1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Martin MU, Frevert J, Tay CM. Complexing Protein-Free Botulinum Neurotoxin A Formulations: Implications of Excipients for Immunogenicity. Toxins (Basel) 2024; 16:101. [PMID: 38393178 PMCID: PMC10892905 DOI: 10.3390/toxins16020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The formation of neutralizing antibodies is a growing concern in the use of botulinum neurotoxin A (BoNT/A) as it may result in secondary treatment failure. Differences in the immunogenicity of BoNT/A formulations have been attributed to the presence of pharmacologically unnecessary bacterial components. Reportedly, the rate of antibody-mediated secondary non-response is lowest in complexing protein-free (CF) IncobotulinumtoxinA (INCO). Here, the published data and literature on the composition and properties of the three commercially available CF-BoNT/A formulations, namely, INCO, Coretox® (CORE), and DaxibotulinumtoxinA (DAXI), are reviewed to elucidate the implications for their potential immunogenicity. While all three BoNT/A formulations are free of complexing proteins and contain the core BoNT/A molecule as the active pharmaceutical ingredient, they differ in their production protocols and excipients, which may affect their immunogenicity. INCO contains only two immunologically inconspicuous excipients, namely, human serum albumin and sucrose, and has demonstrated low immunogenicity in daily practice and clinical studies for more than ten years. DAXI contains four excipients, namely, L-histidine, trehalosedihydrate, polysorbate 20, and the highly charged RTP004 peptide, of which the latter two may increase the immunogenicity of BoNT/A by introducing neo-epitopes. In early clinical studies with DAXI, antibodies against BoNT/A and RTP004 were found at low frequencies; however, the follow-up period was critically short, with a maximum of three injections. CORE contains four excipients: L-methionine, sucrose, NaCl, and polysorbate 20. Presently, no data are available on the immunogenicity of CORE in human beings. It remains to be seen whether all three CF BoNT/A formulations demonstrate the same low immunogenicity in patients over a long period of time.
Collapse
|
3
|
Cheng W, Lin X, Wang T, Zhang X, Xu F, Wang L, Wang M, Zhang M, Xia T, Zhang D, Qian S, Yang W, Hu A, Tang M, Hu X, Wang Y, Zhao Q. Healthy plant-based diet might be inversely associated with gastric precancerous lesions: new evidence from a case-control study based on dietary pattern and fecal metabolic profiling. Int J Food Sci Nutr 2024; 75:102-118. [PMID: 37941094 DOI: 10.1080/09637486.2023.2279916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Preventing the progression of gastric precancerous lesions (GPLs) can reduce the morbidity and mortality of gastric cancer (GC). The preventive effect of a plant-based diet on cancers has been widely recognised. In this case-control study, 1,130 subjects were included using 1:1 propensity score matching for age and sex. Dietary habits, anthropometry and sample collection were conducted using standard and effective methods. Plant-based diet indices (PDIs) were calculated using a previously reported method. Faecal samples were analysed by untargeted metabolomics. Our study found that adherence to a healthy plant-based diet was inversely associated with the occurrence of GPLs. Metabolomic analysis identified six different metabolites correlated with GPLs, among which luteolin-related metabolites may be used as biomarkers of the association between PDIs and GPLs. In addition, the difference in N-acyl amides found in PDIs needs further verification. Our findings suggest that a healthy plant-based diet may have a protective effect against GPLs.
