C 3J7 Canada
| |
Collapse
|
17
|
Wang Y, Ma G, Gao G, Tao J, Cao W, Sun H, Ma F, Zhang Y, Wei Y, Tian M. Bioimaging of Dissolvable Microneedle Arrays: Challenges and Opportunities. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9758491. [PMID: 36034102 PMCID: PMC9368514 DOI: 10.34133/2022/9758491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
The emergence of microneedle arrays (MNAs) as a novel, simple, and minimally invasive administration approach largely addresses the challenges of traditional drug delivery. In particular, the dissolvable MNAs act as a promising, multifarious, and well-controlled platform for micro-nanotransport in medical research and cosmetic formulation applications. The effective delivery mostly depends on the behavior of the MNAs penetrated into the body, and accurate assessment is urgently needed. Advanced imaging technologies offer high sensitivity and resolution visualization of cross-scale, multidimensional, and multiparameter information, which can be used as an important aid for the evaluation and development of new MNAs. The combination of MNA technology and imaging can generate considerable new knowledge in a cost-effective manner with regards to the pharmacokinetics and bioavailability of active substances for the treatment of various diseases. In addition, noninvasive imaging techniques allow rapid, receptive assessment of transdermal penetration and drug deposition in various tissues, which could greatly facilitate the translation of experimental MNAs into clinical application. Relying on the recent promising development of bioimaging, this review is aimed at summarizing the current status, challenges, and future perspective on in vivo assessment of MNA drug delivery by various imaging technologies.
Collapse
Affiliation(s)
- Yanni Wang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gehua Ma
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Guangzhi Gao
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ji Tao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Haohao Sun
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
- Life Science Research Center, Frontier Crossing Institute, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yilong Zhang
- Engineering Research Center of Intelligent Sensing and System, Ministry of Education, Hangzhou 310023, China
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
18
|
Aich K, Singh T, Dang S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv Transl Res 2021; 12:1556-1568. [PMID: 34564827 DOI: 10.1007/s13346-021-01056-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Transdermal drug delivery is a viable and clinically proven route of administration. This route specifically requires overcoming the mechanical barrier provided by the Stratum Corneum of epidermis and vascular and nervous networks within the dermis. First-generation Transdermal patches and second-generation iontophoretic patches have been translated into commercial clinical products successfully. The current review reports different studies that aim to enhance the transdermal delivery of biopharmaceutical using microneedles and their effect on drug delivery. Microneedles (MN) are the micron-scale hybrid between transdermal patches and hypodermic syringes. Microneedles are tested and proven to show better delivery of the drugs, overcoming the drawbacks of hypodermic syringes. Multiple microneedles designs have been fabricated i.e. solid, coated, hollow, and polymer microneedles. Hollow microneedles are shorter in length but similar to hypodermic needles and have pore for infusion of liquid formulation of the drug. Solid microneedles a patch is applied after creating a hole in the skin; Drugs are coated on the surface of Coated microneedles; Polymer microneedles can be of different types like dissolving, non-dissolving or hydrogel-forming made up of polymers. Various advantages and limitations associated with the use of these techniques are discussed. Delivery of peptide and protein molecules with microneedles represents a significant opportunity for a better clinical outcome and hence value creation compared to standard injectable routes of administration. The advancement in various formulation and microfabrication techniques are currently being focused to aid the delivery of protein drugs via microneedles. The most recent advances and limitations in Microneedles -mediated protein and peptide delivery were discussed.
Collapse
Affiliation(s)
- Krishanu Aich
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Tanya Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
19
|
The role of microneedle arrays in drug delivery and patient monitoring to prevent diabetes induced fibrosis. Adv Drug Deliv Rev 2021; 175:113825. [PMID: 34111467 DOI: 10.1016/j.addr.2021.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Diabetes affects approximately 450 million adults globally. If not effectively managed, chronic hyperglycaemia causes tissue damage that can develop into fibrosis. Fibrosis leads to end-organ complications, failure of organ systems occurs, which can ultimately cause death. One strategy to tackle end-organ complications is to maintain normoglycaemia. Conventionally, insulin is administered subcutaneously. Whilst effective, this delivery route shows several limitations, including pain. The transdermal route is a favourable alternative. Microneedle (MN) arrays are minimally invasive and painless devices that can enhance transdermal drug delivery. Convincing evidence is provided on MN-mediated insulin delivery. MN arrays can also be used as a diagnostic tool and monitor glucose levels. Furthermore, sophisticated MN array-based systems that integrate glucose monitoring and drug delivery into a single device have been designed. Therefore, MN technology has potential to revolutionise diabetes management. This review describes the current applications of MN technology for diabetes management and how these could prevent diabetes induced fibrosis.
Collapse
|
20
|
Hutton ARJ, Kirkby M, Larrañeta E, Donnelly RF. Designing a unique feedback mechanism for hydrogel-forming microneedle array patches: a concept study. Drug Deliv Transl Res 2021; 12:838-850. [PMID: 34333728 PMCID: PMC8325539 DOI: 10.1007/s13346-021-01033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/02/2022]
Abstract
Although microneedle array patch (MAP) technology is reaching ever closer to regulatory approval, it remains imperative that approaches to further improve patient acceptance are still explored. Addressing this perception, a water-filled reservoir was incorporated into a hydrogel-forming MAP system to provide a novel feedback mechanism. To confirm successful MAP skin insertion, the end user would both hear and feel the rupture of the water-filled reservoir. Interestingly, a 50-µL water-filled reservoir ruptured at 30.27 ± 0.39 N, which has previously been shown as the mean application force for MN insertion in human subjects following appropriate instruction. Importantly, no significant difference in % cumulative permeation of FITC-dextran 10 kDa and fluorescein sodium after 24 h was observed between a 50-µL reservoir and the current method of application that has been successfully used in both in vitro and in vivo studies (p > 0.05). Therefore, as drug delivery was not affected, this proof-of-concept study has shown that a water-filled reservoir feedback mechanism has the potential to serve as a viable tool for consistent MAP skin insertion.