Collapse
Affiliation(s)
- Wenli Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaohui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Fang Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tao Xia
- Department of Gastroenterology, Lujiang County People's Hospital, Hefei, China
| | - Daoming Zhang
- Department of Gastroenterology, Lujiang County People's Hospital, Hefei, China
| | - Shiqing Qian
- Department of Pathology, Lujiang County People's Hospital, Hefei, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Tang
- Department of Gastroenterology and Hepatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangpeng Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yalei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Kumari P, Kumar R, Singh D, Kumar R. N-acetyl-L-tryptophan (NAT) provides protection to intestinal epithelial cells (IEC-6) against radiation-induced apoptosis via modulation of oxidative stress and mitochondrial membrane integrity. Mol Biol Rep 2023; 50:6381-6397. [PMID: 37322322 DOI: 10.1007/s11033-023-08579-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ionizing radiation generates oxidative stress in biological systems via inducing free radicals. Gastro-intestinal system has been known for its high radiosensitivity. Therefore, to develop an effective radiation countermeasure for gastrointestinal system, N-acetyl L-tryptophan was evaluated for its radioprotective efficacy using intestinal epithelial cells-6 (IEC-6) cells as the experimental model. METHODS AND RESULTS Cellular metabolic and lysosomal activity of L-NAT and L-NAT treated irradiated IEC-6 cells were assessed by MTT and NRU staining, respectively. ROS and mitochondrial superoxide levels along with mitochondrial disruption were detected using specific fluorescent probes. Endogenous antioxidants (CAT, SOD, GST, GPx) activities were determined using calorimetric assay. Apoptosis and DNA damage were assessed using flow cytometery and Comet assay, respectively. Results of the study were demonstrated that L-NAT pre-treatment (- 1 h) to irradiated IEC-6 cells significantly contribute to ensuring 84.36% to 87.68% (p < 0.0001) survival at 0.1 μg/mL concentration against LD50 radiation dose (LD50; 20 Gy). Similar level of radioprotection was observed with a clonogenic assay against γ radiation (LD50; 5 Gy). L-NAT was found to provide radioprotection by neutralizing radiation-induced oxidative stress, enhancing antioxidant enzymes (CAT, SOD, GST, and GPx), and protecting DNA from radiation-induced damage. Further, significant restoration of mitochondrial membrane integrity along with apoptosis inhibition was observed with irradiated IEC-6 cells upon L-NAT pretreatment.
Collapse
Affiliation(s)
- Pratibha Kumari
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Ravi Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Darshana Singh
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
5
|
Rojekar S, Pallapati AR, Gimenez-Roig J, Korkmaz F, Sultana F, Sant D, Haeck C, Macdonald A, Kim SM, Rosen CJ, Barak O, Meseck M, Caminis J, Lizneva D, Yuen T, Zaidi M. Development and Biophysical Characterization of a Humanized FSH-Blocking Monoclonal Antibody Therapeutic Formulated at an Ultra-High Concentration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540323. [PMID: 37214886 PMCID: PMC10197643 DOI: 10.1101/2023.05.11.540323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Highly concentrated antibody formulations are oftentimes required for subcutaneous, self-administered biologics. Here, we report the creation of a unique formulation for our first-in- class FSH-blocking humanized antibody, MS-Hu6, which we propose to move to the clinic for osteoporosis, obesity, and Alzheimer's disease. The studies were carried out using our Good Laboratory Practice (GLP) platform, compliant with the Code of Federal Regulations (Title 21, Part 58). We first used protein thermal shift, size exclusion chromatography, and dynamic light scattering to examine MS-Hu6 concentrations between 1 and 100 mg/mL. We found that thermal, monomeric, and colloidal stability of formulated MS-Hu6 was maintained at a concentration of 100 mg/mL. The addition of the antioxidant L-methionine and chelating agent disodium EDTA improved the formulation's long-term colloidal and thermal stability. Thermal stability was further confirmed by Nano differential scanning calorimetry (DSC). Physiochemical properties of formulated MS-Hu6, including viscosity, turbidity, and clarity, conformed with acceptable industry standards. That the structural integrity of MS-Hu6 in formulation was maintained was proven through Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. Three rapid freeze-thaw cycles at -80°C/25°C or -80°C/37°C further revealed excellent thermal and colloidal stability. Furthermore, formulated MS-Hu6, particularly its Fab domain, displayed thermal and monomeric storage stability for more than 90 days at 4°C and 25°C. Finally, the unfolding temperature (T m ) for formulated MS-Hu6 increased by >4.80°C upon binding to recombinant FSH, indicating highly specific ligand binding. Overall, we document the feasibility of developing a stable, manufacturable and transportable MS-Hu6 formulation at a ultra-high concentration at industry standards. The study should become a resource for developing biologic formulations in academic medical centers.
Collapse
|
6
|
A Review on Forced Degradation Strategies to Establish the Stability of Therapeutic Peptide Formulations. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Residue-Specific Impact of EDTA and Methionine on Protein Oxidation in Biotherapeutics Formulations Using an Integrated Biotherapeutics Drug Product Development Workflow. J Pharm Sci 2023; 112:471-481. [PMID: 36130676 DOI: 10.1016/j.xphs.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023]
Abstract
The rational design and selection of formulation composition to meet molecule-specific and product-specific needs are critical for biotherapeutics development to ensure physical and chemical stability. This work, based on three antibody-based (mAb) proteins (mAbA, mAbB, and mAbC), evaluates residue-specific impact of EDTA and methionine on protein oxidation, using an integrated biotherapeutics drug product development workflow. This workflow includes statistical experimental design, high-throughput experimental automation and execution, structure-based in silico modeling, inferential statistical analysis, and enhanced interactive data visualization of large datasets. This oxidation study evaluates the impact of formulation parameters including pH, protein concentration, and the presence of polysorbate 80 on the oxidation of specific conserved and variable residues of mAbs A, B, and C in the presence of stressors (iron, peroxide) and/or protectants (EDTA, L-methionine). Residue-specific analysis by automated high-throughput peptide mapping demonstrates differential residue-specific effects of EDTA and methionine in protecting against oxidation, highlighting the need for molecule-specific and product-specific selection of these excipients during formulation development. Computational modeling based on a homology model and the two-shell water coordination method (WCN) was employed to gain mechanistic understanding of residue-specific oxidation susceptibility of methionine residues. The computational determinants of local solvent exposure of methionine residues showed good correlation of WCN with experimentally determined oxidation for corresponding residues. The rapid generation of high-resolution data, statistical data analysis and interactive visualization of the high-throughput residue-level data containing ∼200 unique formulations facilitate residue-specific, molecule-specific and product-specific oxidation (global and local) assessment for oxidation protectants during early development for mAbs and related mAb-based modalities.
Collapse
|
8
|
Correcting a widespread error: Neuroprotectant N-acetyl-L-tryptophan does not bind to the neurokinin-1 receptor. Mol Cell Neurosci 2022; 120:103728. [DOI: 10.1016/j.mcn.2022.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
|
9
|
Jing ZY, Huo GL, Sun MF, Shen BB, Fang WJ. Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation. Pharm Res 2022; 39:399-410. [PMID: 35083639 DOI: 10.1007/s11095-022-03170-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSES The primary objectives of this study were to investigate the degradation mechanisms of freeze-dried monoclonal antibody (mAb) formulations under mechanical grinding, assess the sensitivity and suitability of various particle analysis techniques, analyze the structure of the collected subvisible particles (SbVPs), and analyze the antioxidant mechanism of methionine (Met) under degradation process to gain a thorough understanding of the phenomenon. METHODS The freeze-dried mAb-X formulations underwent grinding, and the resultant SbVPs were characterized through visual inspection, flow imaging microscopy, dynamic light scattering, ultraviolet-visible spectroscopy, and size-exclusion high-performance liquid chromatography. We further evaluated the effect of different temperatures and the free radical scavenger Met on SbVP formation. The produced free radicals were detected using electron paramagnetic resonance, and Met S-oxide formation was detected using liquid chromatography-mass spectrometry. In addition, we analyzed the obtained SbVPs using capillary electrophoresis sodium dodecyl sulfate and Fourier transform infrared spectroscopy. RESULTS Grinding leads to SbVP formation under high temperature and free radical formation. Free radicals produced during grinding require the participation of a macromolecule. Met could then bind to the produced free radicals, thus partially protecting mAb-X from degradation while itself undergoing oxidation to form Met(O). Sensitivity differences between different particle analysis techniques were evaluated, and the obtained SbVPs showed significant changes in secondary structure and the formation of covalent aggregates and fragments. CONCLUSIONS Met plays the role of an antioxidant in protecting macromolecules by quenching the free radicals produced during grinding. To thoroughly characterize SbVPs, multiple and orthogonal particle analysis techniques should be used, and if necessary, SbVPs should be processed by enrichment to accurately analyze primary and high order structures.
Collapse
Affiliation(s)
- Zhen-Yi Jing
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Guo-Li Huo
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min-Fei Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Bin-Bin Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
10
|
Fevre A, Kiessig S, Bonnington L, Olaf Stracke J, Bulau P. Quantifying methionine sulfoxide in therapeutic protein formulation excipients as sensitive oxidation marker. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1189:123092. [PMID: 35026663 DOI: 10.1016/j.jchromb.2021.123092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/26/2021] [Indexed: 10/19/2022]
Abstract
Methionine is a common excipient used in therapeutic protein liquid formulations as stabilizer and antioxidant. The oxidation of methionine to methionine sulfoxide can be regarded as a sensitive marker of oxidative stress for drug product storage conditions. In this study, a sensitive HPLC method for the quantification of methionine sulfoxide in formulated protein product was developed and qualified according to regulatory requirements using a SIELC® Primesep 100 column with UV detection. The separation involves a mixed-mode mechanism including reversed phase and cationic exchange modalities. The operating range of the method was established between 1 µM and 35 µM of methionine sulfoxide. In this testing range, the method was shown to be linear (R2 > 0.99), accurate (Recovery 92.9 - 103.6%, average recovery = 99.8 ± 1.4%) and precise (intermediate precision at LoQ, CV = 2.9%). The developed test system was successfully applied to study the effects of temperature and storage conditions on methionine sulfoxide formation in complex therapeutic antibody formulations.