Collapse
Affiliation(s)
- Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Melissa Kirkby
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
21
|
Paredes AJ, Ramöller IK, McKenna PE, Abbate MT, Volpe-Zanutto F, Vora LK, Kilbourne-Brook M, Jarrahian C, Moffatt K, Zhang C, Tekko IA, Donnelly RF. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv Drug Deliv Rev 2021; 173:331-348. [PMID: 33831475 DOI: 10.1016/j.addr.2021.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.
Collapse
|
22
|
Rojekar S, Vora LK, Tekko IA, Volpe-Zanutto F, McCarthy HO, Vavia PR, Donnelly RF. Etravirine-loaded dissolving microneedle arrays for long-acting delivery. Eur J Pharm Biopharm 2021; 165:41-51. [PMID: 33971273 DOI: 10.1016/j.ejpb.2021.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
A key challenge of HIV treatment with multiple antiretroviral drugs is patient adherence. Thus, there is an urgent need for long-acting depot systems for delivering drugs over an extended duration. Although the parenteral route is preferred for depot systems, it is associated with obvious drawbacks, such as painful injections, potentially-contaminated sharps waste, and the necessity of trained healthcare personnel for administration. Amongst a small number of alternatives in development microneedles are versatile delivery systems enabling systemic drug delivery and potentially improving patient adherence due to their capacity for self-administration. We have developed dissolving microneedle (DMNs) embedded with etravirine nanosuspension (ETR NS) as a long-acting HIV therapy to improve patient adherence. The ETR NS prepared by sonoprecipitation yielded particle sizes of 764 ± 96.2 nm, polydispersity indices of of 0.23 ± 0.02, and zeta potentials of -19.75 ± 0.55 mV. The DMNs loaded with ETR NS demonstrated 12.84 ± 1.33% ETR deposition in ex-vivo neonatal porcine skin after 6 h application. In in vivo rat pharmacokinetic studies, the Cmax exhibited by DMNs loaded with ETR powder and ETR NS were 158 ± 10 ng/mL and 177 ± 30 ng/mL, respectively. DMN groups revealed a higher t1/2, Tmax, and mean residence time compared to intravenous ETR solutions, suggesting the long-acting potential of etravirine delivered intradermally using DMNs.
Collapse
Affiliation(s)
- Satish Rojekar
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase III Funded, Mumbai 400019, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Syria
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase III Funded, Mumbai 400019, India.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
23
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
24
|
Makvandi P, Kirkby M, Hutton ARJ, Shabani M, Yiu CKY, Baghbantaraghdari Z, Jamaledin R, Carlotti M, Mazzolai B, Mattoli V, Donnelly RF. Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion. NANO-MICRO LETTERS 2021; 13:93. [PMID: 34138349 PMCID: PMC8006208 DOI: 10.1007/s40820-021-00611-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 05/14/2023]
Abstract
Transdermal microneedle (MN) patches are a promising tool used to transport a wide variety of active compounds into the skin. To serve as a substitute for common hypodermic needles, MNs must pierce the human stratum corneum (~ 10 to 20 µm), without rupturing or bending during penetration. This ensures that the cargo is released at the predetermined place and time. Therefore, the ability of MN patches to sufficiently pierce the skin is a crucial requirement. In the current review, the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared. This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice. Factors that affect insertion (e.g., geometry, material composition and cross-linking of MNs), along with recent advancements in developed strategies (e.g., insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography) to improve the skin penetration are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Melissa Kirkby
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Majid Shabani
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Zahra Baghbantaraghdari
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125, Naples, Italy
| | - Rezvan Jamaledin
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125, Naples, Italy
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Italian Institute of Technology, 80125, Naples, Italy
| | - Marco Carlotti
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Barbara Mazzolai
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Virgilio Mattoli
- Istituto Italiano Di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
25
|
McAlister E, Dutton B, Vora LK, Zhao L, Ripolin A, Zahari DSZBPH, Quinn HL, Tekko IA, Courtenay AJ, Kelly SA, Rodgers AM, Steiner L, Levin G, Levy‐Nissenbaum E, Shterman N, McCarthy HO, Donnelly RF. Directly Compressed Tablets: A Novel Drug-Containing Reservoir Combined with Hydrogel-Forming Microneedle Arrays for Transdermal Drug Delivery. Adv Healthc Mater 2021; 10:e2001256. [PMID: 33314714 DOI: 10.1002/adhm.202001256] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/15/2020] [Indexed: 01/19/2023]
Abstract
Microneedle (MN) patches consist of a hydrogel-forming MN array and a drug-containing reservoir. Drug-containing reservoirs documented in the literature include polymeric films and lyophilized wafers. While effective, both reservoir formulations are aqueous based, and so degradation can occur during formulation and drying for drugs inherently unstable in aqueous media. The preparation and characterization of novel, nonaqueous-based, directly compressed tablets (DCTs) for use in combination with hydrogel-forming MN arrays are described for the first time. In this work, a range of drug molecules are investigated. Precipitation of amoxicillin (AMX) and primaquine (PQ) in conventional hydrogel-forming MN arrays leads to use of poly(vinyl alcohol)-based MN arrays. Following in vitro permeation studies, in vivo pharmacokinetic studies are conducted in rats with MN patches containing AMX, levodopa/carbidopa (LD/CD), and levofloxacin (LVX). Therapeutically relevant concentrations of AMX (≥2 µg mL-1 ), LD (≥0.5 µg mL-1 ), and LVX (≥0.2 µg mL-1 ) are successfully achieved at 1, 2, and 1 h, respectively. Thus, the use of DCTs offers promise to expand the range of drug molecules that can be delivered transdermally using MN patches.