Collapse
Affiliation(s)
- Arnaud Fevre
- Pharma Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Steffen Kiessig
- Pharma Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Lea Bonnington
- Pharma Technical Development, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Jan Olaf Stracke
- Pharma Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Patrick Bulau
- Pharma Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
11
|
Wei B, Woon N, Dai L, Fish R, Tai M, Handagama W, Yin A, Sun J, Maier A, McDaniel D, Kadaub E, Yang J, Saggu M, Woys A, Pester O, Lambert D, Pell A, Hao Z, Magill G, Yim J, Chan J, Yang L, Macchi F, Bell C, Deperalta G, Chen Y. Multi-attribute Raman spectroscopy (MARS) for monitoring product quality attributes in formulated monoclonal antibody therapeutics. MAbs 2021; 14:2007564. [PMID: 34965193 PMCID: PMC8726703 DOI: 10.1080/19420862.2021.2007564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rapid release of biopharmaceutical products enables a more efficient drug manufacturing process. Multi-attribute methods that target several product quality attributes (PQAs) at one time are an essential pillar of the rapid-release strategy. The novel, high-throughput, and nondestructive multi-attribute Raman spectroscopy (MARS) method combines Raman spectroscopy, design of experiments, and multivariate data analysis (MVDA). MARS allows the measurement of multiple PQAs for formulated protein therapeutics without sample preparation from a single spectroscopic scan. Variable importance in projection analysis is used to associate the chemical and spectral basis of targeted PQAs, which assists in model interpretation and selection. This study shows the feasibility of MARS for the measurement of both protein purity-related and formulation-related PQAs; measurements of protein concentration, osmolality, and some formulation additives were achieved by a generic multiproduct model for various protein products containing the same formulation components. MARS demonstrates the potential to be a powerful methodology to improve the efficiency of biopharmaceutical development and manufacturing, as it features fast turnaround time, good robustness, less human intervention, and potential for automation.
Collapse
Affiliation(s)
- Bingchuan Wei
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA.,Small Molecule Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Nicholas Woon
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Lu Dai
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Raphael Fish
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Michelle Tai
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Winode Handagama
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Ashley Yin
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Jia Sun
- Pharmaceutical Development, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Andrew Maier
- Purification Development, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Dana McDaniel
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Elvira Kadaub
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Jessica Yang
- Pharmaceutical Development, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Miguel Saggu
- Pharmaceutical Development, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Ann Woys
- Pharmaceutical Development, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Oxana Pester
- Pharma Technical Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Danny Lambert
- Pharma Technical Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Alex Pell
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Zhiqi Hao
- Protein Analytical Chemistry Quality Control, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Gordon Magill
- Cell Culture Development and Bioprocess, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Jack Yim
- Protein Analytical Chemistry Quality Control, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Jefferson Chan
- Protein Analytical Chemistry Quality Control, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Lindsay Yang
- Protein Analytical Chemistry Quality Control, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Frank Macchi
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Christian Bell
- Pharma Technical Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Galahad Deperalta
- Protein Analytical Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| | - Yan Chen
- Pharma Technical Development, Genentech Inc, 1 DNA Way, South San Francisco, California, USA
| |
Collapse
|
12
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
13
|
Gupta S, Jiskoot W, Schöneich C, Rathore AS. Oxidation and Deamidation of Monoclonal Antibody Products: Potential Impact on Stability, Biological Activity, and Efficacy. J Pharm Sci 2021; 111:903-918. [PMID: 34890632 DOI: 10.1016/j.xphs.2021.11.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
The role in human health of therapeutic proteins in general, and monoclonal antibodies (mAbs) in particular, has been significant and is continuously evolving. A considerable amount of time and resources are invested first in mAb product development and then in clinical examination of the product. Physical and chemical degradation can occur during manufacturing, processing, storage, handling, and administration. Therapeutic proteins may undergo various chemical degradation processes, including oxidation, deamidation, isomerization, hydrolysis, deglycosylation, racemization, disulfide bond breakage and formation, Maillard reaction, and β-elimination. Oxidation and deamidation are the most common chemical degradation processes of mAbs, which may result in changes in physical properties, such as hydrophobicity, charge, secondary or/and tertiary structure, and may lower the thermodynamic or kinetic barrier to unfold. This may predispose the product to aggregation and other chemical modifications, which can alter the binding affinity, half-life, and efficacy of the product. This review summarizes major findings from the past decade on the impact of oxidation and deamidation on the stability, biological activity, and efficacy of mAb products. Mechanisms of action, influencing factors, characterization tools, clinical impact, and risk mitigation strategies have been addressed.
Collapse
Affiliation(s)
- Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | | | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.
| |
Collapse
|
14
|
Pharmaceutical Excipients Enhance Iron-Dependent Photo-Degradation in Pharmaceutical Buffers by near UV and Visible Light: Tyrosine Modification by Reactions of the Antioxidant Methionine in Citrate Buffer. Pharm Res 2021; 38:915-930. [PMID: 33881737 DOI: 10.1007/s11095-021-03042-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the effect of excipients, including sugars and amino acids, on photo-degradation reactions in pharmaceutical buffers induced by near UV and visible light. METHODS Solutions of citrate or acetate buffers, containing 1 or 50 μM Fe3+, the model peptides methionine enkephalin (MEn), leucine enkephalin (LEn) or proctolin peptide (ProP), in the presence of commonly used amino acids or sugars, were photo-irradiated with near UV or visible light. The oxidation products were analyzed by reverse-phase HPLC and HPLC-MS/MS. RESULTS The sugars mannitol, sucrose and trehalose, and the amino acids Arg, Lys, and His significantly promote the oxidation of peptide Met to peptide Met sulfoxide. These excipients do not increase the yields of hydrogen peroxide, suggesting that other oxidants such as peroxyl radicals are responsible for the oxidation of peptide Met. The addition of free Met reduces the oxidation of peptide Met, but, in citrate buffer, causes the addition of Met oxidation products to Tyr residues of the target peptides. CONCLUSIONS Commonly used excipients enhance the light-induced oxidation of amino acids in model peptides.
Collapse
|
15
|
Delmar JA, Buehler E, Chetty AK, Das A, Quesada GM, Wang J, Chen X. Machine learning prediction of methionine and tryptophan photooxidation susceptibility. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:466-477. [PMID: 33898635 PMCID: PMC8060516 DOI: 10.1016/j.omtm.2021.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Photooxidation of methionine (Met) and tryptophan (Trp) residues is common and includes major degradation pathways that often pose a serious threat to the success of therapeutic proteins. Oxidation impacts all steps of protein production, manufacturing, and shelf life. Prediction of oxidation liability as early as possible in development is important because many more candidate drugs are discovered than can be tested experimentally. Undetected oxidation liabilities necessitate expensive and time-consuming remediation strategies in development and may lead to good drugs reaching patients slowly. Conversely, sites mischaracterized as oxidation liabilities could result in overengineering and lead to good drugs never reaching patients. To our knowledge, no predictive model for photooxidation of Met or Trp is currently available. We applied the random forest machine learning algorithm to in-house liquid chromatography-tandem mass spectrometry (LC-MS/MS) datasets (Met, n = 421; Trp, n = 342) of tryptic therapeutic protein peptides to create computational models for Met and Trp photooxidation. We show that our machine learning models predict Met and Trp photooxidation likelihood with 0.926 and 0.860 area under the curve (AUC), respectively, and Met photooxidation rate with a correlation coefficient (Q2) of 0.511 and root-mean-square error (RMSE) of 10.9%. We further identify important physical, chemical, and formulation parameters that influence photooxidation. Improvement of biopharmaceutical liability predictions will result in better, more stable drugs, increasing development throughput, product quality, and likelihood of clinical success.