Collapse
Affiliation(s)
- Emma McAlister
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Bridie Dutton
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Lalitkumar K. Vora
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Li Zhao
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Anastasia Ripolin
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | | | - Helen L. Quinn
- Health and Social Care Board 12‐22 Linenhall Street Belfast BT2 8BS Ireland
| | - Ismaiel A. Tekko
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Aaron J. Courtenay
- School of Pharmacy and Pharmaceutical Sciences Ulster University Cromore Road Coleraine BT52 1SA Ireland
| | - Stephen A. Kelly
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Aoife M. Rodgers
- Department of Biology Maynooth University Co. Kildare Maynooth Ireland
| | - Lilach Steiner
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | - Galit Levin
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | | | - Nava Shterman
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | - Helen O. McCarthy
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Ryan F. Donnelly
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| |
Collapse
|
26
|
Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res 2021; 12:758-791. [PMID: 33474709 PMCID: PMC7817074 DOI: 10.1007/s13346-021-00909-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Transdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems.
Collapse
|
27
|
McAlister E, Kearney MC, Martin EL, Donnelly RF. From the laboratory to the end-user: a primary packaging study for microneedle patches containing amoxicillin sodium. Drug Deliv Transl Res 2021; 11:2169-2185. [PMID: 33452653 PMCID: PMC8421291 DOI: 10.1007/s13346-020-00883-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2020] [Indexed: 11/24/2022]
Abstract
Abstract As microneedle (MN) patches progress towards commercialisation, there is a need to address issues surrounding their translation from the laboratory to the end-user. One important aspect of MN patches moving forward is appropriate primary packaging. This research focuses on MN patches containing amoxicillin (AMX) sodium for the potential treatment of neonatal sepsis in hot and humid countries. A MN patch consists of a hydrogel-forming MN array and a drug-containing reservoir. Improper primary packaging in hot and humid countries may result in degradation of active pharmaceutical ingredients, with the use of substandard medicines a major health concern. The research presented here, for the first time, seeks to investigate the integrity of MN patches in different primary packaging when stored under accelerated storage conditions, according to international guidelines. At pre-defined intervals, the performance of the MN patch was investigated. Major causes of drug instability are moisture and temperature. To avoid unnecessary degradation, suitable primary packaging was sought. After 168 days, the percentage of AMX sodium recovered from drug-containing reservoirs packaged in Protect™ 470 foil was 103.51 ± 7.03%. However, packaged in poly(ester) foil, the AMX sodium content decreased significantly (p = 0.0286), which is likely due to the degradation of AMX sodium by the imbibed moisture. Therefore, convincing evidence was provided as to the importance of investigating the stability of MN patches in primary packaging intended for MN-mediated transdermal delivery so that they are ‘fit for purpose’ when it reaches the end-user. Future work will include qualitative studies to assess MN patch usability. Graphical abstract ![]()
Collapse
Affiliation(s)
- Emma McAlister
- Chair in Pharmaceutical Technology, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Mary-Carmel Kearney
- Chair in Pharmaceutical Technology, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - E Linzi Martin
- Chair in Pharmaceutical Technology, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- Chair in Pharmaceutical Technology, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
28
|
Permana AD, Nainu F, Moffatt K, Larrañeta E, Donnelly RF. Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1690. [PMID: 33401339 DOI: 10.1002/wnan.1690] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Numerous diseases have been reported to affect the lymphatic system. As such, several strategies have been developed to deliver chemotherapeutics to this specific network of tissues and associated organs. Nanotechnology has been exploited as one of the main approaches to improve the lymphatic uptake of drugs. Different nanoparticle approaches utilized for both active and passive targeting of the lymphatic system are discussed here. Specifically, due to the rich abundance of lymphatic capillaries in the dermis, particular attention is given to this route of administration, as intradermal administration could potentially result in higher lymphatic uptake compared to other routes of administration. Recently, progress in microneedle research has attracted particular attention as an alternative for the use of conventional hypodermic injections. The benefits of microneedles, when compared to intradermal injection, are subsequently highlighted. Importantly, microneedles exhibit particular benefit in relation to therapeutic targeting of the lymphatic system, especially when combined with nanoparticles, which are further discussed. However, despite the apparent benefits provided by this combination approach, further comprehensive preclinical and clinical studies are now necessary to realize the potential extent of this dual-delivery platform, further taking into consideration eventual usability and acceptability in the intended patient end-users. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kurtis Moffatt
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
29
|
Sabri AH, Cater Z, Gurnani P, Ogilvie J, Segal J, Scurr DJ, Marlow M. Intradermal delivery of imiquimod using polymeric microneedles for basal cell carcinoma. Int J Pharm 2020; 589:119808. [DOI: 10.1016/j.ijpharm.2020.119808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023]
|
30
|
Bae WG, Ko H, So JY, Yi H, Lee CH, Lee DH, Ahn Y, Lee SH, Lee K, Jun J, Kim HH, Jeon NL, Jung W, Song CS, Kim T, Kim YC, Jeong HE. Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci Transl Med 2020; 11:11/503/eaaw3329. [PMID: 31366579 DOI: 10.1126/scitranslmed.aaw3329] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/10/2019] [Indexed: 11/02/2022]
Abstract
A flexible microneedle patch that can transdermally deliver liquid-phase therapeutics would enable direct use of existing, approved drugs and vaccines, which are mostly in liquid form, without the need for additional drug solidification, efficacy verification, and subsequent approval. Specialized dissolving or coated microneedle patches that deliver reformulated, solidified therapeutics have made considerable advances; however, microneedles that can deliver liquid drugs and vaccines still remain elusive because of technical limitations. Here, we present a snake fang-inspired microneedle patch that can administer existing liquid formulations to patients in an ultrafast manner (<15 s). Rear-fanged snakes have an intriguing molar with a groove on the surface, which enables rapid and efficient infusion of venom or saliva into prey. Liquid delivery is based on surface tension and capillary action. The microneedle patch uses multiple open groove architectures that emulate the grooved fangs of rear-fanged snakes: Similar to snake fangs, the microneedles can rapidly and efficiently deliver diverse liquid-phase drugs and vaccines in seconds under capillary action with only gentle thumb pressure, without requiring a complex pumping system. Hydrodynamic simulations show that the snake fang-inspired open groove architectures enable rapid capillary force-driven delivery of liquid formulations with varied surface tensions and viscosities. We demonstrate that administration of ovalbumin and influenza virus with the snake fang-inspired microneedle patch induces robust antibody production and protective immune response in guinea pigs and mice.