Collapse
Affiliation(s)
- Jared A Delmar
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Eugen Buehler
- Data Sciences and AI, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Ashwin K Chetty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Agastya Das
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Jihong Wang
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Xiaoyu Chen
- Biopharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| |
Collapse
|
16
|
Doshi N, Giddings J, Luis L, Wu A, Ritchie K, Liu W, Chan W, Taing R, Chu J, Sreedhara A, Kannan A, Kei P, Shieh I, Graf T, Hu M. A Comprehensive Assessment of All-Oleate Polysorbate 80: Free Fatty Acid Particle Formation, Interfacial Protection and Oxidative Degradation. Pharm Res 2021; 38:531-548. [PMID: 33713012 DOI: 10.1007/s11095-021-03021-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Enzymatic polysorbate (PS) degradation and resulting free fatty acid (FFA) particles are detrimental to biopharmaceutical drug product (DP) stability. Different types and grades of polysorbate have varying propensity to form FFA particles. This work evaluates the homogenous all-oleate (AO) PS80 alongside heterogeneous PS20 and PS80 grades in terms its propensity to form FFA particles and other important attributes like interfacial protection and oxidation susceptibility. METHODS FFA particle formation rates were compared by degrading PS using non-immobilized hydrolases and fast degrading DP formulations. Interfacial protection of monoclonal antibodies (mAbs) was assessed by agitation studies in saline using non-degraded and degraded PS. Several antioxidants were assessed for their ability to mitigate AO PS80 oxidation and subsequent mAb oxidation by a 40°C placebo stability study and a 2, 2'-Azobis (2-amidinopropane) dihydrochloride stress model, respectively. RESULTS Visible and subvisible particles were significantly delayed in AO PS80 formulations compared with heterogeneous PS20 and PS80 formulations. Non-degraded AO PS80 was less protective of mAbs against the air-water interface compared with heterogeneous PS20. Interfacial protection by AO PS80 improved upon degradation owing to high surface activity of FFAs. Diethylenetriaminepentaacetic acid (DTPA) completely mitigated AO PS80 oxidation unlike L-methionine and N-Acetyl-DL-Tryptophan. However, DTPA did not mitigate radical mediated mAb oxidation. CONCLUSION AO PS80 is a promising alternative to reduce FFA particle formation compared with other PS types and grades. However, limitations observed here---such as lower protection against interfacial stresses and higher propensity for oxidation---need to be considered in assessing the risk/benefit ratio in using AO PS80.
Collapse
Affiliation(s)
- Nidhi Doshi
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Jamie Giddings
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Lin Luis
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Arthur Wu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kyle Ritchie
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wenqiang Liu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Wayman Chan
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Rosalynn Taing
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jeff Chu
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Alavattam Sreedhara
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Aadithya Kannan
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Pervina Kei
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Ian Shieh
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tobias Graf
- Pharma Technical Development Analytics, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Mark Hu
- Pharmaceutical Development, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
17
|
Hey A, Baumann A, Kronenberg S, Blaich G, Mohl S, Fagg R, Ulrich P, Rattel B, Richter WF, Kiessling A, Weir L. Nonclinical Development of Biologics: Integrating Safety, Pharmacokinetics, and Pharmacodynamics to Create Smarter and More Flexible Nonclinical Safety Programs Optimizing Animal Use. Int J Toxicol 2021; 40:270-284. [PMID: 33631988 DOI: 10.1177/1091581821994288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Safety assessment of biological drugs has its challenges due to the multiple new different modalities, for example, antibody-drug conjugates, bispecifics, nanobodies, fusion proteins and advanced therapy medicinal products (ATMPs), their different pharmacokinetic and pharmacodynamic properties, and their ability to trigger immunogenicity and toxicity. In the public and in the pharmaceutical industry, there is a strong and general desire to reduce the number of animals used in research and development of drugs and in particular reducing the use of nonhuman primates. Important discussions and activities are ongoing investigating the smarter designs of early research and dose range finding studies, reuse of animals, and replacing animal experiments with in vitro studies. Other important challenges include absence of a relevant species and design of studies and developing genetically modified animals for special investigative toxicology studies. Then, the learnings and challenges from the development of the first ATMPs are available providing valuable insights in the development path for these new potentially transformative treatments. Finally, development of strategies for assessment of immunogenicity and prediction of translation of immunogenicity and associated findings to the clinic. On this, the eighth meeting for the European BioSafe members, these challenges served as the basis for the presentations and discussions during the meeting. This article serves as the workshop report reviewing the presentations and discussions at the meeting.
Collapse
Affiliation(s)
- Adam Hey
- Novartis Pharma, Basel, Switzerland
| | | | - Sven Kronenberg
- 30259Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | - Silke Mohl
- 30259Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | | | | | - Wolfgang F Richter
- 30259Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | | |
Collapse
|
18
|
Bramham JE, Podmore A, Davies SA, Golovanov AP. Comprehensive Assessment of Protein and Excipient Stability in Biopharmaceutical Formulations Using 1H NMR Spectroscopy. ACS Pharmacol Transl Sci 2021; 4:288-295. [PMID: 33659867 PMCID: PMC7906489 DOI: 10.1021/acsptsci.0c00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 01/06/2023]
Abstract
Biopharmaceutical proteins are important drug therapies in the treatment of a range of diseases. Proteins, such as antibodies (Abs) and peptides, are prone to chemical and physical degradation, particularly at the high concentrations currently sought for subcutaneous injections, and so formulation conditions, including buffers and excipients, must be optimized to minimize such instabilities. Therefore, both the protein and small molecule content of biopharmaceutical formulations and their stability are critical to a treatment's success. However, assessing all aspects of protein and small molecule stability currently requires a large number of analytical techniques, most of which involve sample dilution or other manipulations which may themselves distort sample behavior. Here, we demonstrate the application of 1H nuclear magnetic resonance (NMR) spectroscopy to study both protein and small molecule content and stability in situ in high-concentration (100 mg/mL) Ab formulations. We show that protein degradation (aggregation or fragmentation) can be detected as changes in 1D 1H NMR signal intensity, while apparent relaxation rates are specifically sensitive to Ab fragmentation. Simultaneously, relaxation-filtered spectra reveal the presence and degradation of small molecule components such as excipients, as well as changes in general solution properties, such as pH. 1H NMR spectroscopy can thus provide a holistic overview of biopharmaceutical formulation content and stability, providing a preliminary characterization of degradation and acting as a triaging step to guide further analytical techniques.
Collapse
Affiliation(s)
- Jack E. Bramham
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| | - Adrian Podmore
- Dosage
Form Design & Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Stephanie A. Davies
- Dosage
Form Design & Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Alexander P. Golovanov
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
19
|
Feofanova EV, Chen H, Dai Y, Jia P, Grove ML, Morrison AC, Qi Q, Daviglus M, Cai J, North KE, Laurie CC, Kaplan RC, Boerwinkle E, Yu B. A Genome-wide Association Study Discovers 46 Loci of the Human Metabolome in the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet 2020; 107:849-863. [PMID: 33031748 PMCID: PMC7675000 DOI: 10.1016/j.ajhg.2020.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Variation in levels of the human metabolome reflect changes in homeostasis, providing a window into health and disease. The genetic impact on circulating metabolites in Hispanics, a population with high cardiometabolic disease burden, is largely unknown. We conducted genome-wide association analyses on 640 circulating metabolites in 3,926 Hispanic Community Health Study/Study of Latinos participants. The estimated heritability for 640 metabolites ranged between 0%-54% with a median at 2.5%. We discovered 46 variant-metabolite pairs (p value < 1.2 × 10-10, minor allele frequency ≥ 1%, proportion of variance explained [PEV] mean = 3.4%, PEVrange = 1%-22%) with generalized effects in two population-based studies and confirmed 301 known locus-metabolite associations. Half of the identified variants with generalized effect were located in genes, including five nonsynonymous variants. We identified co-localization with the expression quantitative trait loci at 105 discovered and 151 known loci-metabolites sets. rs5855544, upstream of SLC51A, was associated with higher levels of three steroid sulfates and co-localized with expression levels of SLC51A in several tissues. Mendelian randomization (MR) analysis identified several metabolites associated with coronary heart disease (CHD) and type 2 diabetes. For example, two variants located in or near CYP4F2 (rs2108622 and rs79400241, respectively), involved in vitamin E metabolism, were associated with the levels of octadecanedioate and vitamin E metabolites (gamma-CEHC and gamma-CEHC glucuronide); MR analysis showed that genetically high levels of these metabolites were associated with lower odds of CHD. Our findings document the genetic architecture of circulating metabolites in an underrepresented Hispanic/Latino community, shedding light on disease etiology.