Collapse
Affiliation(s)
- Won-Gyu Bae
- Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea.
| | - Hangil Ko
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Young So
- Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Hoon Yi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chan-Ho Lee
- Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yujin Ahn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Hyeon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyunghun Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joonha Jun
- Department of Electrical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Hyoung-Ho Kim
- Department of Mechanical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
31
|
Jeong HR, Jun H, Cha HR, Lee JM, Park JH. Safe Coated Microneedles with Reduced Puncture Occurrence after Administration. MICROMACHINES 2020; 11:mi11080710. [PMID: 32707873 PMCID: PMC7464251 DOI: 10.3390/mi11080710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/25/2023]
Abstract
The goal of this study is the preparation of safer coated microneedles so that tips remaining after the initial use are less likely to be reinserted on a second use. Twelve groups of uncoated microneedles (u-MNs) were prepared from the combination of three different aspect ratios (height to base width) and four kinds of polymer (polyethylene (PE), polypropylene (PP), nylon and polylactic acid (PLA)). After coating the u-MNs with polyvinyl alcohol formulation to make coated MNs (c-MNs), the force displacement of the u-MNs and the c-MNs was measured. The aspect ratio was reduced from 2.2, 2.5 and 3.0 with u-MNs to 1.3, 1.4 and 1.6 with c-MNs, respectively, after the coating formulation was applied to the MNs. All PLA MNs had a puncture performance of more than 95%. However, the puncture performance of u-MNs made of PE and of PP with a 3.0 aspect ratio was only 8% and 53%, respectively, whereas the rates of c-MNs made of PE and of PP were 82% and 95%, respectively. In animal experiments with PP MNs with a 3.0 aspect ratio, the 59% rate of puncture performance with u-MNs increased to above 96% with c-MNs and fell to 13% for r-MNs. Safe c-MNs can overcome the disadvantages of standard c-MNs by reducing the probable contamination of remaining tips after use. Safe c-MNs have advantages over standard c-MNs in terms of humidity resistance, reasonable cost, sterilization process and short processing time through the separate process of u-MN preparation and simple dip-coating.
Collapse
Affiliation(s)
- Hye-Rin Jeong
- Department of Bionano Technology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Hyesun Jun
- QuadMedicine R&D Centre, QuadMedicine, Inc., Seongnam 13209, Korea;
| | - Hye-Ran Cha
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-R.C.); (J.M.L.)
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea; (H.-R.C.); (J.M.L.)
| | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Gyeonggi-do 13120, Korea;
- Correspondence:
| |
Collapse
|
32
|
Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm Res 2020; 37:117. [PMID: 32488611 PMCID: PMC7266419 DOI: 10.1007/s11095-020-02844-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
The success of protein, peptide and antibody based therapies is evident - the biopharmaceuticals market is predicted to reach $388 billion by 2024 [1], and more than half of the current top 20 blockbuster drugs are biopharmaceuticals. However, the intrinsic properties of biopharmaceuticals has restricted the routes available for successful drug delivery. While providing 100% bioavailability, the intravenous route is often associated with pain and needle phobia from a patient perspective, which may translate as a reluctance to receive necessary treatment. Several non-invasive strategies have since emerged to overcome these limitations. One such strategy involves the use of microneedles (MNs), which are able to painlessly penetrate the stratum corneum barrier to dramatically increase transdermal drug delivery of numerous drugs. This review reports the wealth of studies that aim to enhance transdermal delivery of biopharmaceutics using MNs. The true potential of MNs as a drug delivery device for biopharmaceuticals will not only rely on acceptance from prescribers, patients and the regulatory authorities, but the ability to upscale MN manufacture in a cost-effective manner and the long term safety of MN application. Thus, the current barriers to clinical translation of MNs, and how these barriers may be overcome are also discussed.
Collapse
|
33
|
Al-Kasasbeh R, Brady AJ, Courtenay AJ, Larrañeta E, McCrudden MTC, O'Kane D, Liggett S, Donnelly RF. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv Transl Res 2020; 10:690-705. [PMID: 32103450 PMCID: PMC7228965 DOI: 10.1007/s13346-020-00727-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hydrogel-forming microneedle array patches (MAPs) have been proposed as viable clinical tools for patient monitoring purposes, providing an alternative to traditional methods of sample acquisition, such as venepuncture and intradermal sampling. They are also undergoing investigation in the management of non-melanoma skin cancers. In contrast to drug or vaccine delivery, when only a small number of MAP applications would be required, hydrogel MAPs utilised for sampling purposes or for tumour eradication would necessitate regular, repeat applications. Therefore, the current study was designed to address one of the key translational aspects of MAP development, namely patient safety. We demonstrate, for the first time in human volunteers, that repeat MAP application and wear does not lead to prolonged skin reactions or prolonged disruption of skin barrier function. Importantly, concentrations of specific systemic biomarkers of inflammation (C-reactive protein (CRP); tumour necrosis factor-α (TNF-α)); infection (interleukin-1β (IL-1β); allergy (immunoglobulin E (IgE)) and immunity (immunoglobulin G (IgG)) were all recorded over the course of this fixed study period. No biomarker concentrations above the normal, documented adult ranges were recorded over the course of the study, indicating that no systemic reactions had been initiated in volunteers. Building upon the results of this study, which serve to highlight the safety of our hydrogel MAP, we are actively working towards CE marking of our MAP technology as a medical device.