Collapse
Affiliation(s)
- Elena V Feofanova
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Han Chen
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alanna C Morrison
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina Gilling School of Global Public Health, Chapel Hill, NC 27599, USA; Carolina Center of Genome Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Affiliation(s)
- Michael Hellwig
- Professur für LebensmittechemieTechnische Universität Dresden D-01062 Dresden Deutschland
| |
Collapse
|
21
|
Abstract
Oxidation is one of the deterioration reactions of proteins in food, the importance of which is comparable to others such as Maillard, lipation, or protein-phenol reactions. While research on protein oxidation has led to a precise understanding of the processes and consequences in physiological systems, knowledge about the specific effects of protein oxidation in food or the role of "oxidized" dietary protein for the human body is comparatively scarce. Food protein oxidation can occur during the whole processing axis, from primary production to intestinal digestion. The present review summarizes the current knowledge and mechanisms of food protein oxidation from a chemical, technological, and nutritional-physiological viewpoint and gives a comprehensive classification of the individual reactions. Different analytical approaches are compared, and the relationship between oxidation of food proteins and oxidative stress in vivo is critically evaluated.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| |
Collapse
|
22
|
Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv 2019; 37:107412. [PMID: 31254660 DOI: 10.1016/j.biotechadv.2019.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Liquid formulation of therapeutic proteins is a maturing technology. Demand for products that are easy to use in the clinic or that are amenable to self-administration make a ready to use liquid formulation desirable. Most modern liquid formulations have a simple composition; comprising a buffer, a tonicity modifier, a surfactant, sometimes a stabiliser, the therapeutic protein and water. Recent formulations of monoclonal antibodies often use histidine or acetate as the buffer, sucrose or trehalose as the tonicity modifier and polysorbate 20 or 80 as the surfactant with a pH of 5.7 +/- 0.4. The mechanisms for the behaviour of excipients is still debated by academics so formulation design is still a black art. Fortunately, a statistical approach like design of experiment is suitable for formulation development and has been successful when combined with accelerated stability experimentation. The development of prefilled syringes and pens has added low viscosity and shear resistance to the quality attributes for a successful formulation. To achieve patient compliance for self-administration, formulations that cause minimal pain and tissue damage is also desirable.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical Engineering & Advanced Materials, University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
23
|
Shim K, Gulhar R, Jialal I. Exploratory metabolomics of nascent metabolic syndrome. J Diabetes Complications 2019; 33:212-216. [PMID: 30611573 DOI: 10.1016/j.jdiacomp.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Metabolic syndrome (MetS) is a disorder defined by having three of five features: increased waist circumference (WC), hypertriglyceridemia, decreased high-density lipoprotein-cholesterol, hypertension and an elevated blood glucose (BG). Metabolic Syndrome ( MetS) affects 35% of American adults and significantly increases risk for Atherosclerotic cardiovascular disease (ASCVD) and type-2 diabetes (T2DM). An understanding of the metabolome will help elucidate the pathogenesis of MetS and lead to better management. We hypothesize that the metabolites, gamma-aminobutyric acid (GABA), d-pyroglutamic acid (PGA) and N-acetyl-d-tryptophan (NAT) will be altered in nascent MetS patients without the confounding of ASCVD or T2DM. We also correlated these metabolites with biomarkers of inflammation. PATIENTS AND METHODS This was an exploratory study of 30 patients with nascent MetS and 20 matched controls undertaken in 2018. Metabolites were evaluated from patient's frozen early morning urine samples and were correlated with biomarkers of inflammation and adipokines. They were assayed by the NIH Western Metabolomics Center using liquid chromatography/mass spectrometry and standardized to urinary creatinine. All patients had normal hepatic and renal function. RESULTS GABA and PGA levels were significantly increased in MetS patients compared to controls: 2.8-fold and 2.9-fold median increases respectively with p < 0.0001 and p = 0.004, possibly deriving from glutamate. NAT was significantly decreased by 90% in MetS patients compared to controls, p < 0.001. GABA correlates significantly with cardio-metabolic (CM) features including WC, blood pressure systolic (BP-S) while NAT correlated inversely with WC, BP-S, blood glucose (BG) and triglycerides (TG). GABA correlated positively with chemerin, leptin, Fetuin A and endotoxin. NAT correlated inversely with WC, BP-S, BG, TG, high sensitivity C - reactive protein (hsCRP), toll-like receptor-4 (TLR-4), lipopolysaccharide binding protein (LBP), chemerin and retinol binding protein-4 (RBP-4). CONCLUSIONS We make the novel observation of increased GABA and PGA with decreased NAT in patients with MetS. While GABA and PGA correlates positively with CM features and biomediators of inflammation, the metabolite NAT correlated inversely. Thus, GABA and PGA could contribute to the pro-inflammatory state of MetS while NAT could mitigate this pro-inflammatory response.
Collapse
Affiliation(s)
- Kyumin Shim
- California North-state University College of Medicine, United States of America
| | - Radhika Gulhar
- California North-state University College of Medicine, United States of America
| | - Ishwarlal Jialal
- California North-state University College of Medicine, United States of America.
| |
Collapse
|