Collapse
Affiliation(s)
- Rehan Al-Kasasbeh
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aaron J Brady
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Belfast Health and Social Care Trust, Belfast City Hospital, 51 Lisburn Road, Belfast, BT9 7AB, UK
| | - Aaron J Courtenay
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Donal O'Kane
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast, BT12 6BA, UK
| | - Stephen Liggett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
34
|
Ramöller IK, McAlister E, Bogan A, Cordeiro AS, Donnelly RF. Novel Design Approaches in the Fabrication of Polymeric Microarray Patches via Micromoulding. MICROMACHINES 2020; 11:mi11060554. [PMID: 32486123 PMCID: PMC7345874 DOI: 10.3390/mi11060554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
The focus on novel systems for transdermal delivery of therapeutic agents has increased considerably over recent years, as this administration route comes with many advantages. Polymeric microarray patches (MAPs) are minimally invasive devices that enable systemic delivery of a wide range of drugs by overcoming the outer skin barrier. Conventionally, MAPs fabricated by micromoulding have a low needle density. In this study, the performance of hydrogel-forming MAPs cast using novel industrially manufactured micromoulds with a high needle density (600 needles/0.75 cm2) was compared to that of MAPs obtained using conventional moulds with a lower density (196 needles/0.89 cm2). Surrounding holders for micromoulds were designed for time-efficient fabrication of MAPs. The influence of needle densities on mechanical strength, insertion efficiency and in vitro permeation of ibuprofen sodium (IBU) was analysed. Insertion of both MAPs into an artificial skin model and neonatal porcine skin was comparable. No significant difference was observed in permeation studies of IBU (p > 0.05), with a delivery of 8.7 ± 1.7 mg for low-density and 9.5 ± 0.1 mg for high-density MAPs within 24 h. This highlights the potential of these novel micromoulds for manufacturing polymeric MAPs with a higher needle density for future applications.
Collapse
|
35
|
Shim DH, Nguyen TT, Park PG, Kim MJ, Park BW, Jeong HR, Kim DS, Joo HW, Choi SO, Park JH, Lee JM. Development of Botulinum Toxin A-Coated Microneedles for Treating Palmar Hyperhidrosis. Mol Pharm 2019; 16:4913-4919. [DOI: 10.1021/acs.molpharmaceut.9b00794] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Thuy Trang Nguyen
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | | | | | | | - Hye-Rin Jeong
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Dae-Sung Kim
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Hyun Woo Joo
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Seong-O Choi
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jung-Hwan Park
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | | |
Collapse
|
36
|
Rodgers AM, Cordeiro AS, Donnelly RF. Technology update: dissolvable microneedle patches for vaccine delivery. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:379-398. [PMID: 31572025 PMCID: PMC6756839 DOI: 10.2147/mder.s198220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Despite vaccination representing one of the greatest advances of modern preventative medicine, there remain significant challenges in vaccine distribution, delivery and compliance. Dissolvable microarray patches or dissolving microneedles (DMN) have been proposed as an innovative vaccine delivery platform that could potentially revolutionize vaccine delivery and circumvent many of the challenges faced with current vaccine strategies. DMN, due to their ease of use, lack of elicitation of pain response, self-disabling nature and ease of transport and distribution, offer an attractive delivery option for vaccines. Additionally, as DMN inherently targets the uppermost skin layers, they facilitate improved vaccine efficacy, due to direct targeting of skin antigen-presenting cells. A plethora of publications have demonstrated the efficacy of DMN vaccination for a range of vaccines, with influenza receiving particular attention. However, before the viable adoption of DMN for vaccination purposes in a clinical setting, a number of fundamental questions must be addressed. Accordingly, this review begins by introducing some of the key barriers faced by current vaccination approaches and how DMN can overcome these challenges. We introduce some of the recent advances in the field of DMN technology, highlighting the potential impact DMN could have, particularly in countries of the developing world. We conclude by reflecting on some of the key questions that remain unanswered and which warrant further investigation before DMNs can be utilized in clinical settings.
Collapse
Affiliation(s)
- Aoife M Rodgers
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
37
|
Oliveira EP, Malysz-Cymborska I, Golubczyk D, Kalkowski L, Kwiatkowska J, Reis RL, Oliveira JM, Walczak P. Advances in bioinks and in vivo imaging of biomaterials for CNS applications. Acta Biomater 2019; 95:60-72. [PMID: 31075514 DOI: 10.1016/j.actbio.2019.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 01/03/2023]
Abstract
Due to increasing life expectancy incidence of neurological disorders is rapidly rising, thus adding urgency to develop effective strategies for treatment. Stem cell-based therapies were considered highly promising and while progress in this field is evident, outcomes of clinical trials are rather disappointing. Suboptimal engraftment, poor cell survival and uncontrolled differentiation may be the reasons behind dismal results. Clearly, new direction is needed and we postulate that with recent progress in biomaterials and bioprinting, regenerative approaches for neurological applications may be finally successful. The use of biomaterials aids engraftment of stem cells, protects them from harmful microenvironment and importantly, it facilitates the incorporation of cell-supporting molecules. The biomaterials used in bioprinting (the bioinks) form a scaffold for embedding the cells/biomolecules of interest, but also could be exploited as a source of endogenous contrast or supplemented with contrast agents for imaging. Additionally, bioprinting enables patient-specific customization with shape/size tailored for actual needs. In stroke or traumatic brain injury for example lesions are localized and focal, and usually progress with significant loss of tissue volume creating space that could be filled with artificial tissue using bioprinting modalities. The value of imaging for bioprinting technology is advantageous on many levels including design of custom shapes scaffolds based on anatomical 3D scans, assessment of performance and integration after scaffold implantation, or to learn about the degradation over time. In this review, we focus on bioprinting technology describing different printing techniques and properties of biomaterials in the context of requirements for neurological applications. We also discuss the need for in vivo imaging of implanted materials and tissue constructs reviewing applicable imaging modalities and type of information they can provide. STATEMENT OF SIGNIFICANCE: Current stem cell-based regenerative strategies for neurological diseases are ineffective due to inaccurate engraftment, low cell viability and suboptimal differentiation. Bioprinting and embedding stem cells within biomaterials at high precision, including building complex multi-material and multi-cell type composites may bring a breakthrough in this field. We provide here comprehensive review of bioinks, bioprinting techniques applicable to application for neurological disorders. Appreciating importance of longitudinal monitoring of implanted scaffolds, we discuss advantages of various imaging modalities available and suitable for imaging biomaterials in the central nervous system. Our goal is to inspire new experimental approaches combining imaging, biomaterials/bioinks, advanced manufacturing and tissue engineering approaches, and stimulate interest in image-guided therapies based on bioprinting.
Collapse
Affiliation(s)
- Eduarda P Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | | | - Dominika Golubczyk
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Lukasz Kalkowski
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Kwiatkowska
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Piotr Walczak
- Dept. of Neurosurgery, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland; Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
38
|
Kolluru C, Gomaa Y, Prausnitz MR. Development of a thermostable microneedle patch for polio vaccination. Drug Deliv Transl Res 2019; 9:192-203. [PMID: 30542944 PMCID: PMC6328527 DOI: 10.1007/s13346-018-00608-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to develop a dissolving microneedle (MN) patch for administration of inactivated polio vaccine (IPV) with improved thermal stability when compared with conventional liquid IPV. Excipient screening showed that a combination of maltodextrin and D-sorbitol in histidine buffer best preserved IPV activity during MN patch fabrication and storage. As determined by D-antigen ELISA, all three IPV serotypes maintained > 70% activity after 2 months and > 50% activity after 1-year storage at 5 °C or 25 °C with desiccant. Storage at 40 °C yielded > 40% activity after 2 months and > 20% activity after 1 year. In contrast, commercial liquid IPV types 1 and 2 lost essentially all activity within 1 month at 40 °C and IPV type 3 had < 40% activity. Residual moisture content in MN patches measured by thermogravimetric analysis was 1.2–6.5%, depending on storage conditions. Glass transition temperature measured by differential scanning calorimetry, structural changes measured by X-ray diffraction, and molecular interactions measured by Fourier transform infrared spectroscopy showed changes in MN matrix properties, but they did not correlate with IPV activity changes during storage. We conclude that appropriately formulated MN patches can exhibit thermostability that could enable distribution of IPV with less reliance on cold chain storage.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Yasmine Gomaa
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, Alexandria, 21521, Egypt
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
39
|
A Snapshot of Transdermal and Topical Drug Delivery Research in Canada. Pharmaceutics 2019; 11:pharmaceutics11060256. [PMID: 31159422 PMCID: PMC6631132 DOI: 10.3390/pharmaceutics11060256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023] Open
Abstract
The minimally- or non-invasive delivery of therapeutic agents through the skin has several advantages compared to other delivery routes and plays an important role in medical care routines. The development and refinement of new technologies is leading to a drastic expansion of the arsenal of drugs that can benefit from this delivery strategy and is further intensifying its impact in medicine. Within Canada, as well, a few research groups have worked on the development of state-of-the-art transdermal delivery technologies. Within this short review, we aim to provide a critical overview of the development of these technologies in the Canadian environment.
Collapse
|
40
|
Babity S, Roohnikan M, Brambilla D. Advances in the Design of Transdermal Microneedles for Diagnostic and Monitoring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803186. [PMID: 30353663 DOI: 10.1002/smll.201803186] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Due to their intrinsic advantages over classical hypodermic needles, microneedles have received much attention over the last two decades and will likely soon appear in clinics. Although the vast majority of research is focused on designing microneedles for the painless delivery of drugs, their applications for diagnostic purposes have also provided promising results. In this paper, the main advances in the field of microneedles for diagnostic and patient monitoring purposes are introduced and critically discussed.
Collapse
Affiliation(s)
- Samuel Babity
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Mahdi Roohnikan
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
41
|
Mc Crudden MTC, Larrañeta E, Clark A, Jarrahian C, Rein-Weston A, Lachau-Durand S, Niemeijer N, Williams P, Haeck C, McCarthy HO, Zehrung D, Donnelly RF. Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J Control Release 2018; 292:119-129. [PMID: 30395897 PMCID: PMC6290172 DOI: 10.1016/j.jconrel.2018.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/12/2018] [Accepted: 11/01/2018] [Indexed: 11/06/2022]
Abstract
One means of combating the spread of human immunodeficiency virus (HIV) is through the delivery of long-acting, antiretroviral (ARV) drugs for prevention and treatment. The development of a discreet, self-administered and self-disabling delivery vehicle to deliver such ARV drugs could obviate compliance issues with daily oral regimens. Alternatives in development, such as long-acting intramuscular (IM) injections, require regular access to health care facilities and disposal facilities for sharps. Consequently, this proof of concept study was developed to evaluate the use of dissolving microarray patches (MAPs) containing a long-acting (LA) nanosuspension of the candidate ARV drug, rilpivirine (RPV). MAPs were mechanically strong and penetrated skin in vitro, delivering RPV intradermally. In in vivo studies, the mean plasma concentration of RPV in rats (431 ng/ml at the Day 7 time point) was approximately ten-fold greater than the trough concentration observed after a single-dose in previous clinical studies. These results are the first to indicate, by the determination of relative exposures between IM and MAP administration, that larger multi-array dissolving MAPs could potentially be used to effectively deliver human doses of RPV LA. Importantly, RPV was also detected in the lymph nodes, indicating the potential to deliver this ARV agent into one of the primary sites of HIV replication over extended durations. These MAPs could potentially improve patient acceptability and adherence to HIV prevention and treatment regimens and combat instances of needle-stick injury and the transmission of blood-borne diseases, which would have far-reaching benefits, particularly to those in the developing world.
Collapse
Affiliation(s)
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Annie Clark
- PATH, 2201 Westlake Avenue, Seattle, Washington 98121, USA
| | | | | | | | - Nico Niemeijer
- Janssen Pharmaceutica, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Peter Williams
- Janssen Pharmaceutica, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Clement Haeck
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Darin Zehrung
- PATH, 2201 Westlake Avenue, Seattle, Washington 98121, USA
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
42
|
Rodgers AM, Courtenay AJ, Donnelly RF. Dissolving microneedles for intradermal vaccination: manufacture, formulation, and stakeholder considerations. Expert Opin Drug Deliv 2018; 15:1039-1043. [PMID: 30204003 DOI: 10.1080/17425247.2018.1522301] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Aoife M Rodgers
- a School of Pharmacy, Medical Biology Centre , Queens University Belfast , Belfast , UK
| | - Aaron J Courtenay
- a School of Pharmacy, Medical Biology Centre , Queens University Belfast , Belfast , UK
| | - Ryan F Donnelly
- a School of Pharmacy, Medical Biology Centre , Queens University Belfast , Belfast , UK
| |
Collapse
|
43
|
Richter-Johnson J, Kumar P, Choonara YE, du Toit LC, Pillay V. Therapeutic applications and pharmacoeconomics of microneedle technology. Expert Rev Pharmacoecon Outcomes Res 2018; 18:359-369. [PMID: 29889571 DOI: 10.1080/14737167.2018.1485100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Microneedle (MN) arrays contain a backing plate with multiple microscopic projections to puncture the skin and can be used to deliver drug in a minimally invasive way. Advantages of MNs are numerous including administration of large molecules, avoiding first-pass metabolism, ease of administration, lack of pain, site-specific drug targeting, and dose reduction due to increased absorption efficacy. The growth in the transdermal market has been fueled by an increasing number of chronic disease patients and a demand for easy and pain-free drug administration. AREAS COVERED This paper highlights the use of MNs as a drug delivery system and discusses their potential market impact from a cost perspective. A number of clinical trials have been conducted and are listed to illustrate the potential applications of MNs for therapeutic use. Furthermore, the cosmetic market has made use of the MN technology, indicating that MNs can be used safely, efficaciously, and on a commercial scale. Furthermore, the cost-effectiveness of MNs is discussed. EXPERT COMMENTARY For MNs to become commercially available for therapeutic use, a number of factors will need to be considered: safety, ease of use, manufacturing and storage, uptake, effectiveness, and regulatory requirements.
Collapse
Affiliation(s)
- Jolanda Richter-Johnson
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Pradeep Kumar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Yahya E Choonara
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Lisa C du Toit
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| | - Viness Pillay
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences , Faculty of Health Sciences, University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
44
|
Vora LK, Vavia PR, Larrañeta E, Bell SE, Donnelly RF. Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug. JOURNAL OF INTERDISCIPLINARY NANOMEDICINE 2018; 3:89-101. [PMID: 30069310 PMCID: PMC6055884 DOI: 10.1002/jin2.41] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023]
Abstract
A nanosuspension (NS) was formulated from the lipophilic molecule cholecalciferol (CL) for enhanced transdermal delivery by embedding this NS into hydrophilic polymer-based dissolving microneedles (DMNs). First, the NS was prepared by sonoprecpitation with different molecular weights of poly (vinyl alcohol) and poly (vinyl pyrrolidone) as stabilizers and using two different solvents for particle size and zeta potential optimization. DMN arrays were then prepared by centrifugation-assisted micromoulding and subsequently dried. Poly (vinyl alcohol) (10 kDa) produced a NS with the lowest particle size ( ~ 300 nm). These particles yielded DMN with good mechanical properties when combined with aqueous blends of high molecular weight poly (vinyl pyrrolidone) (360 kDa). The particle size remained similar before and after MN preparation, as confirmed by scanning electron microscope. The CL was in the amorphous state in the free particles as well as in the DMN and, hence, no characteristic CL peak was observed in differential scanning calorimetry or X-ray diffraction. DMN arrays were found to be strong enough to bear a 32 N force, showed efficient skin insertion, and penetrated down to the third layer (depth ≈ 375 μm) of the validated skin model Parafilm M®. An ex vivo porcine skin permeation study using Franz diffusion cells compared the permeation of CL from CL-NS-loaded DMN arrays and MN-free CL-NS patches. It was observed that CL-NS-loaded DMN arrays showed significantly higher (498.19 μg ± 89.3 μg) ex vivo skin permeation compared with MN-free CL-NS patches (73.2 μg ± 26.5 μg) over 24 h. This is the first time a NS of a hydrophobic drug has been successfully incorporated into dissolving MN and suggest that NS-containing DMN systems could be a promising strategy for transdermal delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Lalit K. Vora
- School of PharmacyQueen's University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical Technology, University under Section 3 of UGC Act–1956, Elite Status and Center of Excellence–Govt. of MaharashtraMumbai400019India
| | - Pradeep R. Vavia
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical Technology, University under Section 3 of UGC Act–1956, Elite Status and Center of Excellence–Govt. of MaharashtraMumbai400019India
| | - Eneko Larrañeta
- School of PharmacyQueen's University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| | - Steven E.J. Bell
- School of Chemistry and Chemical Engineering, David Keir BuildingQueen's University BelfastBelfastBT9 5AGUK
| | - Ryan F. Donnelly
- School of PharmacyQueen's University Belfast, Medical Biology Centre97 Lisburn RoadBelfastBT9 7BLUK
| |
Collapse
|
45
|
Donnelly RF, Larrañeta E. Microarray patches: potentially useful delivery systems for long-acting nanosuspensions. Drug Discov Today 2018; 23:1026-1033. [DOI: 10.1016/j.drudis.2017.10.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
46
|
Nguyen TT, Park JH. Human studies with microneedles for evaluation of their efficacy and safety. Expert Opin Drug Deliv 2017; 15:235-245. [PMID: 29169288 DOI: 10.1080/17425247.2018.1410138] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION During the past two decades, many studies have documented the development of microneedles (MNs) as a feasible technique for the effective administration of drugs. More and more human studies have been done with MNs to bridge the gap between research and market applications that provide efficacious techniques for clinical implementation. AREAS COVERED The aim of this review is provide a brief description of the status of human study with MNs and to demonstrate progress for the right use of microneedle arrays in clinical settings. It also describes the considerations for clinical application with each type of MNs. EXPERT OPINION Microneedle systems were introduced to overcome the limitations of conventional methods of drug administration. Lots of microneedle systems have undergone clinical evaluation to determine their efficacy and safety, and many studies have demonstrated positive results. The successful clinical use of the microneedle in vaccine therapy is remarkable and supports the importance of conducting further tests in a wide range of medical applications. Self-administered MNs appeared to be an attractive alternative method that needs further research to become a reality in the near future.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- a Department of BioNano Technology , Gachon University , Gyeonggi-Do , South of Korea
| | - Jung Hwan Park
- a Department of BioNano Technology , Gachon University , Gyeonggi-Do , South of Korea
| |
Collapse
|
47
|
Moffatt K, Wang Y, Raj Singh TR, Donnelly RF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol 2017; 36:14-21. [PMID: 28780407 DOI: 10.1016/j.coph.2017.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
Microneedle mediated delivery based research has garnered great interest in recent years. In the past, the initial focus was delivery of macromolecules of biological origin, however the field has now broadened its scope to include transdermal delivery of conventional low molecular weight drug molecules. Great success has been demonstrated utilising this approach, particularly in the field of vaccine delivery. Current technological advances have permitted an enhancement in design formulation, allowing delivery of therapeutic doses of small molecule drugs and biomolecules, aided by larger patch sizes and scalable manufacture. In addition, it has been recently shown that microneedles are beneficial in localisation of drug delivery systems within targeted ocular tissues. Microneedles have the capacity to modify the means in which therapeutics and formulations are delivered to the eye. However, further research is still required due to potential drawbacks and challenges. Indeed, no true microneedle-based transdermal or ocular drug delivery system has yet been marketed. Some concerns have been raised regarding regulatory issues and manufacturing processes of such systems, and those in the field are now actively working to address them. Microneedle-based transdermal and ocular drug delivery systems have the potential to greatly impact not only patient benefits, but also industry, and through diligence, innovation and collaboration, their true potential will begin to be realised within the next 3-5 years.
Collapse
Affiliation(s)
- Kurtis Moffatt
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yujing Wang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
48
|
How can microneedles overcome challenges facing transdermal drug delivery? Ther Deliv 2017; 8:725-728. [DOI: 10.4155/tde-2017-0028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Kennedy J, Larrañeta E, McCrudden MTC, McCrudden CM, Brady AJ, Fallows SJ, McCarthy HO, Kissenpfennig A, Donnelly RF. In vivo studies investigating biodistribution of nanoparticle-encapsulated rhodamine B delivered via dissolving microneedles. J Control Release 2017; 265:57-65. [PMID: 28428065 PMCID: PMC5736098 DOI: 10.1016/j.jconrel.2017.04.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 02/05/2023]
Abstract
Nanoparticles (NPs) have undergone extensive investigation as drug delivery and targeting vehicles. NP delivery is often via the parenteral route, reliant on administration using hypodermic needles, which can be associated with patient compliance issues and safety concerns. In the recent past, the intradermal delivery of NPs, via novel dissolving microneedle (MN) arrays has garnered interest in the pharmaceutical community. However, published studies using this combinatorial approach have been limited, in that they have focussed on the use of in vitro and ex vivo models only. The current study was designed to answer the fundamental question of how such NPs are distributed in an in vivo murine model, following MN-mediated delivery. Rhodamine B (RhB) was employed as a model tracer dye to facilitate study of biodistribution. Following MN application, RhB was detected in the livers, kidneys, spleens and superficial parotid lymph nodes of the mice. Uptake into the lymphatics was of particular note, as it points towards the potential for utilisation of a minimally-invasive MN delivery strategy in controlled targeting of active drug substances and vaccines to the lymphatics. The use of such a delivery system could, following further development, have far-reaching benefits in enhancement of immunomodulatory and anti-cancer therapies. As a consequence, further investigation of MN/NP combinatorial delivery strategies is warranted.
Collapse
Affiliation(s)
- Joakim Kennedy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron J Brady
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Steven J Fallows
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Adrien Kissenpfennig
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, University Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
50
|
Abstract
Microneedle patches (MNPs) contain arrays of solid needles measuring hundreds of microns in length that deliver drugs and vaccines into skin in a painless, easy-to-use manner. Optimal MNP design balances multiple interdependent parameters that determine mechanical strength, skin-insertion reliability, drug delivery efficiency, painlessness, manufacturability, and other features of MNPs that affect their performance. MNPs can be made by adapting various microfabrication technologies for delivery of small-molecule drugs, biologics, and vaccines targeted to the skin, which can have pharmacokinetic and immunologic advantages. A small number of human clinical trials, as well as a large and growing market for MNP products for cosmetics, indicate that MNPs can be used safely, efficaciously, and with strong patient acceptance. More advanced clinical trials and commercial-scale manufacturing will facilitate development of MNPs to realize their potential to dramatically increase patient access to otherwise-injectable drugs and to improve drug performance via skin delivery.
Collapse
Affiliation(s)
- Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100;
| |
Collapse
|